
Towards a Web Framework for
an Automated Eiffel Code

Teaching Assistant

Bachelor’s Thesis

Christian Vonrüti
ETH Zurich

cvonruet@student.ethz.ch
11-930-914

January 1, 2015 - July 1, 2015

Supervised by:
Marco Piccioni
Prof. Bertrand Meyer

Abstract

This thesis explores how to implement a web-based interactive teaching tool
for the Eiffel programming language. The foundation for an implementation has
been laid, in particular with parsing, AST construction and a partial semantic
analysis. This implementation should serve as a platform upon which to build a
teaching tool that can autonomously explain a program to a student, and guide
them through the execution by breaking down the steps.

Acknowledgments

I would like to thank my supervisor Marco Piccioni for his advice, ideas his
patience and for allowing me to pursue this idea as a thesis.

Further, I would like to thank Emmanuel Stapf, the lead engineer for the
Eiffel language for the insights he provided into the internals of Eiffel .

Special thanks go to Alexander Viand and Lukas Häfliger for proof reading
and advice with the report.

Contents

1 Introduction 5
1.1 Motivation . 5
1.2 Initial Considerations & Goals 6
1.3 Achieved Work . 7
1.4 Contribution . 8
1.5 Outline . 8

2 Process 9

3 Obstacles 16
3.1 Parsing . 16
3.2 Analysis . 20
3.3 GUI . 24

4 Deliverables 27
4.1 Code . 28
4.2 Dependencies . 29
4.3 Build step . 30
4.4 Debugging . 31
4.5 Webpage . 31

5 Conclusions 34
5.1 Conclusions . 34
5.2 Future Work . 34

4

Chapter 1

Introduction

1.1 Motivation

During my time as a teaching assistant at ETH for the course Introduction
to Programming I was teaching exercise sessions for a beginner’s group. The
programming language of choice in the course was Eiffel , invented by the lecturer
himself, Prof. Dr. Bertrand Meyer.

Most of my students had never programmed before. I saw them develop
an understanding and oftentimes misunderstanding of Eiffel which seemed to
be rooted in intuitions they formed about certain program constructs based
on example programs. When tasked to write their own programs as part of
exercise sessions or just weekly assignments, they would then, at least that is
my interpretation, extrapolate on their intuitions.

This would lead them to invent constructs and syntax that Eiffel , much to
their dismay, would then reject. If Eiffel did in fact accept their program, it
would often do something completely different from what they expected.

Prof. Dr. Bertrand Meyer, who is teaching Introduction to Programming ,
opens up his course by saying “The good news: Your computer will do exactly
what your program says” only to follow up shortly after with “The bad news:
Your computer will do exactly what your program says”. As already alluded
to, my students became very aware that what the program says and what they
think it says do not necessarily coincide.

All of this combined seemed to make the students regard Eiffel as a magical
black box, rather than a mechanical one following very precise rules. I found
this belief to be confirmed further when I noticed that students’ understanding
would improve, when explaining certain lines of code thoroughly and mechani-
cally, by explicitly mentioning every step, and its substeps recursively. However,
explaining in such detail is a quite tedious and time consuming process. It is not
well suited as an approach to use for all program explanations during exercise
sessions.

Of course, this kind of explanation lends itself to automation since the steps

5

Introduction - Initial Considerations & Goals 6

themselves are all mechanical in nature. It’s not dependent on human inter-
pretation. After all, a program needs to be able to deterministically process
the program text in the end. An automated tool would also allow a student to
inspect every construct in every program they came across in detail, with just
as much depth and time as needed.

And thus the idea to create a tool that could be used to aid students in
understanding Eiffel programs, and the precise rules that govern it, was born.

1.2 Initial Considerations & Goals

Together with my supervisor Marco Piccioni we decided on the primary require-
ments for the tool.

One of the first concerns was that of software installation. Experience had
shown that installing the Eiffel software proved troublesome for many students.
As such, it was desirable for the tool to require only minimal installation effort
or, better yet, no installation at all. As a result, the web was chosen to serve
as a platform upon which to build the application. Since web browsers are
ubiquitous, this allows for the application to be used without any complications
or custom software installations.

It was decided, mostly to keep the scope of the project in check, that the
application would only need to support a very limited subset of the Eiffel lan-
guage, such that more time could be spent on automated assistants for the
students and visualisations. We also recognized, that we would need to provide
good error messages.

In terms of functionality, the following features were planned, in order:

Parser to process a subset of the Eiffel language. Primarily, the omission of
generics, multiple inheritance, agents and tuples.

Static analysis Provide feedback to the student without running the program,
such as duplicate class names, type errors and unknown features.

Interpreter with stepping Being able to execute a program within the browser,
step by step for simple debugging.

Basic type emulation of the most fundamental types, integers, booleans and
strings.

Stack visualization to show how feature calls and argument passing work, in
particular to help the understanding of recursion and local variables.

Identifier lookup visualization to explain to a student how Eiffel deter-
mines, what an identifier within the program refers to.

Object graph Display how different objects are related by storing references
in their attributes and how the dot-operator allows “jumping” from object
to object.

Introduction - Achieved Work 7

AST expression visualization especially to show the structure of nested bi-
nary expressions and their evaluation semantics.

Most of these ideas were drawn from either my supervisor Marco Piccioni’s
or my own personal experience while assisting students.

Other topics such as multiple inheritance were reserved for extra achieve-
ments if time allowed.

1.3 Achieved Work

We had set out with multiple ideas for an automated Eiffel teaching assistant
and had come to the conclusion, that this is best done in a fully client-side web
application due to ease of use and performance.

Our initial goal of creating an automated teaching assistant that only sup-
ported a small subset of the language was soon found to be unsuitable for a
teaching tool.

• We believe, that experimentation lies at the foundation of human learn-
ing. A student experimenting with Eiffel could very quickly overstep the
limitations of the initially targeted Eiffel subset. As such, a tool that does
not allow for experimentation would have been a poor teaching tool.

• A distinguishing feature of Eiffel is, that object orientation is applied
throughout the entire language. Unlike in other popular languages such
as Java, even seemingly simple features such as integers are objects with
methods (features) attached to them. Further, the standard library makes
heavy use of multiple inheritance which has highly complex semantics for
conflict resolution.

• Approaches have been considered how programs that make use of these
features could be executed inside the teaching assistant without actually
supporting these language features, e.g. through some special cases in the
implementation, or other approximative measures.

During the thesis it became apparent, that these shortcuts themselves
would be quite complicated in themselves and easily be the source of subtle
deviations in semantics from an actual Eiffel compiler that supports these
language features natively. Additionally, all the special cases for different
features from different classes would need to be implemented separately,
which in itself would be a large effort. This time could be better spent in
actually implementing the underlying language features, which would in
turn allow the use of other aspects of Eiffel without any need for additional
special cases.

We therefore believe, that only a fully featured Eiffel compiler could serve
as the foundation of a useful teaching tool. The focus of the thesis has been
shifted to accommodate for this new insight.

