

News and Notification: Propagating
Relevant Changes to Developers

Software Engineering Laboratory: Open Source
Eiffel Studio

By: Christopher Dentel

Supervised by: Christian Estler
Dr. Martin Nordio

 Prof. Dr. Bertrand Meyer

Student Number: 11-909-868

ABSTRACT

In any software development team staying up to date on the current changes that are occurring

in the project is mandatory. There exist many forms today through which that is accomplished:

standup meetings, mailing lists, configuration management logs, and many more. However, a lot

of information is proliferated naturally as a result of developers working on projects usually

being co-located. However when these developers move into a distributed environment, this

natural information proliferation cannot occur, and much more attention must be placed on

keeping each other up to date on the changes that are occurring. In this report, a notification

system that delivers notifications in real-time as well as notifications that were sent while offline

was designed and implemented. The system is well designed, highly extendible, server push

driven and tailor-maid especially for the Integrated Development Environment and toolset

Cloudstudio. Additionally, two widgets were also created for displaying the notifications in the

system.

News and Notification: Propagating Relevant Changes to Developers Christopher Dentel

5

Table of Contents

Cloudstudio .. 6

Motivation .. 6

Features .. 6

Details of Implementation .. 7

Cloudstudio: News and Notifications ... 9

Motivation .. 9

Final product: Developer perspective ... 9

Final product: Cloudstudio tool developer perspective ... 11

Implementation ... 13

Issues ... 15

Notification arrival race condition .. 15

Firing events on load ... 15

Effectiveness/Analysis... 16

Future Work .. 16

Resolving onLoadEvent ... 16

Simplify implementation process .. 16

Notification priority and further grouping .. 17

Notification delivery mechanisms ... 17

Table of Figures... 18

References .. 19

News and Notification: Propagating Relevant Changes to Developers Christopher Dentel

6

Cloudstudio

Motivation

For most large projects and teams, using an Integrated Development Environment

(IDE) is a necessity of software development. But traditional desktop software IDEs do not

seek to accommodate teams who are spread out across multiple countries, time zones, languages,

and cultures. These are the challenges faced by those organizations which pursue global

software development (GSD). The challenges that GSD poses are not necessarily new, and

approaches to alleviate the difficulties that come with GSD have been previously investigated

with many different approaches. Some investigations have focused on comparing different

project management approaches, including agile vs. structured development [1]. Carmel and

Agarwal [2] investigated means to reducing the “distance” between teams (national,

organizational, cultural, and temporal distances) and reducing collaboration. Several other

investigations have not sought to avoid collaboration but instead focused on how to better

facilitate collaboration across time-zones [3] [4] [5]. One such study [6] utilized the Distributed

and Outsourced Software Engineering course (DOSE), [7] [8] using some of the technologies

presented in this paper.

Existing IDEs rely on configuration management that leads to disparities in information

awareness, such as discovering at commit that two major refactorings have occurred

simultaneously. While this style of configuration management seeks to isolate developers from

the changes that other developers are making, Cloudstudioa seeks to share information in real-

time. As online document collaboration websites are eliminating the need to email documents of

varying revisions back and forth, Cloudstudio seeks to allow developers to work simultaneously

on a project, sharing information between themselves as they like, while also maintaining the

isolation that traditional configuration management affords.

Features

Cloudstudio [9] is a web based IDE, allowing developers to access their projects at any

time from any machine. This move to the web eliminates the need to maintain and update

different versions of software on local machines, while also allowing developers to work where

they want, when they want. But Cloudstudio is not just a web-app clone of an existing IDE.

Cloudstudio seeks specifically to meet the needs of developing in distributed environments

through smarter configuration management and tool integration. While still only a web-app,

Cloudstudio integrates development tools, collaboration tools, and verification tools. Some such

tools are listed below.

Development:

 Languages – Cloudstudio supports projects in Eiffel, Java, C#, and JavaScript.

 Configuration management – Cloudstudio’s configuration management system

encourages developers to share early and share often. Developers commit to their

own private branches and chose to share their changes when they wish.

a Try out Cloudstudio at: http://www.cloudstudio.ethz.ch

News and Notification: Propagating Relevant Changes to Developers Christopher Dentel

7

 External Development – Cloudstudio’s configuration management system allows

developers who do not wish to use Cloudstudio to still contribute to projects. As Git

is the underlying backend for the project, developers can directly connect with the

repository and work without being bound to the IDE.

