Spell Checker for EiffelStudio

Software Engineering Laboratory: Open-Source EiffelStudio

Semester project by Benjamin Fischer Student number: 10-916-971
Supervised by Julian Tschannen ETH Computer Science
Prof. Dr. Bertrand Meyer 17 February 2013

1 Requirements engineering

1.1 Introduction: Purpose and scope of the system

EiffelStudio is a development environment for the Eiffel programming language. It cur-
rently does not have a spell checker. Thus, the idea of this project is to integrate a spell
checker into EiffelStudio in order to check the spelling of class and feature comments.
The first part of the project is about developing a spell checker library in Eiffel, which
is used in the second part to integrate a spell checker tool into EiffelStudio.

1.2 Proposed system

The first part with the spell checker library is the core, while the possible additional
features of the second part are only nice to have.

1.2.1 Functional requirements

Part 1: Eiffel library to check the spelling of strings

Select a spell checking back end

Select the language

Check the correctness of a word (ASCII or UTF32)

Check the correctness of a sentence (ASCII or UTF32)

Get suggestions for an incorrect word

Get suggestions for incorrect words in a sentence



Support a user dictionary and an ignore list, both of which can be created, added
words to, loaded and stored as well as queried for list of words

The spell checker library should make multiple back ends possible. Support for
at least one back end should be implemented already, for example GNU Aspell
using its command-line interface.

Part 2: Spell checker tool for EiffelStudio

1.2.2

Minimum requirements
— Push a button to launch the spell checker
— Check class and feature comments

— Show spelling suggestions as warnings in EiffelStudio’s error list

Possible additional features (in no particular order)
— Optional requirements
* Check a class name (ignoring a possible class prefix)
* Check feature names, argument names and names of local variables

* Check the content of manifest strings

*

Check tag names of assertion and note clauses
— Fancy requirements

* Ability to add words to a user dictionary

*

Ability to ignore words for a specific project

* Automatic spell checking after saving a file

*

Show spelling suggestions and spell checker options in its own tool

* Correct class text automatically when spelling suggestion is selected

Nonfunctional requirements

The source code meets the style guidelines for Eiffel as summarised by Marcel
Kessler in ‘DO IT WITH STYLE — A Guide to the Eiffel Style” at http://se.inf.
ethz.ch/courses/2012b fall/eprog/additional materials/style quideline |
summary.pdf.

A student in the second year of computer science at ETH should be able to under-
stand and use the spell checker library by the end of one working day.

Most of the source code should document itself in form of a good programming
style with contracts, comments, tests and usage examples. The documentation of
the project with requirements engineering, design and testing is summarised and
delivered with this final report.


http://se.inf.ethz.ch/courses/2012b_fall/eprog/additional_materials/style_guideline_summary.pdf
http://se.inf.ethz.ch/courses/2012b_fall/eprog/additional_materials/style_guideline_summary.pdf
http://se.inf.ethz.ch/courses/2012b_fall/eprog/additional_materials/style_guideline_summary.pdf

e The Eiffel source code should be void-safe.

2 Design

2.1 Design goals

The main objectives of the software in order of decreasing priority are as follows.

1. Maintainability. Both the spell checker library and its integration into EiffelStudio
will be developed from scratch. The library might be used by other developers
who directly use the source code. For this reasons, it is particularly important
to prepare the software for changes. The most important objective is to make the
software maintainable and hence easy to understand as well as improve. It should
be possible to add new back ends without significantly changing the other parts
of the system.

2. Usability. The library should have an intuitive interface for other developers us-
ing it. There should be clear documentation in both formal language like good
contracts and informal language in comments. What is more, usage examples for
the library should be provided.

2.2 Detailed design

In the following, the spell checker library as seen in the BON class diagram of figure
is presented. We give an overview of the structure.

Making use of a facade pattern, the central functionality comes together at the class
SC_SPELL_CHECKER. It has an associated language represented by SC_LANGUAGE in which
the current spell checking is happening. The results of checking the spelling of words
are given as objects of the type SC_CORRECTION, which encapsulates a correction with
suggestions for replacements if any. The service of a raw spell checker is abstracted
into the deferred class SC_BACK_END. Its only effective descendant at the moment is
SC_GNU_ASPELL for the GNU Aspell spell checker, following an adapter pattern.

For the need of user and ignore dictionaries, the deferred class SC_WORD_SET provides
an interface for a persistent set of words, realised by an effective heir SC_WORD_SET XML
for an XML file format. With reusability in mind, general text processing queries are
kept in the class SC_LANGUAGE_UTILITY, which frequently serves as an ascendant for im-
plementation inheritance. The raw data of the required Unicode properties is found in
its parent SC_LANGUAGE_DATA. The class SC_USAGE_EXAMPLE gives source code examples
of how to use the spell checker library. At the same time, it serves as a demonstration
and tests the whole system. Finally, tests of the more hidden parts of the library are
collected in the class SC_TEST SUITE.



+
SC_WORD_SET_XML

SC_USAGE_EXAMPLE

X]
i
£
i
£
2 o
£ e

Figure 1: BON class diagram of the spell checker library



3 Library guide

This short user guide explains how to use the spell checker library and develop further
back ends.