Introduction - Contribution 8

However, a fully featured Eiffel compiler is much beyond the scope of a
Bachelor’s Thesis, as the language has many advanced and complex mecha-
nisms that are heavily intertwined. Therefore, the planned didactic tools have
been were relegated for future work in favor of work on the compiler. A virtu-
ally feature complete parser has been implemented along with a basic semantic
analyzer. Additonally, there is a sample web application that shows how these
components are connected and can be integrated in a website.

1.4 Contribution

The primary insight of this thesis is, that an Eiffel teaching tool should be
built upon a fully featured Eiffel compiler. Further, that a client-side web
application is an ideal platform for such an endeavour. Approaches have been
evaluated in how Eiffel could be brought into the browser, with the result that
an Eiffel compiler should be custom built with web technologies. This allows the
compiler’s metadata to be tailored to didactic needs, as well as effortless direct
interaction with the web application. Further, the first steps to implement such
a web application have been made.

The vibrancy of the web development community and ecosystem provide
excellent stepping stones for further work. Knowledge about the involved tech-
nologies are widespread and well documented, the underlying technologies easy
to understand as well as easy to debug, allowing this project to be extended
easily.

1.5 Outline

In chapter 2, gives an overview into the major decisions that have been made
during the duration of the process. Chapter 3 showcases some of the encountered
problems and how they were solved. The different parts of the implementation
are explained in chapter 4. Chapter 5 concludes the thesis with experience
gathered during this thesis and future work.

Chapter 2

Process

This section outlines the major decisions made throughout the project that
shaped its direction, and determined the technologies upon which and with
which the application has been built.

Client vs Server. The possible implementations for the planned step-
by-step program execution can be divided into two categories: client-side ex-
ecution and server-side execution. A server side approach offers tremendous
benefits from the developer’s perspective: there are existing Eiffel implemen-
tations that could be used to parse, validate, run and debug programs on the
server. However, this would make the application dependent on a possibly hefty
server infrastructure and would degrade the user experience noticeably. Every
action when debugging and compiling could possibly, and most would, involve
a request to the server, processing and waiting for the reply. As such, the user
experience would most likely have felt very sluggish.

Ignoring the server infrastructure, sandboxing concerns, and communication
between a debugger run server-side and the client, I ruled this choice out pri-
marily from a usability perspective, especially considering that we wanted to
provide more detailed error messages and better program explanations.

The approach I chose was to implement all functionality client side. This
implies that parsing, static analysis, and interpretation/execution would all have
to be done inside the browser, i.e. in JavaScript.

Even with that choice, I was considering options that would have allowed
me to avoid writing a parser and semantic analyzer myself, but rather leverage
existing projects. One project, that I was aware of, which would have allowed
to use the actual Eiffel compiler was emscripten.

emscripten1 is a way to compile languages such as C or C++ into JavaScript.
To be more precise, it takes LLVM bytecode and compiles that into asm.js2,
which is a subset of JavaScript, which can be highly optimized by browsers.
Despite finding earlier thoughts on the idea of using emscripten to run Eiffel

1http://kripken.github.io/emscripten-site/
2http://asmjs.org/

9

http://kripken.github.io/emscripten-site/
http://asmjs.org/

Process 10

programs in the browser3, I decided that this approach contained too many
unknowns and seemed to be generally infeasible: If I succeeded in getting pro-
grams to run through emscripten inside the browser, I would need to somehow
be able to read debug output either directly from the runtime representation
that emscripten generated, or, have Eiffel ’s own debugger itself be run, again
with the help of emscripten, inside the browser and run the Eiffel program
through that, which would again incur the same problems already discussed in
the server-side approach. Then of course there was the question as to how to
translate Eiffel code, in which the Eiffel compiler code is written, to LLVM
bytecode. In the previously mentioned discussion that I found about Eiffel and
emscripten, there was also a link4 to a source code repository containing what
appeared to be a solution to that problem, scarcely documented however. For-
tunately though, the Eiffel compiler can also output C code, which could then
be run through clang, a C/C++ frontend for LLVM and could therefore be
used in combination with emscripten to go from Eiffel source code to actual
JavaScript code that would execute in the browser. However, this would only
work for the compiler itself. The goal for the project, however, is for the student
to provide his own Eiffel source code and run that code. This would imply, that
the very same process would need to happen inside the student’s browser. As
such, clang and emscripten themselves would need to be run inside the browser.
Luckily, this had already been done5,6. In the end, however, I decided against
this approach because I was unsure whether I could get this process to run at all,
considering that emscripten itself has certain limitations and all the unknowns
on how to string all the components together if I could indeed get them all to
run in the browser. Further, this approach could have cost a lot of time solely
in experimentation without any clear results or means of assessing progress.

This left me with the approach that I took in this thesis: Implementing
everything in JavaScript. A benefit of this approach is, that all the gathered
metadata can be exposed directly to the application such that didactic compo-
nents can access them. Also, more metadata can easily be added to the compiler
if needed for additional didactic features. With the other considered approaches,
the addition of more metadata, as well as all the current metadata, would also
need to be exposed to the web application code. This would most likely have
needed a lot more additional work with many changes to the original compiler.

Parser. In the beginning, I immediately started working on the parser. All
the other features would need to be built on top of it, except for the UI of
course. I was already aware of PEG.js’s existence due to an article I had read
several years ago, and chose the aforementioned library to serve as a parser
generator. I had briefly reviewed alternatives such as Jison and JS/CC, but I
chose PEG.js for it’s more concise syntax and its very clear documentation and
tight integration with JavaScript. This choice would later prove to be misguided,
however.

Initially, I was making use of PEG.js’s demo page to get immediate feedback
on the state of my grammar. The demo page features two editors side by side,

3https://room.eiffel.com/blog/colinadams/compiling_to_llvm
4https://svn.eiffel.com/viewvc/eiffelstudio/trunk/Src/framework/eiffel_llvm/
5http://kripken.github.io/clangor/demo.html
6http://kripken.github.io/llvm.js/demo.html

https://room.eiffel.com/blog/colinadams/compiling_to_llvm
https://svn.eiffel.com/viewvc/eiffelstudio/trunk/Src/framework/eiffel_llvm/
http://kripken.github.io/clangor/demo.html
http://kripken.github.io/llvm.js/demo.html

Process 11

one for the grammar and another for the input to be parsed, along with one
part of the page dedicated to the parser output. This allowed me to iterate very
quickly and identify on the fly which parts of the grammar would be needed in
order to cope with traditional programs that students in the course would see
and make use of. This was done while still aiming to implement only a subset
of Eiffel , which is why I developed the grammar mostly based on examples with
very little reference to the Eiffel syntax given in its standard.

Testing. As the grammar grew more complex, I wanted to be able to test
the grammar across many different small examples such that I could quickly
evaluate what changes in the grammar would break which feature. Since the
application was to be written in JavaScript, I opted for a JavaScript testing
framework called qunit7 which presents all the tests in the form of a webpage,
as can be seen in Figure 2.1.

