
Code-Based Automated Program Fixing
Yu Pei, Yi Wei, Carlo A. Furia, Martin Nordio, Bertrand Meyer

Chair of Software Engineering, ETH Zurich, Switzerland firstname.lastname@inf.ethz.ch

Abstract—Initial research in automated program fixing has
generally limited itself to specific areas, such as data structure
classes with carefully designed interfaces, and relied on simple
approaches. To provide high-quality fix suggestions in a broad
area of applicability, the present work relies on the presence of
contracts in the code, and on the availability of static and dynamic
analyses to gather evidence on the values taken by expressions
derived from the code. The ideas have been built into the AutoFix-
E2 automatic fix generator. Applications of AutoFix-E2 to general-
purpose software, such as a library to manipulate documents,
show that the approach provides an improvement over previous
techniques, in particular purely model-based approaches.

Keywords-automated debugging and fixing; program synthesis

I. INTRODUCTION

Debugging—the activity of finding and correcting errors in
programs—is so everyday in every programmer’s job that any
improvement at automating even parts of it has the potential
for a significant impact on productivity and software quality.
While automation remains formidably difficult in general, the
last few years have seen the first successful attempts at provid-
ing completely automated debugging in some situations. This
has been achieved with the combination of several techniques
developed independently: Automated testing to detect errors,
fault localization to locate instructions responsible for the
errors, and dynamic analysis to choose suitable corrections
among those applicable to the faulty instructions.

A few premises make such automated debugging techniques
work in practice. First, the majority of errors in programs
admit simple fixes [?]; second, the availability of contracts (pre
and postconditions, class invariants) can dramatically improve
the accuracy of both error detection and fault localization.

Our previous work in this area [?], [?] takes advantage
of these observations to perform an analysis of faults in
object-oriented programs with contracts and correct them. The
analysis constructs an abstract model of correct and incorrect
executions, which summarizes the information about the pro-
gram state at various locations in terms of state invariants.
The invariants express the values returned by public queries
(functions) of a class—the same functions used by developers
in the contracts that document the implementation. The com-
parison of the invariants characterizing correct and incorrect
runs suggests how to fix errors: Whenever the state signals the
“incorrect invariant”, execute actions to avoid triggering the
error. A behavioral model of the class, also relying on state
invariants, suggests the applicable “recovery” actions. We call
this approach to automated program fixing model-based, given
that a model, based on state invariants, abstracts the correct
and incorrect visible behavior.

The efficacy of model-based fixing fundamentally depends
on the quality of the public interfaces, because invariants are
mostly based on public queries. The present paper introduces
a more general approach to automated fixing which works
successfully even for classes with few public queries. The
approach is still based on the dynamic analysis of correct and
incorrect runs. However, rather than merely monitoring the
value of queries, the analysis proactively gathers evidence in
terms of values taken by expressions appearing in the program
text. An algorithm built upon fault localization techniques—
based on static and dynamic analysis—ranks expressions and
their values according to their likelihood of being indicative
of error. The expressions ranking highest are prime candidates
to guide the generation of fixes: When an expression takes
a “suspicious” value, execute actions that change the value
to “unsuspicious”. We call this novel approach code-based to
designate the white-box search for information denoting faults
in the program text; code-based techniques, however, also
exploit information in the form of state invariants and public
queries to reproduce the results of model-based techniques
when these are successful.

We implemented code-based fixing in the tool AutoFix-E2.
The experiments in Section IV demonstrate that code-based
techniques can automatically fix more errors than model-based
approaches, even beyond data structure implementations—the
natural target of model-based and random-testing techniques,
for their rich public interfaces.

This paper is a short summary that focuses on the results and
illustrates them with a few examples; an extended version with
details, and including an analysis of related work, is available
as technical report [?].

II. AUTOMATED FIXING: AN EXAMPLE

The EiffelBase class TWO WAY SORTED SET implements
a set data structure with a doubly-linked list. An internal cursor
index (an integer attribute) is useful to navigate the content
of the set: The actual elements occupy positions 1 to count
(another integer attribute, storing the total number of elements
in the set), whereas the indexes 0 and count + 1 correspond
to the positions before the first element and after the last.
Listing 1 shows the routine move item of this class, which
takes an argument v of generic type G that must be a reference
to an element already stored in the set; the routine then moves
v from its current (unique) position in the set to the immediate
left of the internal cursor index. The routine’s precondition
(require) formalizes the constraint on the input. After saving
the cursor position as the local variable idx, the loop in lines 7–
10 performs a linear search for the element v using the internal