 Import / Export projects – Existing projects can be imported into Cloudstudio and

existing projects can be retrieved.

 Monitors – Monitors provide an early warning system for developers and allow them

to keep track of the changes occurring in a project that are important to them [10].

Collaboration:

 Chat / Skype – Cloudstudio allows developers to see what other developers are

currently working on the same project, and provides access to both chat and Skype

from the IDE.

 Code Reviews – Code reviews are fully integrated into the IDE, allowing developers to

invite their team members to discuss changes without leaving the IDE.

 Notifications – All tools have access to a news / notification system, which keeps

developers up to date on what is going on in their project. The system is highly

customizable, and is discussed in detail in this report.

 Document Sharing (In progress) – Teams will be able to collaborate on non-code

documents, and see each other’s results in real-time.

Verification and Testing:

 Auto Proof – Auto Proof is a static verification tool for Eiffel which allows for

proving Eiffel programs in the browser without the need for any additional

specifications [11] [12]. Postconditions are tested against possible preconditions to

determine if there are cases in which satisfactory preconditions yield unsatisfactory

post conditions.

 Auto Test – An entirely automated unit-testing suite which infers tests based off

contracts [13] [14]. Developers select how long they wish to run the suite for, and

Auto Test exercises the classes to test the bounds of the contract.

 Auto Fix (integration with Cloudstudio in progress) – While Auto Test tests the bounds of

the contracts of a given class and reports failures, Auto Fix will attempt to generate

fixes for the errors found [15] [16]. It uses a combination of both static and dynamic

analysis to generate fixes, and then regression tests the fixes to determine if they are a

suitable candidate to fix the error found.

Details of Implementation

 Cloudstudio is developed using Google Web Toolkit and is deployable as an app-engine

app. Cloudstudio’s editor is an Eiffel program which has been compiled to JavaScript via an

Eiffel to JavaScript compiler developed by Alexandru Dima [17]. For back-end data storage,

Cloudstudio uses MySQL.

 Cloudstudio is being developed at ETH Zürich by the Chair of Software Engineering.

Cloudstudio’s principal members include Professor Bertrand Meyer, Dr. Martin Nordio, and

News and Notification: Propagating Relevant Changes to Developers Christopher Dentel

8

Christian Estler. Over 13 masters and bachelors students from several universities have also

been involved in implementing Cloudstudio.b

Figure 1: Cloudstudio IDE view.c

As is evidenced from the previously mentioned features, Cloudstudio seeks to expand

upon the functionalities which are necessary for development while also adding in the features

that promote the collaboration necessary to be successful in a distributed development

environment. Tools like chat integration, integrated code-reviews, notifications, and monitors

bridge the gap that occurs when knowledge cannot naturally circulate through teams that are

centrally located. The features in Cloudstudio are tightly coupled yet also flexible, allowing

developers to take advantage of the features that benefit them, while not shackling them to the

entire suite of tools.

b To learn more about the Cloudstudio development effort, visit: http://se.inf.ethz.ch/research/cloudstudio/
c Graphic from: http://se.inf.ethz.ch/research/Cloudstudio/

News and Notification: Propagating Relevant Changes to Developers Christopher Dentel

9

Cloudstudio: News and Notifications

Motivation

In any software development team staying up to date on the current changes that are

occurring in the project is mandatory. There exist many forms through which that is

accomplished: standup meetings, mailing lists, configuration management logs, and many more.

Typically, a lot of information is proliferated naturally as a result of developers working on co-

located projects. However when these developers move into a distributed environment, this

natural information proliferation cannot occur, and much more attention must be placed on

keeping each other up to date on the changes that are occurring.

As most Integrated Development Environments are not designed with web connectivity

in mind, creating a part of the IDE that is entirely dedicated to notifying users of recent changes

in their projects has not been explored. However, with an IDE that resides fully in the cloud,

creating a notification system that collects and distributes notifications from each tool in the

IDE can become a reality. In this report, a notification system that delivers notifications in real-

time as well as notifications that were sent while offline was designed and implemented.

The final notification system is well designed, highly extendible, serve- push driven and

tailor-maid especially for Cloudstudio. Additionally, two widgets were also created for displaying

the notifications in the system.