Figure 2.1: Screenshot of qunit

This would also allow me to later add tests for my JavaScript application
code and have all tests be in one place. Until that time, I had made use of the
PEG.js’s demo page to compile the grammar into JavaScript source code. This
change in testing also encouraged automating this process.

grunt & Node.js. This led me to investigate JavaScript build tools. The
entire JavaScript ecosystem of tools is built around the Node.js8 platform.
Node.js is, among other things, a way to run JavaScript code outside of a

7https://qunitjs.com/
8https://nodejs.org/

https://qunitjs.com/
https://nodejs.org/

Process 12

browser, which allows building command line tools directly in JavaScript. One
of these build tools that I found was grunt9, which could be readily installed
through Node.js’s package manager npm. npm can be instructed to keep track
of all the installed packages for a certain project in a file called package.json.
This enables the installation of all (npm-based) dependencies through a single
command npm install, provided that Node.js is installed of course.

Relatively early on, I started to work in parallel on building an AST repre-
sentation and the basics of the semantic analyzer. As the project kept evolving,
supporting more and more Eiffel constructs, the analyzer code had to be ad-
justed repeatedly to reflect the new and changed constructs.

While I already had automated unit tests in place, the dynamically typed
nature of JavaScript meant that I would only see the effects of a e.g. missing
updated variable name when running the unit tests and only if one of the test
actually exposed that error.

TypeScript . To make development easier, I went looking for alternatives.
I found a very extensive list10 with many compile-to-JavaScript languages and
spent some time reviewing several languages, focusing on those with static typ-
ing. Of particular interest were Elm11, Nim12 and TypeScript13. Elm due to
its powerful debugging with ”time-travel-like” capabilities which I hoped to be
able to use for stepping through Eiffel programs14, Nim for expressive syntax
and powerful macro system and TypeScript for its IDE support and straight
forward JavaScript interoperability, not mentioning the numerous new methods
for abstractions that the languages support. In the end, I chose TypeScript
for its interoperability, IDE support and familiarity. While the other two lan-
guages brought many more powerful language features than TypeScript did, they
seemed too experimental. Adding to this, I had no experience building more
than toy applications with Nim’s paradigm, and in Nim’s case, not all language
features, its standard library in particular, could be ported to JavaScript.

This led me to rebuild the entire codebase, fortunately still relatively small
at that time, in TypeScript . Even though TypeScript is a superset of JavaScript,
I redesigned the entire codebase from scratch, to make use of TypeScript ’s ad-
ditional features as much as possible and to employ type annotations wherever
applicable but not easily inferable by the TypeScript compiler.

Focus Shift. As my implementation progressed, I came to realize that
only building the parser and semantic analyzer while not yet considering the
implementation of the Eiffel interpreter/debugger would not work. I wanted
to think ahead such as to avoid another rewrite. The more I explored the
details of what I would need, the more I realized that further extensions such
as multiple inheritance and generics would not be easily achievable unless out
the entire concept was fleshed out beforehand. Further, I noticed that by only
supporting a subset of Eiffel , I would need to simulate more parts of the Eiffel
standard library. It would also mean, that my implementation would need to

9http://gruntjs.com/
10https://github.com/jashkenas/coffeescript/wiki/List-of-languages-that-compile-to-JS
11http://nim-lang.org/
12http://elm-lang.org/
13http://www.typescriptlang.org/
14http://debug.elm-lang.org/

http://gruntjs.com/
https://github.com/jashkenas/coffeescript/wiki/List-of-languages-that-compile-to-JS
http://nim-lang.org/
http://elm-lang.org/
http://www.typescriptlang.org/
http://debug.elm-lang.org/

Process 13

cheat and special-case with parts such as arrays, because the features depend
on generics, and/or the internal implementation relied on multiple inheritance.
Furthermore, the omission of special cases that required too much work would
severely limit what the student could do. When experimenting, they could easily
go beyond those limitations. This is exacerbated by the fact that Eiffel uses the
full spectrum of very advanced language features for the seemingly most simple
elements of the language, such as integers.

For these reasons, I decided, that I would instead try to implement as much of
Eiffel as possible, including and planning with multiple inheritance and generics
from that point onwards.

This decision meant, that completing the original goals had become infea-
sible. However, the advantages of having a consistent implementation without
special-casing anything that students would come across, except for Eiffel in-
ternals, seemed to justify this shift. It meant that instead of writing code to
simulate Eiffel , I could spend my time implementing Eiffel language features
which would then allow running even more Eiffel code.

I started by letting my parser and analyzer run over ANY, the base class from
which everything else inherits. The analyzer would then complain about all
classes that ANY required. This kicked off an iterative process of adding classes
and their dependencies recursively, while at the same time fixing bugs that were
exposed through the new classes from the Eiffel standard library. This also
marked the deviation from my hand-crafted grammar to implementing most of
the new rules according to their specification in the Eiffel standard [2].

During development, I’ve made use of features which preclude older browsers.
In particular, I’ve made extensive use of ECMAScript 2015’s, the next version
of JavaScript, Map15 and Set16. However, all functionality that I’ve used from
Map can be emulated with JavaScript itself with a so-called “polyfill” or less
specifically a “shim”17, albeit with much worse performance. By that time, I was
already exclusively testing my application in Chrome. Even though the original
decision was that it should run anywhere, I knew18 that if there was a problem in
a different browser, it could be resolved through a polyfill. Later, these features
would be supported by the browsers natively. These new upcoming JavaScript
features allowed me to be more productive.

I also wanted to automate more of my build process: recompilation of Type-
Script , e.g. automatic browser refreshes when those changes were complete and
better automated tests. I switched my build tool from grunt , a configuration-
over-code base build tool, to gulp19, which uses code-over-configuration, because
it was much easier to customize and did not rely as heavily on plugins as grunt
did.

Demo. Nearing the end of my thesis, my supervisor Marco Piccioni recom-

15https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_

Objects/Map
16https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_

Objects/Set
17https://remysharp.com/2010/10/08/what-is-a-polyfill
18http://kangax.github.io/compat-table/es6/#Map
19http://gulpjs.com/

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Map
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Map
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Set
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Set
https://remysharp.com/2010/10/08/what-is-a-polyfill
http://kangax.github.io/compat-table/es6/#Map
http://gulpjs.com/

Process 14

mended I implement a small demo website where some features of what I had
accomplished during this time could be seen and presented. Until this point,
the output of my program was solely in the form of debugging information.

Due to my previous web development experience, I knew that even small
website features can take up a substantial amount of time, which is why I went
looking for solutions to assist me. One criteria that I had, was that whatever
solution I chose had to make little assumptions about how the application logic
was structured, since that part was already written. I was also aware, that
the JavaScript ecosystem is highly in flux, new frameworks and best practices
appearing weekly20,21. It’s one of the reasons why the “TodoMVC ” project22

has been created. It shows the same, simple application built with different
frameworks. After looking at several popular contenders such as Angular23,
ember , 24 and backbone25, I was unsure as to how well my existing code could
be integrated with these frameworks. Finally, I settled on react.js, it’s promise
to be only responsible for the view while making almost no assumptions about
the rest of one’s code sounded like what I was looking for. Additionally, it
supports reusable and composable UI components while being extremely fast.

As a next step, I went over the list of community-built UI components26,
most of which were single components for very special purposes, instead of
a comprehensive library with generic UI components that I was looking for.
I settled on material-ui27, a project implementing Google’s material design28

standard for react.js

These dependencies brought two new major dependencies with them: browser-
ify29 and babel30, both of which I was able to integrate fairly easily into my new
build toolchain.

