
Examining the Expert Gap in
Parallel Programming

Sebastian Nanz1, Scott West1, and Kaue Soares da Silveira2

1 ETH Zurich, Switzerland
firstname.lastname@inf.ethz.ch
2 Google Inc., Zurich, Switzerland

kaue@google.com

Abstract. Parallel programming is often regarded as one of the hard-
est programming disciplines. On the one hand, parallel programs are
notoriously prone to concurrency errors; and, while trying to avoid such
errors, achieving program performance becomes a significant challenge.
As a result of the multicore revolution, parallel programming has how-
ever ceased to be a task for domain experts only. And for this reason, a
large variety of languages and libraries have been proposed that promise
to ease this task. This paper presents a study to investigate whether
such approaches succeed in closing the gap between domain experts and
mainstream developers. Four approaches are studied: Chapel, Cilk, Go,
and Threading Building Blocks (TBB). Each approach is used to imple-
ment a suite of benchmark programs, which are then reviewed by notable
experts in the language. By comparing original and revised versions with
respect to source code size, coding time, execution time, and speedup,
we gain insights into the importance of expert knowledge when using
modern parallel programming approaches.

1 Introduction

The belief that “parallel programming is hard, and best left to experts” has
long become a developers’ mantra. Indeed, concurrency makes parallel programs
prone to errors such as atomicity violations, data races, and deadlocks, which are
hard to detect because of their nondeterministic nature. Furthermore, achieving
performance is a significant challenge, as scheduling and communication over-
heads or lock contention may lead to adverse effects, such as parallel slow down.

In spite of these facts, the comfort of leaving parallel programming to do-
main experts is fading away: the industry-wide shift to multicore processors has
made parallelism relevant for mainstream developers. To support their efforts,
a variety of advanced programming languages and libraries have been designed,
promising an improved development experience over traditional multithreaded
programming. The effectiveness of these approaches in practice hinges on their
ability to allow developers to easily achieve good results constructing parallel
programs. However, how can one quantify “good results”, and “easily”? This
will clearly depend on what improvements to a parallel program are still left to
be made, and how much effort they require to be implemented.



In this paper, we propose to study these effects by examining the expert gap
in parallel programming. The expert gap is the distance in expertise between an
expert and a competent (though inexperienced in the expert’s domain) developer
of a parallel program. The gap is quantified by the difference in lines of code
used, absolute performance, scalability, and the correction cost (in coding time)
to bring the novice code up to the standards of the expert. This is expressed by
the following research questions:

Q1: To what extent do expert comments reduce code size?

Q2: To what extent do expert comments reduce execution time?

Q3: To what extent do expert comments increase speedup?

Q4: What is the overhead of implementing the experts’ corrections?

To address the research questions, we performed a study with four popular
parallel programming approaches: Chapel [1], Cilk [2], Go [3], and Threading
Building Blocks (TBB) [4]. In the study, we asked notable experts in the re-
spective approaches to review a suite of six parallel benchmark programs [5]
implemented by an experienced developer, who had however no previous ex-
pertise in the approaches. After implementation of their comments, the experts
performed a second review to check that their comments had been addressed
appropriately.

We recruited high-profile experts, namely either leaders or prominent mem-
bers of the respective compiler development teams:

– Brad Chamberlain, Principal Engineer at Cray Inc., technical lead on Chapel

– Jim Sukha, Software Engineer at Intel Corp., Cilk Plus development team

– Luuk van Dijk, Software Engineer at Google Inc., Go development team

– Arch D. Robison, Sr. Principal Engineer at Intel Corp., TBB chief architect

This process led to a solution pool of 48 programs, i.e. six problems in four
approaches, each before and after expert review. The data also allows the ap-
proaches to be compared with each other, which is an extensive study in itself
and not the goal of this paper; for reference, we report the complete results in a
companion technical report [6].