As this system was designed to extended by other developers of Cloudstudio, the final

system will be described and presented from both a developer perspective (those who are using

Cloudstudio to develop their projects) and from the Cloudstudio tool developer perspective

(those who are adding tools to Cloudstudio)

Final product: Developer perspective

The user experience for developers using the notification system in Cloudstudio is very

intuitive and much like most modern day notification systems in web applications. An action

that Walt performs causes notifications to be delivered to Jesse and Mike. There are two

possible cases to account for when delivering these notifications. In the first case the receiving

users are online, and in the second they are offline. Both cases have different delivery semantics.

For case one where the receiving users are online, the notifications are delivered almost

instantaneously. The developer is informed that they have a new notification through three

different areas, each of which has different visibility. The most easily visible notification method

is a small info-dialog popup which appears in the lower right hand-corner of the web application

(Figure 2). The popup informs the developer that they have a new notification, and the

description of the notification is displayed. After a short while, the notification melts away. In

the event that the receiving user is not online, they would not experience this popup dialog box

upon logging on.

News and Notification: Propagating Relevant Changes to Developers Christopher Dentel

10

Figure 2 Notification Popup Window

Slightly less visible is the change of the notification jewel in the top-left hand corner of

the screen (again, See Figure 2). This jewel displays a blue turtle when there are no active

notifications. However, when a notification arrives, the tortoise changes from blue to red, and

the text is changed to show how many notifications are available. Upon clicking on the tortoise

or the text, a small scrollable list is expanded (See Figure 3) which shows the active notifications.

The total amount of notifications to display is capped at 10, and further notifications can be

accessed via a last item in the list, which instructs the user that they can click there to see all

notifications. When notifications have been accumulated due to a developer being offline, they

are delivered at login.

Figure 3 Drop down notification window

News and Notification: Propagating Relevant Changes to Developers Christopher Dentel

11

 Clicking on the previously mentioned button takes users to their news page (Figure 4),

where all notifications are displayed. This page allows a developer to see both their active

notifications as well as their dismissed notifications by toggling a tab at the top of the display. In

both cases, developers are able to highly customize their view, specifying what columns to sort

by, what columns they would like to hide, as well as what they would like to group on. In Figure

4, the notifications are grouped by project, but notifications could also be grouped by type (or

any other column, though it may not be meaningful).

Figure 4 News view, showing active notifications grouped by project

 When a developer right clicks on a notification presented in the active tab, they have the

option of dismissing the notification. Notifications are not necessarily dismissed when a

developer clicks on it from the drop-down box (though the Cloudstudio tool developers can

specify this behavior if they wish). Once a notification has been dismissed, it is moved from the

active tab to the dismissed tab, and the tortoise jewel is updated to reflect this. Should a

notification be received while in the news view, it is immediately added to the view.

 These three different presentation methods help keep developers informed at all times.

The popup window immediately grabs their attention, the jewel provides a constant reminder,

and the news window allows developers to see what is happening across all of their projects in

one place. With having to manually dismiss notifications, the news page can almost be used like

a to-do list, with each notification being a reminder of something that needs to be done. For

instance, the monitor tool previously mentioned uses this notification system to inform users

when monitors have been violated. A developer can keep that notification active as long as they

still need to resolve the violation. Once the violation has been resolved, the developer (or maybe

in a future version the monitor system) can dismiss that notification.

Final product: Cloudstudio tool developer perspective

From a Cloudstudio tool developer’s perspective, extending the notification system to

support notification types for their tools is simple. While this section will deal with the

implementation of the notification system, it will only explain those parts which are necessary to

understand how Cloudstudio tool developers would interact with this code.

To add a new notification type to the notification system, developers must complete

three steps:

News and Notification: Propagating Relevant Changes to Developers Christopher Dentel

12

 Define a new model for their notification. This will be what is delivered to the client side

code.

 Create a new Database Table which implements a single method: fetch. fetch returns an

instance of the model defined in the first bullet.

 Add methods to create notifications to the notification client-service RPC interface and

create a new notification type for this class.

Developers extend the class NotificationModel (defined later), and they supply methods

for all abstract methods. This is the model which will be delivered to the client when a

notification is to be sent. There are some properties required by NotificationModel but

additional methods and fields can be added to this subclass so long as they meet the

serialization requirements of Google Web-Toolkit and the server-push system used (which

will also be described in Implementation). This notification has several behaviors that enable

the expressiveness of the system. Developers must implement a onSelected method, which will

be executed when a user either clicks on the notification from the notification drop-down

menu or when they click on the notification in the news system. In addition, the developers

can also specify that when the notification is loaded that they would like to register an event

on the event handler. This feature is still being explored, but would allow for event driven

programming across several different front-ends of the web app. There are currently some

issues with this that are described in the Issues section and in Further Work.