The last choice regarding what technology to choose that I’ve had to make
was between the two in-browser code editors: CodeMirror31 and Ace32. Both
editors are very popular. Ace is used in a cloud based IDE and CodeMirror
powers the developer tools in both Chrome and Firefox. With Ace, I had done
some earlier experiments in combination with require.js and it didn’t seem to
work well.

Lastly there was the question of easily importing code into the application.
In addition to the traditional open file dialog, I’ve chosen to support the Chrome-
exclusive drag & drop support for folders. Unfortunately, this API is not (yet)
standardized. However, in other browsers multi-file drag & drop works as well,
as does the open-file-dialog.

20http://www.allenpike.com/2015/javascript-framework-fatigue/
21https://blog.andyet.com/2014/08/13/opinionated-rundown-of-js-frameworks
22http://todomvc.com/
23https://angular.io/
24http://emberjs.com/
25http://backbonejs.org/
26https://github.com/facebook/react/wiki/Complementary-Tools#ui-components
27http://material-ui.com/
28http://www.google.ch/design/spec/material-design/introduction.html
29http://browserify.org/
30https://babeljs.io/
31https://codemirror.net/
32http://ace.c9.io/

http://www.allenpike.com/2015/javascript-framework-fatigue/
https://blog.andyet.com/2014/08/13/opinionated-rundown-of-js-frameworks
http://todomvc.com/
https://angular.io/
http://emberjs.com/
http://backbonejs.org/
https://github.com/facebook/react/wiki/Complementary-Tools#ui-components
http://material-ui.com/
http://www.google.ch/design/spec/material-design/introduction.html
http://browserify.org/
https://babeljs.io/
https://codemirror.net/
http://ace.c9.io/

Process 15

I’ve also wanted to provide students with the ability, to easily import sample
projects. For that, I envisioned a GitHub33 integration, such that code could be
read directly from repositories or Gists34 on GitHub. However, due to GitHub
restrictions35 and having to run this application on a server with a custom
backend36, this idea was scrapped.

33https://github.com/
34https://gist.github.com/
35https://developer.github.com/v3/rate_limit/
36http://blog.vjeux.com/2012/javascript/github-oauth-login-browser-side.html

https://github.com/
https://gist.github.com/
https://developer.github.com/v3/rate_limit/
http://blog.vjeux.com/2012/javascript/github-oauth-login-browser-side.html

Chapter 3

Obstacles

This chapter gives an overview of some selected problems that were encoun-
tered during the thesis and how they were solved. The grammar examples in
this section are all simplified from their actual implementation unless they are
specifically referred to, as well as references to the official Eiffel grammar spec-
ifications as per the standard are simplified unless relevant to the subject at
hand.

3.1 Parsing

PEG.js was found to have several limitations and simplifications, which result
in some unnecessarily complex grammar rules and degrade performance signifi-
cantly.

Backtracking. PEG.js only does a very limited amount of backtracking:
Only the choice operator / backtracks if an alternative fails. Otherwise, the
parser is greedy and as soon as a subrule has matched somehow, it will not
be reevaluated for different alternatives if its calling rule should fail at a later
point. In general, this means that the longest possible match always needs to
come first.

For instance, consider Listing 3.3 on the next page. If features were parsed
with a grammar such as the one in Listing 3.1, the parser would fail. The

Listing 3.1: Pegjs: Incorrect rule order

1 Features = Feature*

2
3 Feature

4 = Attribute

5 / Function

6 / Procedure

16

Obstacles - Parsing 17

Listing 3.2: Pegjs: Correct rule order

1 Features = Feature*

2
3 Feature

4 = Function

5 / Procedure

6 / Attribute

Listing 3.3: Eiffel : Parsing example

1 class EXAMPLE

2
3 attr: TYPE

4
5 func: TYPE

6 do

7
8 end

9 end

Attribute rule would match the beginning of the line 3 in Listing 3.3. Then,
another Feature would be expected as per the Features rule. However, no
feature would match the remaining text, so the parse fails, because it won’t
backtrack to choose something different than Attribute. The corrected gram-
mar can be seen in code Listing 3.2.

Whitespace. PEG.js also does not do a separate lexing pass. As a result,
whitespace has to be manually specified everywhere. Coupled with the greed-
iness of the parser and lack of backtracking, one has to be very careful not to
match too much whitespace at some point, when one expects whitespace before
a certain location. Otherwise, the parser will obviously fail, because there isn’t
any more whitespace available to be matched. As a result, I’ve been tried to
consistently allow and/or demand for whitespace before other rules, rather than
a mix of the two. After certain elements, however, one must make certain that
there actually follows whitespace, but this can be solved using a lookahead that
does not actually consume any characters.

Since whitespace must be manually specified throughout the entire grammar,
I’ve specified two short convenience rules w and W that stand for optional and
obligatory whitespace, respectively.

At a later time I’ve noticed, however, that my rule for obligatory whitespace
should not be necessary very often: The greedyness of the algorithm actu-
ally works in one’s favor in some instances. For example, the grammar always
requires whitespace to occur between two words. However, when matching
identifiers, they are matched greedily, so it’s not possible that there isn’t any
whitespace between two words. This would impact the grammar only very little
though.

Obstacles - Parsing 18

Listing 3.4: Eiffel : Parsing example

1 class EXAMPLE

2
3 func: TYPE

4 obsolete

5 "[Tag] message"

6 do

7
8 end

9 note

10 copyright: "[

11 copyright

12]"

13 end

Verbatim strings. Eiffel supports a special kind of string that can span
multiple lines with special delimiters1. For example "alpha[content]alpha"

where content can span over multiple lines and alpha is a sequence of letters
that appears once at the beginning and again and the end.

PEG.js Does not support backreferences which would allow parsing this
easily. Instead, custom JavaScript code is inserted after certain rules, which
constructs and stores a lookahead to match the corresponding ending of the
string]alpha". After every following character, there is a negative lookahead
performed for that string. Since that rule only fails if the lookahead fails, i.e.
the previously stored lookahead is actually present, everything until the next
quotation mark is then matched.

Another thing of note is, that the specification does not seem to explicitly
force verbatim strings to stretch over multiple lines, for the verbatim string
opener to be only preceded by whitespace until the next linebreak, or for the
closer to be preceded by only whitespace until the previous line break. The
EiffelStudio compiler enforces all of these rules. Omitting them, as the speci-
fication would seem to suggest, results in at least one of the standard library
classes not parsing. My grammar would detect a verbatim string opener on line
5 of Listing 3.4. This ending would be found on line 12, which would obviously
invalidate the class.

Free operators. This is another case where the specification2 seems to dif-
fer from what EiffelStudio’s compiler does, or the specification has been worded
poorly. One free operator that does not seem to be covered is the interval
operator |..|.