The remainder of this paper is structured as follows. Section 2 provides back-
ground on the four approaches and the benchmark problems used in the study.
Section 3 presents the results of the study for each of the four metrics. Sec-
tion 4 discusses threats to validity. Section 5 presents related work and Section 6
concludes with an outlook on future work.

2 Background

This section provides background on the parallel programming approaches and
the benchmark problems used in this study.



2.1 Overview of the approaches

Table 1 summarizes the characteristics of Chapel, Cilk, Go, and TBB, together
with year of appearance, and the corporation currently supporting further de-
velopment.

Chapel [1] describes parallelism in terms of independent computation imple-
mented using threads, but specified through higher-level abstractions. It pro-
vides a variety of parallel constructs such as parallel-for (forall), reduce, and
scan, leading to very concise parallel code. Its programming model targets both
high-performance computers as well as clusters and desktop multicore systems
and clusters.

Cilk [2] Cilk exposes parallelism through high-level primitives that are imple-
mented by the runtime system, which takes care of load balancing using dynamic
scheduling through work stealing. The keyword cilk spawn marks the concur-
rent variant of the function call statement, which starts the (possibly) concurrent
execution of a function. The synchronization statement cilk sync waits for the
end of the execution of all the functions spawned in the body of the current
function; there is an implicit cilk sync statement at the end of all procedures.
Lastly, there is an additional cilk for construct. This construct is a limited
parallel variant of the normal for statement, handling only simple loops.

Go [3] is a general-purpose programming language targeted towards systems
programming. Parallelism is expressed using an approach based on Communi-
cating Sequential Processes (CSP) [7]. The statement go starts the execution
of a function call as an independent concurrent thread of control, or goroutine,
within the same address space. Channels (indicated by the chan type) provide
a mechanism for two concurrently executing functions to synchronize execution
and communicate by passing a value of a specified element type; channels can
be synchronous or asynchronous. Few parallel constructs are readily available in
Go, resulting in more verbose code. For example, to construct a parallel-for loop
the work gets dispatched to a channel from one go routine, while a number of
goroutines fetch work from this channel and process it.

Threading Building Blocks (TBB) [4] is a parallel programming template library
for the C++ language. Parallelism is expressed using Algorithmic Skeletons [8],
and the runtime system takes care of scheduling and load balancing using work
stealing. Similar to Chapel, a variety of parallel constructs are available, such as
parallel_for, parallel_reduce, and parallel_scan.

2.2 Benchmark problems

We chose the problems suggested in [5] as benchmarks, which comprehend a wide
range of parallel programming patterns. Reusing a tried and tested set has the
benefit that estimates for the implementation complexity exist and that problem



Name
Programming
abstraction

Communication
paradigm

Programming
paradigm

Year Corporation

Chapel
Partitioned Global Ad-
dress Space (PGAS)

message passing /
shared memory

object-oriented 2006 Cray Inc.

Cilk Structured Fork-Join shared memory
imperative /
object-oriented

1994 Intel Corp.

Go
Communicating Sequen-
tial Processes (CSP)

message passing /
shared memory

imperative 2009 Google Inc.

TBB Algorithmic Skeletons shared memory C++ library 2006 Intel Corp.

Table 1. Main language characteristics

selection bias can be avoided by the experimenter. We chose these particular
benchmark problems as it was important to keep the amount of time spent with
each problem reasonably small (experts could devote only a limited amount of
time to the review). The problems have been designed for this purpose [5]; in
order to be more representative of large applications, they can also be chained
together.

Again to keep the number of implementations manageable, we selected the
following six from [5]:

– Random matrix generation (randmat)
– Histogram thresholding (thresh)
– Weighted point selection (winnow)
– Outer product (outer)
– Matrix-vector product (product)
– Chaining of problems (chain)

Note that the last problem, chain, corresponds to a chaining together of the
inputs and outputs of the other five.

3 Results

This section presents and discusses the data collected in the study. Table 2
provides absolute numbers for all versions of the code, before and after expert
review. The figures in this section display the relative differences between the
expert and non-expert versions.