3.1 Basic usage

We introduce the usage of the spell checker library with an basic example taken from
the class SC_USAGE_EXAMPLE, namely the feature use_basics as reproduced in listing ﬂ]
First of all, we create a default spell checker object. This instantiates a default back
end and uses its default language. Next, we make sure the language for the spelling is
British English and check a word. If this succeeds, we would like to know whether the
spelling is correct. If the word is spelled incorrectly, then there are possibly suggestions
to replace the word with. Note that the word can be misspelt and no suggestions are
found. Therefore, one normally wishes to distinguish three cases: correct, incorrect with
suggestions and incorrect without suggestions. Please see the class SC_USAGE_EXAMPLE
for more examples.

Listing 1: Basic usage of the spell checker taken from the examples in SC_USAGE_EXAMPLE

use basics
-- Independent example for basic usage of spell checker.
local
spell checker: SC SPELL CHECKER
language: SC_LANGUAGE
correction: SC_CORRECTION
do
create spell checker
create language.make with region ("en", "GB")
spell checker.set language (language)
spell checker.check word ("inexistent")
if spell checker.is word checked then
correction := spell checker.last word correction
if correction.is correct then
print ("Spelling is correct.%N")
else
print ("Spelling is incorrect")
across
correction.suggestions as suggestion
loop
if suggestion.is first then
print (". What about: ")
else



print (", ")
end
print (suggestion.item)
end
print ("7?%N")
end
else
print ("Spell checker failed: ")
print (spell checker.failure message)
print ('%N")
end
end

The class SC_SPELL_CHECKER provides the commands
e check word (word: READABLE STRING 32)
e check words (words: LIST [READABLE STRING 32])
e check text (text: READABLE STRING 32)

to check the spelling of a single word, all words in a list or a whole text, respectively. In
order to check the kind and success of the last such check, there exist the corresponding
predicates is_word_checked, are_words_checked and is_text_checked. The results
are offered by the queries

e last word correction: SC_CORRECTION
e last words corrections: LIST [SC_CORRECTION]
e last text corrections: LIST [SC _CORRECTION]

on success of the respective check.

Moreover, the class SC_SPELL_CHECKER provides operations on user and ignore dic-
tionaries. Words in both of these kinds of dictionaries are always treated as correct. The
difference is that the words in a user dictionary can be used by the spell checker as sug-
gestions, while those in an ignore dictionary are never suggested as replacements. Both
kinds of dictionaries can be extended with a word. Only when the corresponding store
feature is called, such changes are made persistent. Finally, the words can be accessed
through the type SET [READABLE_STRING_32].

3.2 Extension and reuse

The feature set_back_end of SC_SPELL_CHECKER can change the back end. The class
SC_BACK_END is deferred and has many features from SC_SPELL_CHECKER mirrored with
default implementations. Developers should note that any effective descendant of the



class SC_BACK END must redefine one of the features check _word or check words, since
the default behaviour of both is to call the other.

The feature check_text by default breaks the text into words and checks each word.
The information about the word boundaries is preserved in the SC_CORRECTION objects,
so in particular their function substring can be useful to extract the word. Depending
on the language and back end used, this text segmentation may not be able to work as
expected. In this case, the functions words_of_text and is_word should be redefined
to adapt the text segmentation and word predicate to specific needs.

If a back end to be adapted does not support one of the kinds of dictionaries, the class
SC_WORD_SET and its heir SC_WORD_SET_XML can be used. The interface guarantees the
procedures extend and prune operating on the word set and load and store for the
synchronisation with a persistent storage.

The class SC_BACK_END has a query failure_messagein case a subsystem not in control
of the program fails. The philosophy is that this message is empty if and only if there is
no failure. For this reason, there should always be a nonempty message on failure.

The class SC_LANGUAGE_UTILITY might prove useful in other contexts. It has simple fa-
cilities for text processing. In particular, the functionwords_of_text_with_punctuation
finds word limits in a Unicode text. It makes use of the given punctuation to recognise
words like “can’t” as a whole. To determine whether an arbitrary Unicode character be-
longs to the major general category of letters, it applies the function is_letter in turn.
Furthermore, the function first_newline to find the first newline in a string takes vari-
ous kinds of newlines into account.

4 Validation

As already mentioned, the spell checker library is tested by the classes SC_TEST_SUITE
and SC_USAGE_EXAMPLE. They have already been developed from an early stage of the
project to facilitate a test-driven development.

The spell checker tool for EiffelStudio is tested with the help of the class SC_EVOLVABLE.
This serves as an example of a piece of Eiffel source code to cover almost all the desired
node types of an abstract syntax tree to be checked for spelling. The checked node types
are the following. Note that only the names introduced by the code itself should be
checked, but not others.

e Comments

String literals

Verbatim strings

Class names

Names of formal generic types



e New name of renamed features

Feature names and possible synonyms

Names of formal parameters, local variables and components of tuples

Tags of indexing clauses

Tags of contracts of all kinds

Identifiers introduced by across loops

Identifiers introduced by tests for attached variables

5 Deployment

The spell checker library with its tool is now available as a part of EVE, a development
environment built on top of EiffelStudio. It is thus distributed under the terms of the
GNU General Public License. The library can be found in the folder library/spelling,
while all the required test data is located at library/spelling/tests. The tool integ-
rated into EVE is in the folder Eiffel/interface/graphical/tools/spelling.



	Requirements engineering
	Introduction: Purpose and scope of the system
	Proposed system
	Functional requirements
	Nonfunctional requirements


	Design
	Design goals
	Detailed design

	Library guide
	Basic usage
	Extension and reuse

	Validation
	Deployment