Every character in the operator must be an “operator symbol”, as per the
specification. To qualify as an operator symbol, it must satisfy any of the three
properties given in 8.32.203. However, it “appears in” a special symbol “. ”, it
goes against “[. . .]is neither a dot . nor[. . .]” and clearly is none of the listed

1See the Eiffel Standard, ECMA-367, 8.29.10 Manifest strings
2See the Eiffel Standard, ECMA-367, 8.32.21 Free operator
3See the Eiffel Standard, ECMA-367, 8.32.20 Operator symbol

http://www.ecma-international.org/publications/files/ECMA-ST/ECMA-367.pdf
http://www.ecma-international.org/publications/files/ECMA-ST/ECMA-367.pdf
http://www.ecma-international.org/publications/files/ECMA-ST/ECMA-367.pdf

Obstacles - Parsing 19

Listing 3.5: Pegjs: recognizes simple arithmetic expressions

1 additive

2 = multiplicative "+" additive

3 / multiplicative

4
5 multiplicative

6 = primary "*" multiplicative

7 / primary

8
9 primary

10 = integer

11 / "(" additive ")"

12
13 integer "integer"

14 = digits:[0-9]+

Listing 3.6: Pegjs: Excerpt of implementation of precedence

1 ImpliesExpr

2 = OrExpr ("implies" OrExpr)*

3
4 OrExpr

5 = AndExpr ("or" AndExpr)*

6
7 AndExpr

8 = CompExpr("and" CompExpr)*

symbols in the last property.

It follows, that |..| would be an invalid operator, and yet still had to be
supported. I’ve changed the grammar to allow for this operator to be parsed,
but it’s unknown whether this new grammar now allows operators, that the
EiffelStudio compiler does not.

Operator Precedence. PEG.js does not offer any assistance for defining
operator precedence or associativity as other parser generators might. The first
implementation was modelled after the grammar demo for PEG.js as can be seen
in Listing 3.5. This specifies precedence in a very straight forward manner as well
as right-associativity for the operators. However, for left associativity, this the
operands in the rules cannot be merely switched: This would allow additive

to invoke itself an arbitrary amount of times without consuming any input.
This attempt made the browser very unresponsive until it would forcefully stop
script execution. I also tried manually reversing the associativity but that also
resulted in performance issues. Instead, I settled on an approach, where a rule
never calls itself recursively as can be seen in Listing 3.6. The hierarchical
structure is constructed manually afterwards.

Error messages. Unfortunately, the goal to provide good parser error
messages could not be achieved overall. In some places, the syntax was relaxed

Obstacles - Analysis 20

to allow for theoretically invalid ASTs where the intent of the programmer can
still be certainly inferred, but this entails writing an analysis for each such case.
PEG.js provides relatively good error messages for a parser generator, in that
it gives a lot of output of it would have been expecting in order to continue,
but these messages are completely unhelpful to students, my supervisor Marco
Piccioni and I found.

Performance. The biggest remaining issue is the amount of time it takes
to parse the roughly 100 classes of the included standard library. The primary
reason for this seems to be the lack of a lexer-pass in the parser. For every rule
alternative, whitespace (parseW) and all identifiers have to be reparsed over and
over again, as well as verified that identifiers are not keywords. Naturally, these
rules tend to dominate the performance. Also, the position function (parsepos)
is called over and over again, constructing new objects all the time. There are
two graphs, Figure 3.1 is ordered by how much time is spent in a function itself
in total, and Figure 3.2 on the next page is ordered by how much time is spent
in which function in total, including all subroutine calls.

Figure 3.1: Profiling parsing and analysis: Self time

3.2 Analysis

Incremental parsing & analysis. Initial tests for the parser showed it to
run extremely fast. Hence, the analyzer and AST were initially designed to
be re-initialized with each run. Only when the grammar and tested input files
grew, performance bogged down. Since parsing a part of the included standard
library amounted to over a five second runtime on an Intel i7-4770k, it was no
longer feasible to re-run everything for every change a student makes.

To tackle this, the standard library is only parsed and analyzed once during

Obstacles - Analysis 21

Figure 3.2: Profiling parsing and analysis: Total time

an initial loading screen. When the student’s code is analyzed, the analyzer only
accesses other classes through a single entry point: AnalysisContext.classWithName().
Thanks to this, this function could easily be adjusted to delegate the request to
a different instance of AnalysisContext, that was used to analyze the standard
library.

Inheritance Cycles. This problem was solved through a very straight
forward depth-first-search approach. If a class is encountered that has already
been visited, a cycle has been detected. The application is able to distinguish
between cycles and classes that inherit from a cycle, but do not participate in
it. Currently, such classes are ignored in further analysis steps.

Multiple Inheritance. I have tried implementing this as the standard de-
scribes4. However, the first major problem came up when reading the standard.
Then standard seemed to be very imprecise about a particular issue with repeat-
edly inherited features in point 1 of the previously referenced section 8.16.12
of the standard. After reasoning through several different possible interpreta-
tions of several of the referenced rules therein, I contacted my supervisor Marco
Piccioni for clarifications. He redirected my questions to Emmanuel Stapf, the
lead engineer on the Eiffel compiler.

He told us, that the standard was merely the “goal”, and that their Eiffel
compiler did not adhere to the standard in that case. With that new knowledge,
I continued. Further, I discovered the an algorithm could not follow the steps
as outlined in 8.16.12, because some of the information that it required were
not available before the inherited features were determined.

In particular, the standard talks about merging different features, based on

4See the Eiffel Standard, ECMA-367, 8.16.12 Inherited Features

http://www.ecma-international.org/publications/files/ECMA-ST/ECMA-367.pdf

Obstacles - Analysis 22

the signatures that they have. However, the signatures of features making use
of anchored types are not known until after this step is complete.

Instead, features are combined by name, and a history of which features
have been merged to what name is kept, such that afterwards the merges can
be verified when the all type information is available.

For every parent, the following steps are taken:

• The features are renamed.

• The adaptions are indexed in a best-faith approach. For example, if an
adaption refers to a feature by its old name, and there is no other feature
that has been renamed to that name, the adaption is accepted but the
user is warned about it. Further, adaptions can appear in any order (the
standard defines a different order than what the official Eiffel compiler
requires).

• Every feature is inserted into a data structure given by the class FeaturePretenders.
It collects all features competing for the same name.

This data structure consists of four lists: “effective”, “deferred”, “redefined”
and “selected”. Every feature inside the data structure is in exactly one of the
first three lists. The decision in which list the feature is inserted is made in
the following order, the first condition that matches takes precedence. It is
in redefined, if the feature has been marked for redefinition. If the feature
is marked for undefinition, it goes into the deferred list, also, if the feature
was already deferred in the indicated parent class. All other features go into
effective, as they were inherited as effective from their parents.

Similarly, features are also inserted into the selected list, if they were
marked for selection.

In the next step, all FeaturePretenders datastructures are processed. Now,
a single feature is chosen from all the pretenders to serve as the inherited feature.
In general, there can either only be one feature in effective or one or more
entries in the redefined list, otherwise, all features must be in deferred and/or
redefined. Also, if there are features in redefined, the current class must have
a redeclaration for a feature of said name, i.e. in a feature list, otherwise it is
an error.

Multiple features in effective is obviously a conflict. If there is a feature
in effective and there is a redeclaration, those two features are in conflict. If
there are only features in deferred and redefined, possible conflicts can only
be determined once all type information is available, which is only after this
stage.

If none of the above cases apply and there is exactly one effective feature,
this will be determined the inherited feature, similarly, if there is no effective
feature and there is a redeclaration, that feature will be the inherited feature.