3.1 Source code size

The differences between the non-expert and expert versions with respect to lines
of code are given in Figure 1. Addressing research question Q1, it is appar-
ent from the figure that suggested changes decreased the source code size only
moderately, and increased it in several cases. Indeed, on average the code size
decreased, over all languages, by only 1.6% (standard deviation of 13.9%).



Problem randmat thresh winnow outer product chain
Version1 nv ex nv ex nv ex nv ex nv ex nv ex

S
o
u
rc

e
co

d
e

si
ze Chapel 33 32 58 61 72 74 55 58 34 36 145 159

Cilk 48 40 119 95 146 139 83 72 65 58 320 251
Go 52 71 141 118 144 191 103 98 89 86 345 330
TBB 52 53 110 98 142 137 83 81 63 62 302 302

C
o
d
in

g
ti

m
e

(m
in

)

Chapel 76 100 121 156 134 155 55 64 43 45 76 137
Cilk 101 154 251 294 112 121 26 39 12 15 77 118
Go 45 76 132 163 92 163 24 31 18 21 56 91
TBB 35 37 196 207 41 43 32 43 23 23 24 26

E
x
ec

u
ti

o
n

ti
m

e
(s

ec
)2

Chapel 18.7 3.1 7.8 13.1 21.4 21.3 1.6 1.6 1.4 1.4 36.0 36.0
Cilk 0.5 0.4 0.9 0.8 0.8 0.7 0.3 0.2 0.3 0.2 2.4 1.7
Go 2.9 0.5 2.1 1.6 2.0 1.3 1.5 2.4 1.1 0.3 177.7 38.4
TBB 0.3 0.2 1.2 0.6 1.0 1.0 0.3 0.3 0.2 0.2 2.8 2.8

S
p

ee
d
u
p
2 Chapel 1.2 2.8 2.8 2.8 2.3 2.1 3.4 3.5 1.7 1.7 2.0 2.1

Cilk 13.6 16.8 13.4 14.9 19.1 20.2 8.1 8.1 4.2 5.8 17.3 20.2
Go 4.1 21.2 8.9 8.1 8.0 11.5 10.4 4.7 1.9 7.5 0.6 1.9
TBB 20.7 21.2 8.1 14.8 9.4 9.5 7.4 7.4 7.2 7.3 12.5 12.6

1 nv: novice; ex: expert 2 average times and speedups are given
Table 2. Measurements for all metrics, before and after expert comments

There are differences between the individual languages though. The increases
in size for Chapel, on average by about 4.3% (standard deviation 4.2%), can be
explained mainly by a single requested change from the expert: ranges/domain
definitions were consistently hoisted outside of parallel regions, which saves them
being recomputed.

Cilk solutions decreased in size on average by 14.5% (standard deviation
6.2%). This change can be traced back to one of the expert comments to re-
place cilk spawn/cilk sync style code with cilk for; according to the expert,
cilk for simplifies the code while doing the same recursive divide-and-conquer
underneath, and should therefore be preferred.

Increase in code size on average by 6.7% (standard deviation 22.1%) are
visible in Go. The outliers are randmat and winnow with increases of 36.5% and
32.6% on average. For randmat, this can be explained by a suggested change of
data structure; since the randmat program is small to begin with, this relatively
small change amounts to a seemingly large increase percentage-wise. For winnow,
the increase in performance results from the suggestion of the expert to add
parallel merge sort, which is not part of Go’s standard library; the original sort
didn’t parallelize well, resulting in a performance hit.

Lastly, the TBB code size decreased on average by a very moderate 2.8%
(standard deviation 4.4%).

In summary, while there is a moderate decrease in code size on average,
program restructuring can also lead to moderately increased code sizes (Cilk),
and performance considerations may give reason to increase code size by about
one third (Go). Large code size increases tend to indicate an algorithmic change,



−20%

0%

20%

randmat thresh winnow outer product chainLi
ne

s 
of

 c
od

e 
di

ffe
re

nc
e 

(in
 p

er
ce

nt
)

Language
Chapel
Cilk
Go
TBB

Fig. 1. Source code size (LoC) difference

as in the case of Go. Large code size decreases indicate that functionality was
duplicated needlessly and can be removed, as in the case of Cilk. Small changes
indicate tweaking, where the code was overall fine, but could use refinement.