Developers then create a TypeOfNotificationTable which stores all necessary information to

build their subclass of NotificationModel. The only requirement on this table is that it supports a

fetch method which satisfies the interface TypeOfNotificationTable, which returns the model that

matches a particular id. It is useful for this table to return the generated id of the row when a

new notification is added to the table.

To provide access to their new TypeOfNotificationTable, developers add a new notification

type to the NotificationServiceImpl class. They also add any creation methods to the

NotificationServiceImpl class. This method must both create a new notification in the new table

that the developer has made and also call registerNew in the NotificationServiceImpl class (providing

their notification type and the id of the newly created notification). This stores a record in a

master notification table that there is a notification that exists in this new developer defined table

and it can be looked up using id. To provide access to lookup this notification, the developer

adds a function call to NotificationSericeImpls load method, which calls the fetch method of their

table (Figure 5).

With this, highly expressive and highly customized notifications can be transmitted to the

client code. Developers do not need to worry about serialization or delivery mechanisms, but

can define the behavior of their notification entirely within their model. In addition to

automating the delivery of notifications, the notification system also provides additional features.

The notification service developed contains the ability to destroy notifications on the client side

which already have been transmitted. This is very useful to de-duplicate notifications that have

since been updated. For instance, a notification is sent when the developer Mike makes a

commit to the project “Vamonos_Pests.” Developer Jesse then makes a commit to that same

project. A second notification could be sent informing all developers about this change. But

News and Notification: Propagating Relevant Changes to Developers Christopher Dentel

13

then Walt, who is also working on “Vamonos_Pests” with Jesse and Mike, would have two

notifications which are mostly redundant. If the configuration management system chooses to,

they can avoid this by retracting the original notification, and then pushing a single new

notification stating that both Mike and Jesse have made commits to “Vamonos_Pests”.

The mechanism for dismissing notifications is inherited from NotificationModel, and

developers can specify in their subclasses that they wish to dismiss a notification when it is first

interacted with. Dismissal requires no changes in the developer defined TypeOfNotificationTable.

In the event that a developer does not know when they need to add a notification (or

perform an operation to check to see if they should add notifications) the developers can use

NotificationArbiter which is a collection of event listeners that dispatch RPC calls to

NotificationServiceImpl. For example, the file monitor system listens for IdeCommitEvents which are

fired whenever the configuration management is modified. The handler in NotificationArbiter

handles this event and sends an RPC to NotificationServiceImpl requesting that the file monitor

system inspect itself for violations and push notifications for all violations found.

Implementation

Some of the implementation is described in the previous section, but this section will

expand on this and discuss the implementation that the other Cloudstudio developers do not

interact with.

The abstract NotificationModel class declares as abstract all methods that the front-end

implementation needs in order to display and handle the model correctly.

NotificationServiceImpl provides many methods that the front end code will access.

Namely, it provides a method to request all active notifications for a specific user. While the

notification system is server-push, all pre-existing notifications must be fetched when the user

logs in. This class also offers register, dismiss, and notification recall methods.

 While the other Cloudstudio developers are responsible for providing the table capable

of creating their models when asked to do so, their tables do not know when to create the

models and how to deliver notifications. This is where the master table described earlier

(NotificationTable) is used. This table is again rather simple, having only 6 columns (excluding id):

- Project id: What project this notification pertains to?

- User id: What user this notification is for?

- Timestamp: When was this notification last modified?

- Type: What type of notification is this?

- Notification Id: What is the id of the notification in its own table?

- Active: Is this notification active or dismissed?

When the client-side requests all notifications for a particular lookup, each relevant row

in the datastore is converted into a NotificationLookupModel, which is a simple java object

encapsulating a single table row. These NotificationLookupModels are then converted to

NotificationModels through the load method (see Figure 5).

News and Notification: Propagating Relevant Changes to Developers Christopher Dentel

14

These NotificationModels are then sent as a response to the RPC call. It is important to

note that RPC is the delivery mechanism only for requests for all notifications, which should

only occur once per session.