Generics. Generics could have been implemented in a very simple manner:
By directly replacing every feature with a new copy where all generic parameters

Obstacles - Analysis 23

have been substituted for their substitutions. However, this did not sound
very appealing from a performance point of view and also, it would break the
connection from the actual source code to what Eiffel “saw”. In particular,
for explanations for students it would be important to have all the substitution
information available wherever they were required.

This led to a different approach. Originally, I implemented a ClassSymbol

class that was to represent one Eiffel class. It would have information about all
its features, it parents and so forth. However, with generics in mind, something
that had originally been considered an ”if-time-permits-feature”, the concept
of every variable and feature simply referring to ClassSymbols was no longer
possible unless for every generic derivation, there was a different ClassSym-
bol, all with its own features and other members. Instead, I opted to cre-
ate a TypeInstance class, which, as its base type, would always refer to one
ClassSymbol, and also have a list of parameters. These parameters would be
of type TypeInstance recursively. A generic type parameter was modelled by
having a TypeInstance, whose base type was a ClassSymbol that represented
a generic parameter, with an empty parameter list.

However, this approach would led to different problems once inheritance
was introduced, because not enough information was being stored. This led to
the final implementation that is now used. An interface ActualType was cre-
ated which unified TypeInstance with the new class FormalGenericParameter.
ClassSymbol would no longer be used for generic parameters. This led to
many changes throughout the source code. The type system could now dis-
tinguish between the two, an instance of refactoring where TypeScript was par-
ticularly useful. Further, every TypeInstance now carries an instance of the
Substitution class. It contains a mapping between FormalGenericParameters
and ActualTypes. This way, all replacements are recorded in one datastructure
and an easy lookup is possible for explanation purposes.

This Substitution datastructure has also been added to FeatureSymbol,
which represents a feature. Since types are only resolved after inheritance, for
every inherited feature it must know how to resolve generic type parameters
therein appearing type usages. Since a class is not allowed to inherit from
different generic derivations5, the union of all substitutions performed across the
different parents would not yield any conflicting substitutions. However, when
explaining to a student how the type of one particular feature was derived, all the
other substitutions would not be necessary, since only the relevant information
would be present.

Initially, it was planned that a TypeInstance would receive its own generic
instantiations of certain features, i.e. there would have been copies or another
class FeatureInstance. However, they themselves again would have needed
to have TypeInstances to refer to their features (or rather, ActualTypes, with
the new implementation). This, however, without some sort of global registry
for TypeInstances with a much more complicated initialization to satisfy all
mutual relationships, would have created an infinite object graph. Instead, it
was decided that all feature accesses are implemented lazily through functions,
and new TypeInstances are created on the fly.

5See the Eiffel Standard, ECMA-367, 8.6.13 Parent rule(5)

http://www.ecma-international.org/publications/files/ECMA-ST/ECMA-367.pdf

Obstacles - GUI 24

Anchored Types. This is a powerful Eiffel feature that breaks modularity.
It allows for an entity’s type to be defined in terms of the type of another. Let’s
consider to features depending: like defining and defining: ANY. Sup-
pose the class assigns something to the depending attribute. At a later time,
a subclass is introduced, which redefines defining into defining: STRING

since covariant redefinitions are allowed as per the specification6. If the parent
class did not assign a STRING, after all, it could assign anything since every-
thing inherits from ANY, this will lead to a compile error once the new class is
introduced. Eiffel will recompile the feature containing the anchored type and
re-typecheck the feature.

This shows, that anchored types break modularity. It follows, that the types
of a feature making use of anchored types must be determined for every class
that inherits this feature. Further, the feature that the anchored type refers to
might have been renamed, and select will need to be respected.

The implementation currently only works for features, that do not depend
on a renamed feature or one that has been affected through the use of select.

The algorithm constructs a dependency graph between all the features return
types including their pretenders, their local variables and parameters.

Then, Tarjan’s algorithm[1] is applied to that graph. Tarjan’s algorithm
determines the strongly connected components (SCCs) of a graph. The SCCs
form a disjoint set of all nodes, where all nodes in one particular SCC can be
reached from any other node in that same SCC. In other words, all the nodes
inside one SCC form a cycle. An SCC consisting of one component has no
cycles, a node cannot have an edge from itself to itself, this would immediately
create a cycle in the dependency graph and can already be detected upon the
construction of said graph.

The resulting list of SCCs will contain exactly as many SCCs as there are
nodes if and only if there are no cycles in the dependency graph, and thus no
cycles in the anchored types. By virtue of how the algorithm operates, these
SCCs now form a topological sort on all the nodes, which directly correlates to
the order in which the types of all entities must be initialized.

Further, attention must be paid that generic parameters are resolved with
the respect to the generic type variables from a feature’s declaring class.

3.3 GUI

CodeMirror & react. As I introduced the tabbed interface to support editing
multiple files, something curious would happen: The editor would reset into its
initial state. I discovered that it didn’t just reset, it would completely reinitialize
itself. When using CodeMirror, you put a simple <textarea> element onto your
page, then instruct CodeMirror to initialize itself in its place.

I was sure that this was a react.js-specific problem, because react was re-
rendering the component it’s in. From react’s perspective, it can only see the

6See the Eiffel Standard, ECMA-367, 8.10.26 Redeclaration rule (2)

http://www.ecma-international.org/publications/files/ECMA-ST/ECMA-367.pdf

Obstacles - GUI 25

this <textarea> element that is then replaced by CodeMirror. When react
then re-creates the component, it will reinstate the <textarea>, which will
cause CodeMirror to re-initialize.

This is a problem because you would lose edit history and therefore the
ability to undo changes, cursor position, and selections.

To solve this, I overrode the shouldComponentUpdate function7 to always
return false, such that react.js keeps what is already in the DOM.

material-ui. This UI component library is still under heavy development.
It lacked several customization abilities that I needed such as custom colors on
some elements and bugs were found. Some of these enhancements8 and fixes9

have already been contributed back to the project and have been accepted.

Syntax highlighting. CodeMirror already had the ability to highlight
Eiffel code, thanks to fellow ETH student Yassin Hassan’s earlier contribution to
CodeMirror. Activating the highlighting should have been as simple as including
the additional JavaScript containing the relevant code. However, since my build
process uses “browserify”, the syntax highlighting file was not able to register
itself with the CodeMirror data structures, it just failed silently. The solution
was to include the JavaScript file through a require() call which instructs
browserify to pull in the therein mentioned module.

AST visualization. For this feature, I needed to be able to map a cursor
position to nodes in the AST. I added short rule pos to the parser that I would
use twice for every rule the constructs an AST node: Once to mark the start
of the characters the node represents, and one to mark the end. Initially, this
rule returned an object consisting of three fields: offset, line and column, all
information which is directly exposed by PEG.js through eponymous functions.
However, this greatly impacted the parse times. Not having a lexer-pass meant,
that these positions were recomputed over and over again for every position
and for every wrong branch that was taken. I settled to using only the offset

function. Luckily, CodeMirror could provide the cursor formation as an offset as
well. Upon a successful parse, which is triggered a few milliseconds after a user
has made some changes, the AST is transformed into a segment tree utilizing
the s-tree10 library.