3.2 Execution time

The performance tests were run on a 4 × Intel Xeon Processor E7-4830 (2.13
GHz, 8 cores; total 32 physical cores) server with 256 GB of RAM, running Red
Hat Enterprise Linux Server release 6.3. Language and compiler versions used
were: chapel-1.6.0 with gcc-4.4.6, for Chapel; Intel C++ Compiler XE 13.0 for
Linux, for both Cilk and TBB; go-1.0.3, for Go.

Each performance test was repeated 30 times, and the mean of the results was
taken. All tests use the same inputs, the size-dominant of which is a 4·104×4·104

matrix (about 12 GB of RAM). This size, which is the largest input size all
languages could handle, was chosen to test scalability. The language Go provided
the tightest constraint, while the other languages would have been able to scale
to even larger sizes. An important factor in the measurement is that for all
problems the I/O time is significant, since they involve reading/writing matrices
to/from the disk. In order for the measurements to not be dominated by I/O, all
performance tests were run with input and output code removed (input matrices
were generated on-the-fly instead).

In Figure 2 the differences in execution time are displayed. Addressing re-
search question Q2, on average expert comments reduced execution time by
18.1% (standard deviation 38.3%).

Again, results for the individual approaches show a number of differences.
On average, execution time was reduced by 2.5% (standard deviation 48.0%)
for Chapel. There is one outlier: in the problem thresh, the expert execution
time increases by about 67.8%. The expert gave comments on a version that was
compiled with version 1.5 of Chapel. After changing to version 1.6 (as suggested



−80%

−40%

0%

40%

randmat thresh winnow outer product chainE
xe

cu
tio

n 
tim

e 
di

ffe
re

nc
e 

(in
 p

er
ce

nt
)

Language
Chapel
Cilk
Go
TBB

Fig. 2. Execution time difference

by the expert) for the final measurements, the non-expert version experienced
a significant reduction in execution time, while the expert version remained the
same; this illustrates the often fragile nature of optimization.

Cilk’s execution times were consistently reduced, on average by 23.0% (stan-
dard deviation 7.8%).

Go’s execution times were reduced by 38.6% on average (standard deviation
55.8%). These improvements can be attributed to one important change in the
way parallelism was achieved. In the non-expert versions, a divide-and-conquer
pattern was frequently used. Instead, the expert recommended a distribute-work-
synchronize pattern. While the divide-and-conquer approach creates one gorou-
tine per task, the distribute-work-synchronize creates one for each processor core;
for fine-grained task sizes, the overhead of the excessive creation of goroutines
then causes a performance hit. Again, there was an outlier. In the problem outer,
the Go expert had suggested to change the data structure from a one-dimensional
to a two-dimensional array for clarity, without apparent performance differences
on smaller problem sizes on a desktop machine. In the final measurement, it is
however the cause of a 64% increase in execution time in the expert version;
this highlights the fact that program optimizations have to take both the target
machine and the target problem size into account.

TBB’s execution times were consistently reduced by 8.3% on average (stan-
dard deviation 18.2%).

In summary, expert comments reduced execution time by a moderate amount.
Also, there were outliers which increased the execution times, highlighting the
fact that performance profiling is important in addition to expert knowledge.

3.3 Speedup

Figure 3 shows the changes in speedup on 32 cores; the speedup is measured rel-
ative to an execution on a single thread. Addressing research question Q3, across



all languages and problems a speedup of 1.5 is achieved on average (standard
deviation 1.1).