Listing 1. Routines of TWO WAY SORTED SET.
1 move item (v : G)
2 −− Move ‘v’ to the left of cursor .
3 require v 6=Void ; has (v)
4 local idx : INTEGER ; found: BOOLEAN
5 do
6 idx := index
7 from start until found or after loop
8 found := (v = item)
9 if not found then forth end

10 end
11 check found and not after end
12 remove
13 go i th (idx)
14 put left (v)
15 end
16

17 go i th (i : INTEGER) require 0≤i≤ count + 1
18 put left (v : G) require not before
19 before : BOOLEAN do Result := (index = 0) end

cursor: When the loop terminates, index denotes v’s position
in the set. The three routine calls on lines 12–14 complete the
work: remove takes v out of the set; go i th restores index to
its original value idx; put left puts v back in the set to the
left of the position index.

AutoTest [?] reveals, completely automatically, a subtle
error in this implementation of move item, due to the fact that
calling remove decrements the count of elements in the set
by one. AutoTest produces a test that calls move item when
index equals count + 1; after v is removed, this value is not
a valid position because it exceeds the new value of count by
two, while a valid cursor ranges between 0 and count + 1;
hence, go i th’s precondition (line 17), which enforces the
consistency constraint on index, is violated on line 13.

Code-Based Fixing at Work. The fault revealed by the
test is actually a special case of a more general error which
occurs whenever v appears in the set in a position to the left
of the initial value of index: Even if index ≤ count initially,
put left will insert v in the wrong position as a result of

remove decrementing count—which indirectly shifts the index
of every element after index to the left by one. AutoFix-E2 can
completely correct the error, beyond the specific case reported
by the failed test: It builds the expression idx > index to
characterize the error state and generates the following patch
introduced before line 13:

if idx > index then idx := idx − 1 end

which re-scales idx to reflect the fact that the object in position
idx has been shifted left.

Model-Based Fixing at Work. Model-based techniques
can correct the error in the invocation of go i th, only
for the specific instance exposed by the test case where
index = count + 1, that is when after holds. Based on this, a

Eiffel

classes

test

cases

Expression
dependence

(edep)

Control
dependence

(cdep)

Ranking

(fixme)

Fix

candidates

Valid

fixes

AutoFix-E2

Static analysis

Dynamic analysis

Dynamic
score
(dyn)

Fig. 1. How code-based fixing works.

possible partial fix consists in adding if after then back end
as first instruction on line 5. This fix is not only partial but also
unlikely to be generated in practice, because it modifies code
which is several instructions away from where the contract
violation occurs, but AutoFix-E’s heuristics favor fixes that
are local to restrict the search space. As shown above, code-
based techniques do not suffer these limitations.

III. CODE-BASED FIXING

Figure 1 depicts the main steps of the code-based fixing
process. Code-based fixing works on Eiffel classes equipped
with contracts [?]: Preconditions, postconditions, and class
invariants; each contract element consists of one or more
clauses. The contracts of a class provide a way to determine
functional errors in the implementation.

Test-Case Generation. Every session of code-based fixing
starts by collecting information about the runtime behavior
of the routine under fix. The raw form of such information
is a collection of test cases; each test case is passing if it
does not violate any contract and failing otherwise. AutoFix-
E2 generates test cases with AutoTest [?], developed in our
previous work; the use of AutoTest makes the fixing process
in AutoFix-E2 completely automatic.

Predicates, Expressions, and States. Evidence of faults
takes the form of boolean predicates, built by combining
expressions extracted from the program text and the violated
contract clause. The evaluation of a predicate p at a program
location ` gives a component 〈`, p, v〉 of the program state at
that location, where v is the value of p at `.

Code-based fixing collects the components from all the
test cases and ranks the components so that a triple 〈`, p, v〉
appearing high in the ranking indicates that an error is likely
to have its origin at location ` when predicate p evaluates to
v. Correspondingly, the fixes generated automatically try to
change the usage of p at ` whenever p’s value is v.

Static Analysis. Static analysis extracts evidence from
the program text independently of the runtime behavior, in
the form of two scores: Control dependence and expression
dependence.

Control dependence measures the distance, in terms of
number of instructions, between program locations. For two
program locations `1, `2 in a routine r, the control distance
cdist(`1, `2) is the length of the shortest directed path from `1
to `2 on the control-flow graph. Then, the control dependence

cdep(`, ) is the normalized score:

cdep(`, ) = 1− cdist(`, )

maxλ cdist(λ, )

where λ ranges over all locations in r from which  is
reachable.