When the cursor is moved, this segment tree is queried for all intervals
wherein the cursor is contained, thereby finding the surrounding AST nodes.
The hierarchy is then established by sorting by start position and length. Cur-
rently, it’s possible that they do not form a strict hierarchy, if the cursor happens
to fall exactly onto the boundary of two adjacent AST nodes.

Another issue that became apparent, was that of whitespace processing
during parsing and how the start and end positions were set. It seemed to
make sense, to never include any additional whitespace within the start and
end boundaries. This, however, did not seem give satisfiable explanations. In

7https://facebook.github.io/react/docs/component-specs.html#

updating-shouldcomponentupdate
8https://github.com/callemall/material-ui/pull/953
9https://github.com/callemall/material-ui/pull/965

10https://github.com/rogah/s-tree

https://facebook.github.io/react/docs/component-specs.html#updating-shouldcomponentupdate
https://facebook.github.io/react/docs/component-specs.html#updating-shouldcomponentupdate
https://github.com/callemall/material-ui/pull/953
https://github.com/callemall/material-ui/pull/965
https://github.com/rogah/s-tree

Obstacles - GUI 26

Listing 3.7: Eiffel : Parsing example

1
2 class

3 APPLICATION

4
5 inherit

6 ARGUMENTS

7
8 create

9 make

10
11 feature {NONE} −− I n i t i a l i z a t i o n

Listing 3.7 on lines 7 and 10, it would only report the AST node pertaining to
the entire class. When explaining this code however, I would explain line 7 as
belonging to the part, where parents for the class are specified, however, and
line 10 belongs to the area, where valid creation procedures are specified. This
meant, that additional whitespace had to be included before the ending position
marker in some select places.

However, I could not just insert my rule for optional whitespace, because my
grammar sometimes required whitespace to precede certain rules. I created a
new whitespace rule S, which would match all remaining whitespace including
comments except for the final whitespace character.

GitHub import. One feature I had been working on for the GUI had
to be abandoned, unfortunately. The idea was to provide the ability to easily
import sample projects from GitHub and such that students could share their
own through it or through GitHub’s Gists. However, I had to discover that the
public API which I had been using only allowed for 60 requests per hour11 which
enforced based on the IP. Since every file had to be fetched in one request along
with several metadata calls per import, this was infeasible. Authorized access
entailed running my own server, or have the students sign up with GitHub,
manually perform steps on GitHub to generate an access token for their account,
and then to input that token into my application. Instead, students can just
download a ZIP from GitHub containing the source code. With a small addition
to the application, it would then also be able to read ZIP files directly. Due to
security restrictions, JavaScript is unable to download the aforementioned ZIP
file directly from GitHub. If browsers were to allow such requests, I could have
circumvented GitHub’s API limit.

11https://developer.github.com/v3/#rate-limiting

https://developer.github.com/v3/#rate-limiting

Chapter 4

Deliverables

This chapter describes what has been achieved and gives an overview of the
delivered project’s structure.

The project, as already mentioned in the introduction section 1.3 on page 7,
the focus of the project has changed during the thesis. However, this is largely
due to a shift in focus of the project. Instead, the parser is virtually feature
complete: It can parse ANY and all its direct and indirect dependencies and
map that into an AST data structure. Thus, this particular goal has been
largely exceeded. The newly added goal of multiple inheritance and generics
have tremendously increased the effort for the semantic analyzer. Most of its
pieces are there, such as to serve as a solid foundation for future improvements.
The primary obstacle as of now, are unclear semantics of the official Eiffel
compiler in some cases with multiple inheritance, particularly in relationship
with select.

The analyzer is capable of recognizing cyclic inheritance, it performs feature
merging for multiple inheritance complete with a history as to where each feature
came from and what features have been merged into one. It supports generics
with a mapping that keeps track of all applied substitutions. Anchored types are
resolved including a cycle detection, except for those who depend on a feature
that was renamed during inheritance. This ties into the aforementioned point
of some Eiffel semantics yet remaining unclear.

Work on the interpreter with stepping has also begun. It is based on nested
graphs, where every graph outlines the steps that need to be taken to execute
a particular AST node. Every node can consist of a subgraph, which in turn
consists of the steps to execute nested AST nodes. The graph also doubles as
an explanation for the instructions, by providing labelled edges and the possi-
bility of dummy nodes that only hold explanatory data. This also ensures, that
the actual execution also matches the documentation provided to the student.
Further, this will allow for easy stepping, simply by keeping track of a stack of
parent nodes.

Further, a webpage demonstrating some of the implemented feature has
been implemented as can be seen in Figure 4.1 on the following page. Other

27

Deliverables - Code 28

visualizations there were initially targeted have been relegated to future work
as described in section 1.3 on page 7.

Figure 4.1: Screenshot of application

4.1 Code

The application is divided into three primary parts and technologies.

PEG.js is used for generating the parser.

TypeScript All the application code: AST data structures, semantic analysis
and business logic for the web application is implemented in TypeScript .

React is used to construct the UI and partition it into separate components.

Here follows an overview of the folder structure, along with the most impor-
tant files.

Deliverables - Dependencies 29

/

package.json..................................contains dependencies
bower.json....................................contains dependencies
gulpfile.json.................................controls build process
gulp.......................................tasks for the build process
.editorconfig....................... controls editor’s indentation etc
src..the application code

css..SCSS files
eiffel contains standard library
grammar

eiffel.pegjs..grammar
react...react components
ts...TypeScript source code
www..HTML code

test ... qunit based test code

The file semantics.ts in the folder src/ts contains the entry point for the
analysis: The analyze function. From there, it proceeds through a multitude
of steps, that perform the implemented analysis.

The entry point for the GUI of the demo application is in the file app.jsx

inside the folder src/react. It initializes the business logic for the web applica-
tion, which is encapsulated by the Model class inside src/ts/app.ts. app.jsx’s
code is automatically executed by its inclusion inside index.html in the src/www
folder. It is included last (browserify.js) such that all other scripts have been
loaded by the time it executes.

Care has been taken, such that the code is as self documenting as possible.

4.2 Dependencies

This section gives a short overview of the most important dependencies upon
which the project or its build process is based.

Node.js A JavaScript engine for server-side applications. Needed to execute
tools written in JavaScript.

PEG.js is the parser generation that is used for this project. It uses the PEG
syntax format intermixed with JavaScript.

TypeScript is a superset of JavaScript. The fundamental addition is that of
type annotations, which allows for better static analysis and refactoring
support in IDEs.

react.js is a UI library for easily rendering reusable components. It brings its
own custom JavaScript extension called JSX, in order to write react.js
code as if it were HTML.

CodeMirror is a code editor for the web.

material-ui is a collection of UI components implemented with react.js

Deliverables - Build step 30

gulp is a JavaScript build too, used to automate all build steps in the project.

browserify brings the upcoming JavaScript module system to the web by stat-
ically analyzing the imports. Compatible with Node’s module system
which means most libraries that were written for node can now be used
in the web effortlessly.

babelify A browserify plugin which transforms next-generation JavaScript code
into today’s JavaScript, including JSX-to-JavaScript translation.