0 x

1 x

2 x

3 x

4 x

5 x

randmat thresh winnow outer product chain

C
ha

ng
e 

in
 s

pe
ed

up

Language
Chapel
Cilk
Go
TBB

Fig. 3. Change in speedup

Except for Go, speedup seems to have been influenced little by the expert
comments; most of the time no further speedup (i.e. 1 × speedup) is visible.
Chapel shows on average a speedup of 1.2 (standard deviation 0.5), Cilk 1.2
(standard deviation 0.1), and TBB 1.1 (standard deviation 0.3).

In Go a more substantial average speedup of 2.5 (standard deviation 1.9) is
visible, which is due to strong improvements in the case of randmat, product, and
chain. This is most likely caused by the change in concurrency pattern used, as
discussed in Section 3.2. It emphasizes the fact that it is critical in Go to know
about idiomatic patterns to make full use of the performance offered by the
language. A slowdown is visible for the outer problem in Go, which corresponds
to the discussed issue in outer for the execution time difference.

In summary, speedup improvements due to expert comments are moderate in
general. Only in the case of Go, the knowledge of an idiomatic pattern brought
about significant improvements. Go highlights the fact that expertise is more
valuable in approaches where there are fewer prepackaged solutions (such as
parallel-for constructs).

3.4 Correction time

Figure 4 displays which fraction of the original coding time was spent on imple-
menting the corrections suggested by the experts. Addressing research question
Q4, to implement the expert comments took about 29.9% of the original time
spent on average (standard deviation 24.6%). Over all languages and problems,
a maximum of 79.4% of the original coding time was spent.

This moderate overhead is reflected consistently by Chapel (29.3%, standard
deviation 26.4%), Cilk (34.8%, standard deviation 20.2%), and Go (46.1%, stan-



0%

20%

40%

60%

80%

randmat thresh winnow outer product chain

C
od

in
g 

tim
e 

di
ffe

re
nc

e 
(in

 p
er

ce
nt

)
Language

Chapel
Cilk
Go
TBB

Fig. 4. Correction time

dard deviation 26.0%). Only TBB has a significantly lower coding time overhead
of 9.4% (12.8% standard deviation).

In summary, none of the original problems needed to be rewritten completely;
the changes were incremental. This is in accordance with the noted changes in
source code size. Also, in combination with the observations about speedup, it
is clear that the time spent correcting the Go code translates into a notable
speedup, making the availability of an expert an effective way to increase scala-
bility and performance of the code.

4 Threats to Validity

As a threat to external validity, the study results are not necessarily general-
izable to other languages and libraries. We have simply chosen four popular
approaches, and it is interesting to see that the study results tend towards the
same direction for all of them. But the results do not readily transfer to other
approaches with entirely different programming abstractions and potentially dif-
ferent implementation quality.

Furthermore, it is arguable whether the study results transfer to large ap-
plications, due to the size of the programs used. The modest problem size is
intrinsic to the study: the use of top experts is crucial to reliably answer the
research questions and, unfortunately, this also means that the program size has
to remain reasonable to fit within the review time the experts were able to do-
nate. However, a recent study [9] confirms that the amount code dedicated to
parallel constructs for 10K and 100K LOC programs is between 12 and 60 lines
of code on average; this makes our study programs representative of the parallel
portions of larger programs.

We use one developer (with six years of development experience; working at
Google Inc.), and one expert per language (as listed in Section 1). Each expert
was high-profile, i.e. using another expert or a group of experts would most likely



lead to worse suggestions for improvement. Similarly to the point made above,
using a group of developers, while preferable, would make the expert review step
impossible (too many programs to review). To instead compare many novice
programs with an ideal program is possible, but a markedly different study: an
expert is required to filter out harmless differences between programs. Making
all changes to turn one program into another is not representative of the effort
required to bring the program up to an acceptable level.

Problem selection bias, a threat to internal validity, is avoided in part by using
an existing problem set, instead of creating a new one. The threat that specific
problems could be better suited to some languages than others remains, as it
could already be present in the existing problem set. As a positive indication,
none of the experts criticized the choice of problems.