Expression dependence measures the syntactic similarity be-
tween predicates. Let sub(e) denote the set of sub-expressions
of an expression e. The expression proximity eprox(e1, e2) of t-
wo expressions e1, e2 is the number of shared sub-expressions:
eprox(e1, e2) = |sub(e1) ∩ sub(e2)|. Then, the expression
dependence edep(p, c) is the normalized score measuring the
syntactic similarity of p and c with respect to all expressions
Pr,c mentioned in routine r and in c.

edep(p, c) =
eprox(p, c)

max{eprox(π, c) | π ∈ Pr,c}
Dynamic Analysis. Dynamic analysis extracts evidence

from test cases in the form of score associated to every state
component generated. Given a component 〈`, p, v〉, the higher
the score dyn〈`, p, v〉 it receives from dynamic analysis, the
stronger the runtime behavior suggests that an error originates
at location ` when predicate p evaluates to v.

Code-based fixing computes the dynamic score based on
principles suggested by fault-localization techniques [?] and
heuristically adjusted to the goal of program fixing (see [?]):

dyn〈`, p, v〉 = γ +
α

1− α

(
1− β + βα#p〈`,p,v〉 − α#f〈`,p,v〉

)
where #p〈`, p, v〉 and #f〈`, p, v〉 are the number of passing
and failing test cases that exercise the component 〈`, p, v〉.
Some empirical evaluation suggested to set α = 1/3, β = 2/3,
and γ = 1 in the current implementation of AutoFix-E2.

Combining Static and Dynamic Analysis. The final output
of the analysis phase combines static and dynamic analysis to
assign a “suspiciousness” score fixme〈`, p, v〉 to every state
component 〈`, p, v〉 corresponding to a violation of contract
clause c at location :

fixme〈`, p, v〉 = 3

edep(p, c)−1 + cdep(`, )−1 + dyn〈`, p, v〉−1

Fix Candidate Generation. Consider a component 〈`, p, v〉
with a high evidence score fixme〈`, p, v〉. 〈`, p, v〉 induces a
number of possible actions (instructions) which try to avoid us-
ing the value v of p at `. Such actions aim at sub-expressions of
p that are modifiable at `. Actions on expressions of reference
type consists of routine calls with the expressions as target;
actions on expressions of integer or boolean type consists of
assignments of new values that may reverse common mistakes,
such as “off-by-one” errors.

TABLE I
FIX SCHEMAS.

(a)
snippet
old stmt

(b)
if fail then

snippet
end
old stmt

(c)
if not fail then

old stmt
end

(d)
if fail then

snippet
else

old stmt
end

The fix actions can then be injected into the faulty code to
form candidate fixes according to the fix schemas in Table I;
for a state component 〈`, p, v〉, we instantiate each of the
schemas in Table I as follows:

fail takes p = v, the component’s predicate and value,
snippet takes any possible action,
old stmt is the instruction at location `.

Validation of Candidates. The validation phase runs each
candidate fix through the full set of passing and failing test
cases. A fix is validated if it passes all the previously failing
test cases and it still passes the original passing test cases. In
general, more than one candidate fix may pass the validation
phase; AutoFix-E2 ranks all valid fixes according to the score
of the state component that originated the fix and submits the
top 15 to the user, who is ultimately responsible to decide
whether to deploy any of them.

IV. EXPERIMENTAL EVALUATION

All the experiments ran on a Windows 7 machine with a
2.66 GHz Intel dual-core CPU and 4 GB of memory. On
average, AutoFix-E2 ran for 7.6 minutes for each fault.

A. Selection of Faults

The experiments include faults from two sources: Data
structure classes from commercial libraries, and an implemen-
tation of a library to manipulate text documents developed as
student project.

Data Structure Libraries. Table II lists the 15 classes
from the EiffelBase [?] and Gobo [?] libraries used in the
experiments; the table reports the length in lines of code
(LOC), the total number of routines (#R) and boolean queries
(#B) of each class, and the number of faults (#F) considered
in the experiments. This selection of faults combines 13 faults
used in the evaluation of model-based fixing [?] with 51
new faults recently found by AutoTest. We did not re-use
the remaining 29 faults used in [?] because they are not
reproducible in the latest revision of the libraries.

TABLE II
EIFFELBASE AND GOBO CLASSES.