However, there also exists the case where a notification should be sent immediately after

it is created. To accomplish this, the NotificationServiceImpl keeps track of all developers currently

logged in. When a developer logs into Cloudstudio, they subscribe to the Notification Service,

which begins a new server-push connection for that user. Their user id is then mapped to this

server-push connection, as this is the pipe through which all notifications will be delivered.

When a notification is registered, the NotificationServiceImpl looks at this mapping to determine if

that user is logged on. If so, the NotificationModel to deliver is wrapped in a wrapper and then

sent through the server push connection.

This process is also very similar for when a developer requests that a previously sent

model be invalidated. The notification is dismissed on the server side, and a NotificationAntiModel

is created that contains the NotificationModel to be destroyed. This is then pushed down the

server-push connection if the user is logged in. When the client side notification code receives

this anti-model, it knows to destroy any notification matching the wrapped one.

All active notifications in the system are kept on the client side as a part of the client

state, which uses a specially created NotificationCallbackBus to manage interactions across the

various widgets. Different widgets can subscribe to the NotificationCallbackBus providing an

implementation of NotificationCallback which behaves much like an AsyncCallback, but has

methods like onAdd(model), onRemove(model), and onDismiss(model). NotificationCallback is abstract

and provides overridable implementations of each of the three previously mentioned methods

but for lists of models. The notification methods described earlier uses this to stay in sync with

the notifications as they exist in the client state; however notifications are not updated or

removed through a callback like this. To add, remove, or dismiss a notification, methods in the

client must be explicitly invoked.

/**
 * String representations of notifications for later look up.
 */
private static final String MONITOR_VIOLATED_NOTIFICATION = "1";
private static final String IDE_COMMIT_NOTIFICATION = "2";
private static final String REVIEW_NOTIFICATION = "3";

public NotificationModel load(NotificationLookupModel nlm) {
 TypeOfNotificationTable table;
 if (nlm.getType().equals(MONITOR_VIOLATED_NOTIFICATION)) {
 table = new MonitorNotificationTable();
 } else if (nlm.getType().equals(IDE_COMMIT_NOTIFICATION)) {
 table = new IdeNotificationTable();
 } else if (nlm.getType().equals(REVIEW_NOTIFICATION)) {
 table = new ReviewNotificationTable();
 } else {
 throw new IllegalArgumentException("The lookup model provided does not have a
corresponding definition assigned in NotificationServiceImpl");
 }
 return table.fetch(nlm.getNotificationId(), nlm.getId());
}

Figure 5 Load method which converts NotificationLookupModels into NotificationModels

News and Notification: Propagating Relevant Changes to Developers Christopher Dentel

15

 The system used for server-push is GWT-Comet, a comet implementation specifically

for Google Web-Toolkit developed by Richard Zschechd. It was very suitable for this task.

Issues

Notification arrival race condition

 Perhaps the most substantial issue that was encountered in developing the notification

system was a race condition which occurs due to the asynchronous nature of loading all active

notifications out of the datastore. This load may still be occurring when

- New notifications are received via server-push,

- New anti-notifications are received via server-push,

- Something on the client side requests to remove a notification,

- Something on the client side requests to dismiss a notification,

- Some component is initialized and requests all notification currently part of the client

state.

While many of these issues would occur infrequently, this race condition could lead to an

inconsistent datastore or operations being handled incorrectly. To combat this, several of the

methods involving Notifications were synchronized in ClientState, and requests were delayed until

the client-side copy of the notifications was fully loaded. The following bullets describe how the

front-end system avoids the race condition. (Note, in the following it is assumed that the set of

active notifications have been requested, but not yet received.)

 A request to add a notification is received  notification is added to a queue, where it

will then be added once the backlog of notifications has arrived.

 An anti-notification arrives  notification is added to a queue, where it will be removed

once the backlog of notifications has arrived.

 The client side requests that a notification is removed  notification is added to a queue,

where it will be removed once the backlog of notifications has arrived.

 The client side requests that a notification is dismissed  RPC call requests that the

server dismiss that notification. Notification is added to a queue, where it will be

removed from the client side once the backlog of notifications has arrived.

 A component requests the current notifications out of the client state  a

NotificationRequest is made for the request, and the asynchronous callback provided is

given to the NotificationRequest. A NotificationRequest encapsulates the behavior to perform

once all notifications are loaded. Once all notifications are loaded, the callbacks are

executed.

The system sufficiently handles the race condition, preventing the front-end from trying to

fulfill requests before it is ready.

