

Refinements and Git Integration with
Notifications and Monitoring

Software Engineering Laboratory: Open Source
Eiffel Studio

By: Christopher Dentel

Supervised by: Christian Estler
Dr. Martin Nordio

 Prof. Dr. Bertrand Meyer

Student Number: 11-909-868

ABSTRACT

In this report, refinements to improve the work developed in the previous two reports (Monitors:

Keeping Informed on Code Changes and News and Notification: Propagating Relevant Changes to Developers)

were developed and presented. These refinements included usability, efficiency, and new feature

requests. Notifications were implemented into another student’s project, showcasing the

usability of the developed system. The monitor system developed was updated to support a new

version of configuration management. Blame was added to the monitor diff view, allowing

developers to see who last committed each line of code, and several other enhancements were

made to make the monitor system more customizable. GUI enhancements were made to allow

users to customize their workspace, and the system was made more flexible by allowing users to

change their monitoring preferences after creation. The monitoring system also now will

preferentially display violated monitors upon initialization.

Refinements and Git Integration with Notifications and Monitoring Christopher Dentel

5

Table of Contents

Cloudstudio .. 6

Motivation .. 6

Features .. 6

Details of Implementation .. 7

Monitors & Notifications .. 9

Monitors ... 9

Notifications .. 9

Refinements ... 11

Configuration Management Transition ... 11

Context for Monitors ... 12

Blame .. 13

Additional developer integration of notifications ... 14

Notification Behavior Upgrades. ... 14

Table of Figures... 16

References .. 17

Refinements and Git Integration with Notifications and Monitoring Christopher Dentel

6

Cloudstudio

Motivation

For most large projects and teams, using an Integrated Development Environment

(IDE) is a necessity of software development. But traditional desktop software IDEs do not

seek to accommodate teams who are spread out across multiple countries, time zones, languages,

and cultures. These are the challenges faced by those organizations which pursue global

software development (GSD). The challenges that GSD poses are not necessarily new, and

approaches to alleviate the difficulties that come with GSD have been previously investigated

with many different approaches. Some investigations have focused on comparing different

project management approaches, including agile vs. structured development [1]. Carmel and

Agarwal [2] investigated means to reducing the “distance” between teams (national,

organizational, cultural, and temporal distances) and reducing collaboration. Several other

investigations have not sought to avoid collaboration but instead focused on how to better

facilitate collaboration across time-zones [3] [4] [5]. One such study [6] utilized the Distributed

and Outsourced Software Engineering course (DOSE), [7] [8] using some of the technologies

presented in this paper.

Existing IDEs rely on configuration management that leads to disparities in information

awareness, such as discovering at commit that two major refactorings have occurred

simultaneously. While this style of configuration management seeks to isolate developers from

the changes that other developers are making, Cloudstudioa seeks to share information in real-

time. As online document collaboration websites are eliminating the need to email documents of

varying revisions back and forth, Cloudstudio seeks to allow developers to work simultaneously

on a project, sharing information between themselves as they like, while also maintaining the

isolation that traditional configuration management affords.

Features

Cloudstudio [9] is a web based IDE, allowing developers to access their projects at any

time from any machine. This move to the web eliminates the need to maintain and update

different versions of software on local machines, while also allowing developers to work where

they want, when they want. But Cloudstudio is not just a web-app clone of an existing IDE.

Cloudstudio seeks specifically to meet the needs of developing in distributed environments

through smarter configuration management and tool integration. While still only a web-app,

Cloudstudio integrates development tools, collaboration tools, and verification tools. Some such

tools are listed below.

Development:

 Languages – Cloudstudio supports projects in Eiffel, Java, C#, and JavaScript.

 Configuration management – Cloudstudio’s configuration management system

encourages developers to share early and share often. Developers commit to their

own private branches and chose to share their changes when they wish.

a Try out Cloudstudio at: http://www.cloudstudio.ethz.ch

Refinements and Git Integration with Notifications and Monitoring Christopher Dentel

7

 External Development – Cloudstudio’s configuration management system allows

developers who do not wish to use Cloudstudio to still contribute to projects. As Git

is the underlying backend for the project, developers can directly connect with the

repository and work without being bound to the IDE.

 Import / Export projects – Existing projects can be imported into Cloudstudio and

existing projects can be retrieved.

 Monitors – Monitors provide an early warning system for developers and allow them

to keep track of the changes occurring in a project that are important to them [10].

Collaboration:

 Chat / Skype – Cloudstudio allows developers to see what other developers are

currently working on the same project, and provides access to both chat and Skype

from the IDE.