CLASS LOC #R #B #F
ACTIVE LIST 2162 139 19 2
ARRAY 1464 101 11 9
ARRAYED CIRCULAR 1910 133 25 3
ARRAYED SET 2345 146 18 5
DS ARRAYED LIST 2762 166 9 5
DS HASH SET 3076 169 10 1
DS LINKED LIST 3434 160 8 5
HASH TABLE 2036 118 19 2
INTEGER 32 1115 99 5 1
LINKED LIST 2000 109 16 1
LINKED PRIORITY QUEUE 2374 125 17 1
LINKED SET 2352 122 16 5
REAL 64 839 72 4 1
SUBSET STRATEGY HASHABLE 543 33 0 4
TWO WAY SORTED SET 2868 141 18 19
Total 31280 1833 195 64

A Library to Manipulate Text Documents. The second
part of the evaluation targets a library to manipulate text

documents. The library was implemented as a student project
at ETH Zurich in 2010. Table III lists the 3 classes of the
library used in the experiments, with the same statistics as in
Table II. Compared to EiffelBase and Gobo, the text document
library’s classes have a more primitive interface, with very
few boolean queries (31 of the 32 boolean queries of class
FILE NAME are inherited from the library class STRING,
hence they are mostly unrelated to the specific semantics
of FILE NAME) and less detailed contracts; therefore, they
are representative of less mature software with functionalities
complex to specify formally. AutoTest detected 9 faults (#F)
in the classes.

TABLE III
DOCUMENT MANIPULATION LIBRARY CLASSES.

CLASS LOC #R #B #F
FILE NAME 4297 258 32 2
HTML TRANSLATOR 1148 83 0 1
LATEX TRANSLATOR 1269 90 0 6
Total 6714 431 32 9

Selection of Test Cases. All the experiments used test
cases generated automatically by AutoTest; this demonstrates
complete automation of the whole debugging process and
minimizes the potential bias introduced by experimenters.
AutoTest produced an average of 25 passing and 11 failing
test cases for each fault.

B. Experimental Results

Data Structure Libraries. Table IV summarizes the results
of the experiments on the data structure libraries: The number
of faults in each category, the faults fixed with model-based
techniques using AutoFix-E, and those fixed with code-based
techniques using AutoFix-E2. The count of valid fixes only
includes those which are proper, i.e. which manual inspection
confirmed to be adequate beyond the correctness criterion
provided by the contracts and tests available.

The results show that code-based techniques constitute a
significant improvement over model-based techniques. The
faults fixed by AutoFix-E2 are a superset of those fixed by
AutoFix-E: When both tools succeeded, they produced equiva-
lent fixes (with possibly negligible syntactic differences); most
of the errors where code-based fixing succeeds and model-
based techniques fail are indicative of subtle bugs with non-
obvious fixes. The 50 faults not fixed are, to our knowledge,
“deep” errors beyond the capabilities of any existing automatic
program fixing technique.

TABLE IV
FAULTS FIXED IN EIFFELBASE AND GOBO CLASSES.

TYPE OF FAULT # F MODEL CODE
Precondition violation 22 10 (45%) 12 (54%)
Postcondition violation 30 0 (0%) 2 (6%)
Call on void target 7 0 (0%) 0 (0%)
Intermediate assertion violation 5 0 (0%) 0 (0%)
Total 64 10(15%) 14(22%)

Text Document Manipulation Library. The second set
of experiments tried to determine if code-based techniques
can successfully tackle software beyond well-engineered data
structure implementations. AutoFix-E2 built valid fixes for
5 of the 9 faults in the document library. In comparison,
AutoFix-E only fixed one of the faults, which AutoFix-E2

also fixed; manual inspection confirmed the expectation that
model-based fixing fails whenever the fault conditions cannot
be characterized using only boolean queries.

Overall Performance of Code-Based Fixing.
In the experiments, code-based techniques fixed 19 errors,

73% more than model-based techniques.

V. CONCLUSION

This paper introduced code-based automated program fix-
ing, a novel approach to generate automatically corrections of
errors in software equipped with contracts. Preliminary exper-
iments with the supporting tool AutoFix-E2 demonstrate that
code-based techniques extend the applicability of automated
program fixing to more faults in classes beyond well-designed
data structure implementations. An extended version of this
paper, including related work, is available as technical report:

http://arxig.org/abs/1102.1059

Availability. The AutoFix-E2 source code, and all data and
results cited in this article, are available at:

http://se.inf.ethz.ch/research/autofix/

ACKNOWLEDGMENTS

This work is partially funded by Hasler-Stiftung Grant
no. 2327 “AutoFix—Programs that fix themselves”. The facil-
ities provided by the Swiss National Supercomputing Centre
(CSCS) ran AutoTest to generate some of the test cases used
in the experiments. The authors thank Andreas Zeller for the
ongoing collaboration on automated program fixing. Bernhard
Brodowsky, Severin Heiniger, and Stefan Heule implemented
the text document library.

http://arxig.org/abs/1102.1059
http://se.inf.ethz.ch/research/autofix/

	Introduction
	Automated Fixing: An Example
	Code-Based Fixing
	Experimental evaluation
	Selection of Faults
	Experimental Results

	Conclusion