Firing events on load

One of the features that make NotificationModels so powerful is their ability to initiate

action both when they are received as well as when they are selected. However, even when the

d Source and documentation available at http://code.google.com/p/gwt-comet/

News and Notification: Propagating Relevant Changes to Developers Christopher Dentel

16

notifications have been fetched from the datastore (as opposed to arriving as part of a server-

push NotificationWrapper), this on load event is still executed. This leads to a massive surge of

events being fired as all active notifications are brought into the project. Ideally, onLoadEvents

should only be executed if the notification has arrived via server-push, and not if it has been

fetched the datastore. This is proposed as further work.

Effectiveness/Analysis

 For developers using Cloudstudio, the end result is highly effective and very intuitive.

Notifications are presented in an easy to understand way, and the different notification

mechanisms direct the developer’s attention appropriately to their notifications. The widget

which displays the Cloudstudio tortoise jewel can be used ubiquitously throughout the app, and

provides a visually consistent way for developers to appraise their notifications.

The news view is also highly effective, allowing developers to see all active notifications

for all projects in once place. The grouping and sorting features are very powerful, and allow a

developer to use their notifications like a task queue.

The notification system also proved to be effective for Cloudstudio tool developers.

While this report includes the development of the notification system, another report developed

in parallel (the development of file monitors) [18] is a client to this notification system. Having

this use case sufficiently guided the development of the notification system, and the end result

was very sufficient for the needs of file monitors. As was mentioned earlier, trying to reduce

sending multiple nearly identical notifications led to the development of the anti-notifications,

and file-monitors were the original source of these identical notifications.

However, as both systems were developed by the same author, it is difficult to say if the

notification system can be effectively extended by other developers. As a further refinement, a

student from Politecnico di Milano completed a semester project where he implemented code

reviews into Cloudstudio. His experiences and an analysis are presented in a report [19]

containing several refinements made to the notification and monitoring system.

Future Work

Future work with the monitor system can be done in several different areas, and projects

are listed in decreasing order, beginning with the highest impact for estimated effort.

Resolving onLoadEvent

One barrier that kept some developers from implementing notifications of their own was

the previously mentioned issue of stored notifications firing their onLoadEvents when they are

added to the client state after being returned via RPC. An onLoadEvent should probably only be

executed when the notification arrives via server-push, and revising the system to behave in this

manner should be very simple.

Simplify implementation process

While the report author developed notifications for the notification system presented, it

would be beneficial to analyze the difficulties that other Cloudstudio tool developers encounter

when implementing notifications of their own. Many of the other existing tools could greatly

benefit from sharing information via notifications, so there exist plenty of cases where this could

News and Notification: Propagating Relevant Changes to Developers Christopher Dentel

17

be done. Should there prove to be common points of failure, these points should either be

redesigned or better documented. In addition, the notification system can be analyzed without a

usability review to determine if it can be simplified or better structured.

Notification priority and further grouping

As the diversity of notifications shared in Cloudstudio grows, the news view will become

more and more powerful. With this view, it would be beneficial to give developers greater

control over what they see. Giving developers the ability to create their own groups of

notifications or to give some notifications a higher priority over others would further enable

developers to use the news tool as a one stop landing page showing them both what is new in

Cloudstudio, and what it is that needs to be done.

Notification delivery mechanisms

While the notification system developed here is designed for notifying developers who

are already logged into Cloudstudio, it has no way of notifying developers when they are not

logged in. Adding optional email notifications would be beneficial for informing developers that

there is something that they should log in and take a look at. This system could be customizable,

with developers specifying what types of notifications they would like to receive email

notifications for. Notifications could also be delivered as a digest form. This digest form could

also prove to be beneficial for members who are not developers on the team, but who are

interested in staying abreast on changes occurring in the project.

News and Notification: Propagating Relevant Changes to Developers Christopher Dentel

18

Table of Figures

Figure 1: Cloudstudio IDE view. ... 8

Figure 2 Notification Popup Window ... 10

Figure 3 Drop down notification window .. 10

Figure 4 News view, showing active notifications grouped by project ... 11

Figure 5 Load method which converts NotificationLookupModels into NotificationModels 14

file:///D:/Code/CloudStudio/cloudstudio/students/Chris_Dentel/ETH%20Theses/Thesis2/Paper2.docx%23_Toc339835756

News and Notification: Propagating Relevant Changes to Developers Christopher Dentel

19

References

[1] H.-C. Estler, M. Nordio, C. A. Furia, B. Meyer and J. Schneider, "Agile vs. Structured

Distributed Software Development: A Case Study," in 7th International Conference on Global

Software Engineering, IEEE, 2012.