5 Related work

Although the claim that parallel programming requires domain experts is of-
ten repeated, few studies investigate the validity of this claim in the context of
modern parallel programming approaches. However, a number of studies on com-
paring approaches to parallel programming influenced our work, and we discuss
them here.

Szafron and Schaeffer [10] assess the usability of two parallel programming
systems (a message passing library and a high-level parallel programming sys-
tem) using a population of 15 students, and a single problem (transitive clo-
sure). Six metrics were evaluated: number of work hours, lines of code, number
of sessions, number of compilations, number of runs, and execution time. They
conclude that the high-level system is more usable overall, although the library
is superior in some of the metrics; this highlights the difficulty in reconciling the
results of different metrics.

Hochstein et al. [11] provide a case study of the parallel programmer produc-
tivity of novice parallel programmers. The authors consider two problems (game
of life and grid of resistors) and two programming models (MPI and OpenMP).
They investigate speedup, code expansion factor, time to completion, and cost
per line of code, concluding that MPI requires more effort than OpenMP overall
in terms of time and lines of code. Hochstein et al. [12] compare programming ef-
fort for two parallel programming models (message-passing and PRAM-like), us-
ing one problem (sparse-matrix dense-vector multiplication), with two groups of
students. The used metrics are: development time and program correctness. The
results show a 46% lower PRAM-like development time compared to message-
passing, and no statistically significant difference in correctness rates.

Rossbach et al. [13] conducted a study with 237 undergraduate students
implementing the same program with locks, monitors, and transactions. While
the students felt on average that programming with locks was easier than pro-
gramming with transactions, the transactional memory implementations had
the fewest errors. Ebcioglu et al. [14] measure the productivity of three parallel
programming languages (MPI, UPC, and X10), using 27 students, and a single



problem (Smith-Waterman local sequence matching). For each of the languages,
about a third of the students could not achieve any speedup.

Nanz et al. [15] present an empirical study with 67 students to compare the
ease of use (program understanding, debugging, and writing) of two concur-
rency programming approaches (SCOOP and multi-threaded Java). They use
self-study to avoid teaching bias and standard evaluation techniques to avoid
subjectivity in the evaluation of the answers. They conclude that SCOOP is
easier to use than multi-threaded Java regarding program understanding and
debugging, and equivalent regarding program writing. Pankratius et al. [16] com-
pare the languages Scala and Java using 13 students and one software engineer
working on three different projects. The resulting programs are compared with
respect to programmer effort, code compactness, language usage, program per-
formance, and programmer satisfaction. They conclude that Scala’s functional
style does lead to more compact code and comparable performance.

Cantonnet et al. [17] analyze the productivity of two languages (UPC and
MPI), using the metrics of lines of code and conceptual complexity (number of
function calls, parameters, etc.), obtaining results in favor of UPC. Bal [18] is
a practical study based on actual programming experience with five languages
(SR, Emerald, Parlog, Linda and Orca) and two problems (traveling salesman,
all pairs shortest paths). It reports the authors’ experience while implementing
the solutions.

6 Conclusion

In order to make developers embrace parallel programming, the reputation of
parallelism as an arcane art has to be dispelled. Designers of parallel program-
ming approaches work towards this goal, but results supporting their claims of
improved performance and usability are scarce. While it is easy to check that
one approach can offer performance improvements over another, it is entirely
unclear whether a non-expert would ever achieve this performance in practice.

In this paper we presented, to the best of our knowledge, the first study that
explores the alleged gap between expert and non-expert parallel programmers.
The results positively confirm the effectiveness of the design of Chapel, Cilk, Go,
and TBB: all the approaches “work” in the sense that, on average, a top expert
can only to a moderate degree improve programs written by a non-expert; the
study confirms this across four program metrics, namely code size, execution
time, speedup, and coding time.

More studies are needed to investigate the difference between expert and non-
expert usage, and we hope that our study incites more work in this direction.
The most expensive resources in our study were the experts: the time they were
able to spend on reviewing programs strongly limited the number of programs
in the study. In future work, it would be interesting to replace expert review by
comparisons of expert-written, “ideal” programs with non-expert ones. While
such an approach would not be able to replicate the detailed insights gained by
the review, it would make it easier to obtain more data for the analysis.