Browsersync starts a webserver with which the website is served during de-
velopment, and is able to instruct the browser to reload when the source
files change.

font icons The ”ok” and ”error” icons are custom fonts and reside in the
assets directory. There is a demo page indicating the CSS class names
that can be used to display them.1

4.3 Build step

The build step produces 4 primary JavaScript files.
/dist

builtin.js......................................the standard library
browserify.js react code and dependencies
parser.js controls build process
typescript.js

Gulp is used by specifying a set of tasks. Every task can name certain other
tasks as its dependencies. When running a task, Gulp will ensure that all their
dependencies are performed first.

builtin.js contains the standard library as an array of JavaScript strings, it
is generated by the task builtin. This is generated from the files in the eiffel
directory. browserify.js contains all the user interface code along with
many dependencies. It is generated by the task browserify. typescript.js

is generated by typescript.

Using dependencies, there are tasks that will clean the /dist folder from
generated files. Also, there is a master task default that is executed when
gulp is run without arguments. It automatically starts two webservers, one for
tests and the other for the demo application, and makes the browser refresh the
respective pages when files that they depend on change.

There are other build steps to place other less important dependencies in
the correct location.

1https://icomoon.io/app/#/select

https://icomoon.io/app/#/select

Deliverables - Debugging 31

4.4 Debugging

Even though the build process combines the different source files into huge blobs
of concatenated JavaScript, debugging is still fairly straight forward. Due to a
feature called ”source maps”, the browser can display the original file while it’s
actually executing the processed file. This means that I can actually debug
using the TypeScript sourcecode in Chrome, even though it doesn’t understand
it. Not all features such as breakpoints or hovering over variables to see their
values work as well, though.

4.5 Webpage

The created demo page2 as seen in Figure 4.1 on page 28 showcases some of
the features that have been implemented during this thesis. In particular, a
code editor has been integrated with the developed parser. The application has
only been tested in Chrome, as it is the only browser that currently supports
all required features.

Workspaces. Since parsing the standard library takes several seconds (see
section 3.2 on page 20), workspaces have been added, such that a student can
work on multiple projects without the browser having to re-parse the standard
library for every instance of the application. Workspaces are isolated from each
other: Errors in a workspace do not affect the other workspaces, nor do they
share any open files.

The different workspaces can be accessed over a list of dynamically gener-
ated buttons at the top of the page. The active workspace is indicated by a
blue button, buttons to inactive workspaces are styled differently depending on
whether the corresponding workspace currently has any errors, as can be seen
in Figure 4.2.

New workspaces can be created by clicking the plus icon and deleted by
clicking the bin icon respectively, as seen in Figure 4.3.

Figure 4.2: Workspace selector buttons with status

Figure 4.3: Buttons to create and delete workspaces

Multiple Files. Multiple files within one workspace are shown in a tabbed
interface as can be seen in Figure 4.4 on the following page. Files that have

2http://eiffelweb.github.io/demo/

http://eiffelweb.github.io/demo/

Deliverables - Webpage 32

errors have it’s corresponding tab marked with a red color, which can also be
seen in the aforementioned picture. Further, there are “new file” and “remove
file” button in blue situated in the lower right corner.

Figure 4.4: Tabbed interface with error indicator and new & delete file buttons

Import and Export. Code can be imported by dragging files and folders3

over the application. These files will be added to the currently active workspace.
The original file name will be displayed in a file’s corresponding tab. This is
seen in Figure 4.4, where one folder containing three Eiffel files (extension *.e)
has been imported. It is also possible to import files by opening a traditional
“Open File”-dialog through the import button, displayed in Figure 4.5.

Also pictured is a button to export all files inside the currently active
workspace. A zip file will be generated in memory and downloaded automati-
cally. This is especially useful if several changes have been made or the student
is working with newly created files directly inside the application.

Figure 4.5: Left: Import files, Right: Export files

Parsing. A file is automatically parsed after being imported or created.
Further, the file is parsed several hundred milliseconds after the last keypress
has been made inside the editor. The delay4 has been chosen such that a
moderately fast typist will not trigger the parser between subsequent keypresses.
Triggering the parser after every keypress, albeit the parser is very fast for small
files, would have degraded the experience for fast typists. This way, code can be

3Importing folders is a Chrome-exclusive feature
4app.ts/EiffelFile.updateCode

Deliverables - Webpage 33

typed fluently and parser output is given immediately after the student stops
typing.

Successful and unsuccessful parses trigger different events, to which other
parts in the application can subscribe. One such subscriber sets a file’s filename
dynamically to the name of the parsed class, unless the file has been imported,
in which case the file always reflects the original filename.

The parser integrated in the application also supports multipe classes in one
file, a deliberate deviation from EiffelStudio. This is a convenience for working
with multiple small classes.

The parser error message is displayed below the editor.

AST visualization. The AST hierarchy of the AST node that corresponds
to the current cursor position is displayed to the right of the editor, as pictured
in Figure 4.1 on page 28. This feature is disabled while the file cannot be parsed.

Chapter 5

Conclusions

5.1 Conclusions

The project as it stands can serve as a platform upon which to build a fully-
featured web environment for an automated Eiffel teaching assistant. The basic
structure has been laid out and implemented, along with a small demo page
showcasing a small part of what is going on under the hood.

Working with these bleeding-edge technologies has been highly interesting,
although somewhat exhausting at times. There were the occasional odd effects
that would disappear after a few reloads, or still unfinished documentations.
TypeScript in general was a huge boon despite its compiler sometimes indicating
errors when there shouldn’t be any, or not giving error messages in some situa-
tions but it does for the same situation in a different place. Thanks to Chrome’s
debugging abilities, though, such bugs could mostly be quenched quite quickly.

Also, this project has shown me yet again, that making predictions as to how
long a feature will take to implement is extremely difficult, and it’s very easy
to underestimate the time it will take. Not necessarily because one is stuck,
mostly because more cases one did not consider before will reveal themselves,
which end up in consuming a large amount of time.

5.2 Future Work

There are many areas that can be expanded on and improved. First and fore-
most, the analyzer is to be completed. Of course, implementing the entire spec-
trum of the Eiffel language was a huge undertaking to begin with and there’s
still a lot missing. For example: correctly resolving selects, precursors and con-
version semantics. The grammar for inline agents is still missing. Tuple support
might not be straight forward forward because they take an arbitrary amount
of type arguments and much more. The UI could be improved to expose more
details, better error messages and better usability. The API used by the Traffic
library to draw to the screen could be intercepted and translated into <canvas>

34

Conclusions - Future Work 35

calls to make Traffic run in the browser.

Bibliography

[1] Tarjan, R. E. Depth-first search and linear graph algorithms. SIAM Journal
on Computing 1 (2): 146–160, 1972.

[2] ECMA-367. Eiffel: Analysis, Design and Programming Language. 2nd Edi-
tion, 2006.

36

	1 Introduction
	1.1 Motivation
	1.2 Initial Considerations & Goals
	1.3 Achieved Work
	1.4 Contribution
	1.5 Outline

	2 Process
	3 Obstacles
	3.1 Parsing
	3.2 Analysis
	3.3 GUI

	4 Deliverables
	4.1 Code
	4.2 Dependencies
	4.3 Build step
	4.4 Debugging
	4.5 Webpage

	5 Conclusions
	5.1 Conclusions
	5.2 Future Work