[2] E. Carmel and R. Agarwal, "Tactical Approaches for Alleviating Distance in Global

Software Development," IEEE Softw., vol. 18, no. 2, pp. 22-29, March 2001.

[3] E. Carmel, Global software teams: collaborating across borders and time zones, Upper

Saddle River, NJ, USA: Prentice Hall PTR, 1999.

[4] M. Nordio, R. Mitin, B. Meyer, C. Ghezzi, E. Di Nitto and G. Tamburrelli, "The Role of

Contracts in Distributed Development," in Proceedings of Software Engineering Approaches for

Offshore and Outsourced Development, 2009.

[5] J. A. Espinosa, K. Nan and E. Carmel, "Do Gradations of Time Zone Separation Make a

Difference in Performance? A First Laboratory Study," in Proceedings of the IEEE International

Conference on Global Software Engineering (ICGSE 2007), IEEE, 2007, pp. 12-22.

[6] M. Nordio, H.-C. Estler, B. Meyer, Ghezzi, C. Ghezzi and E. Di Nitto, "How do

Distribution and Time Zones affect Software Development? A Case Study on

Communication," in Proceedings of the IEEE International Conference on Global Software Engineering

(ICGSE 2011), IEEE, 2011.

[7] M. Nordio, R. Mitin and B. Meyer, "Advanced Hands-on Training for Distributed and

Outsourced Software Engineering," in Proceedings of the 32nd ACM/IEEE International

Conference on Software Engineering (ICSE), 2010.

[8] M. Nordio, C. Ghezzi, B. Meyer, E. Di Nitto, G. Tamburrelli, J. Tschannen, N. Aguirre and

V. Kulkarni, "Teaching Software Engineering using Globally Distributed Projects: the

DOSE course," in Collaborative Teaching of Globally Distributed Software Development - Community

Building Workshop (CTGDSD), ACM, 2011.

[9] M. Nordio, H.-C. Estler, C. A. Furia and B. Meyer, "Collaborative Software Development

on the Web," 2011.

[10] C. Dentel, "Monitors: Keeping Informed on Code Changes," Independent Research, ETH

Zürich, 2012.

[11] M. Nordio, C. Calcagno, B. Meyer, P. Müller and J. Tschannen, "Reasoning About Function

Objects," in TOOLS-Europe, J. Vitek, Ed., Springer-Verlag, 2010.

[12] J. Tschannen, C. A. Furia, M. Nordio and B. Meyer, "Verifying Eiffel Programs With

Boogie," in First International Workshop on Intermediate Verification Languages (BOOGIE 2011),

News and Notification: Propagating Relevant Changes to Developers Christopher Dentel

20

2011.

[13] Y. Wei, H. Roth, C. A. Furia, Y. Pei, A. Horton, M. Steindorfer, M. Nordio and B. Meyer,

"Stateful Testing: Finding More Errors in Code and Contracts," in 26th IEEE/ACM

International Conference on Automated Software Engineering (ASE), IEEE, 2011.

[14] B. Meyer, A. Fiva, I. Ciupa, A. Leitner, Y. Wei and E. Stapf, "Programs That Test

Themselves," IEEE Computer, vol. 42, no. 9, pp. 56-55, 2009.

[15] Y. Pei, Y. Wei, C. A. Furia, M. Nordio and B. Meyer, "Code-Based Automated Program

Fixing," in 26th IEEE/ACM International Conference on Automated Software Engineering (ASE),

IEEE, 2011.

[16] J. Tschannen, C. A. Furia, M. Nordio and B. Meyer, "Usable Verification of Object-

Oriented Programs by Combining Static and Dynamic Techniques," in Proceedings of the 9th

International Conference on Software Engineering and Formal Methods, 2011.

[17] A. Dima, "Developing JavaScript Applications in Eiffel," Masters Thesis, ETH Zürich,

2011.

[18] C. Dentel, "Monitors: Keeping Informed on Code Changes," Independent Research, ETH

Zürich, 2012.

[19] C. Dentel, "Refinements and Git Integration with Notifications and Monitoring," Software

Engineering Laboratory: Open Source Eiffel Studio, ETH Zürich, 2012.