References

1. Chamberlain, B., Callahan, D., Zima, H.: Parallel programmability and the Chapel
language. International Journal of High Performance Computing Applications
21(3) (2007) 291–312

2. Blumofe, R.D., Joerg, C.F., Kuszmaul, B.C., Leiserson, C.E., Randall, K.H., Zhou,
Y.: Cilk: an efficient multithreaded runtime system. In: Proceedings of the 5th
ACM SIGPLAN symposium on Principles and Practice of Parallel Programming
(PPoPP’95), ACM (1995) 207–216

3. Go programming language. http://golang.org/
4. Reinders, J.: Intel threading building blocks – outfitting C++ for multi-core pro-

cessor parallelism. O’Reilly (2007)
5. Wilson, G.V., Irvin, R.B.: Assessing and comparing the usability of parallel pro-

gramming systems. Technical Report CSRI-321, University of Toronto (1995)
6. Nanz, S., West, S., Soares da Silveira, K.: Benchmarking usability and performance

of multicore languages. http://arxiv.org/abs/1302.2837 (2013)
7. Hoare, C.A.R.: Communicating Sequential Processes. Prentice-Hall (1985)
8. Cole, M.: Algorithmic skeletons: structured management of parallel computation.

MIT Press (1991)
9. Okur, S., Dig, D.: How do developers use parallel libraries? In: Proceedings of the

ACM SIGSOFT 20th International Symposium on the Foundations of Software
Engineering (FSE’12), ACM (2012) 54:1–54:11

10. Szafron, D., Schaeffer, J.: An experiment to measure the usability of parallel
programming systems. Concurrency: Practice and Experience 8(2) (1996) 147–
166

11. Hochstein, L., Carver, J., Shull, F., Asgari, S., Basili, V.: Parallel programmer
productivity: A case study of novice parallel programmers. In: Proceedings of the
2005 Conference on Supercomputing (SC’05), IEEE Computer Society (2005)

12. Hochstein, L., Basili, V.R., Vishkin, U., Gilbert, J.: A pilot study to compare
programming effort for two parallel programming models. Journal of Systems and
Software 81 (2008) 1920–1930

13. Rossbach, C.J., Hofmann, O.S., Witchel, E.: Is transactional programming actually
easier? In: Proceedings of the 15th Symposium on Principles and Practice of
Parallel Programming (PPoPP’10), ACM (2010) 47–56

14. Ebcioglu, K., Sarkar, V., El-Ghazawi, T., Urbanic, J.: An experiment in measuring
the productivity of three parallel programming languages. In: Proceedings of the
Third Workshop on Productivity and Performance in High-End Computing. (2006)
30–37

15. Nanz, S., Torshizi, F., Pedroni, M., Meyer, B.: Design of an empirical study for
comparing the usability of concurrent programming languages. In: Proceedings
of the 5th International Symposium on Empirical Software Engineering and Mea-
surement (ESEM’11), IEEE Computer Society (2011) 325–334

16. Pankratius, V., Schmidt, F., Garretón, G.: Combining functional and impera-
tive programming for multicore software: an empirical study evaluating Scala and
Java. In: Proceedings of the 2012 International Conference on Software Engineering
(ICSE’12), IEEE Press (2012) 123–133

17. Cantonnet, F., Yao, Y., Zahran, M.M., El-Ghazawi, T.A.: Productivity analy-
sis of the UPC language. In: Proceedings of the 18th International Parallel and
Distributed Processing Symposium (IPDPS’04), IEEE Computer Society (2004)

18. Bal, H.E.: A comparative study of five parallel programming languages. Future
Generation Computer Systems 8(1-3) (1992) 121–135

http://golang.org/
http://arxiv.org/abs/1302.2837

	Examining the Expert Gap in Parallel Programming