 Code Reviews – Code reviews are fully integrated into the IDE, allowing developers to

invite their team members to discuss changes without leaving the IDE.

 Notifications – All tools have access to a news / notification system, which keeps

developers up to date on what is going on in their project [11]. The system is highly

customizable.

 Document Sharing (In progress) – Teams will be able to collaborate on non-code

documents, and see each other’s results in real-time.

Verification and Testing:

 Auto Proof – Auto Proof is a static verification tool for Eiffel which allows for

proving Eiffel programs in the browser without the need for any additional

specifications [12] [13]. Postconditions are tested against possible preconditions to

determine if there are cases in which satisfactory preconditions yield unsatisfactory

post conditions.

 Auto Test – An entirely automated unit-testing suite which infers tests based off

contracts [14] [15]. Developers select how long they wish to run the suite for, and

Auto Test exercises the classes to test the bounds of the contract.

 Auto Fix (integration with Cloudstudio in progress) – While Auto Test tests the bounds of

the contracts of a given class and reports failures, Auto Fix will attempt to generate

fixes for the errors found [16] [17]. It uses a combination of both static and dynamic

analysis to generate fixes, and then regression tests the fixes to determine if they are a

suitable candidate to fix the error found.

Details of Implementation

 Cloudstudio is developed using Google Web Toolkit and is deployable as an app-engine

app. Cloudstudio’s editor is an Eiffel program which has been compiled to JavaScript via an

Eiffel to JavaScript compiler developed by Alexandru Dima [18]. For back-end data storage,

Cloudstudio uses MySQL.

 Cloudstudio is being developed at ETH Zürich by the Chair of Software Engineering.

Cloudstudio’s principal members include Professor Bertrand Meyer, Dr. Martin Nordio, and

Refinements and Git Integration with Notifications and Monitoring Christopher Dentel

8

Christian Estler. Over 13 masters and bachelors students from several universities have also

been involved in implementing Cloudstudio.b

Figure 1: Cloudstudio IDE view.c

As is evidenced from the previously mentioned features, Cloudstudio seeks to expand

upon the functionalities which are necessary for development while also adding in the features

that promote the collaboration necessary to be successful in a distributed development

environment. Tools like chat integration, integrated code-reviews, notifications, and monitors

bridge the gap that occurs when knowledge cannot naturally circulate through teams that are

centrally located. The features in Cloudstudio are tightly coupled yet also flexible, allowing

developers to take advantage of the features that benefit them, while not shackling them to the

entire suite of tools.

b To learn more about the Cloudstudio development effort, visit: http://se.inf.ethz.ch/research/cloudstudio/
c Graphic from: http://se.inf.ethz.ch/research/Cloudstudio/

Refinements and Git Integration with Notifications and Monitoring Christopher Dentel

9

Monitors & Notifications

This report presents several refinements to work implemented in two previously completed

reports. The first is a report on monitors [10], the ability to keep informed on code changes that

are occurring across multiple projects. The second is a report on a notification system developed

for Cloudstudio [11]. A brief description of the work in each is presented below.

Monitors

In small, localized teams, information proliferation about ongoing code changes is a

natural consequence of the immediate proximity of the developers. However, larger projects and

especially distributed projects face challenges where developers may not be aware of all changes

that are occurring within a specific project. Previous work [10] introduces the concept of

Monitors, the ability to keep an eye on those changes which are important to a developer. A

“monitor” is added to a particular “aspect” of code (library, file, class, feature, pre/post

condition, invariant, etc.). When the monitor is added, a “shadow” of the current state of the

monitored aspect is archived. The degree to which the aspect should be monitored is specified

within a “comparator,” which continuously compares the current state of the aspect as well as

the shadow to determine if a “violation” has occurred. If a violation has occurred, the monitor

informs the developer through one or more specified notification means.

While the aforementioned work on file monitors developed the concepts necessary for

the implementation presented in that work, use and peer critique revealed several opportunities

for the implementation to be refined and made more effective. In addition there was work to be

done in maintaining the monitor implementation through a transition of the Cloudstudio

configuration management system.

Notifications

In any software development team, staying up to date on the current changes occurring

in the project is mandatory. There are many forms through which that is accomplished: standup

meetings, mailing lists, configuration management logs, and many more. Typically, a lot of

information is proliferated naturally because developers working on projects are usually co-

located. However, when these developers move into a distributed environment, this natural

information proliferation cannot occur, and much more attention must be placed on keeping

each other up to date on the changes that are occurring.

As most Integrated Development Environments are not designed with web connectivity

in mind, creating a part of the IDE that is entirely dedicated to notifying users of recent changes

in their projects has not been explored. However, with an IDE that resides fully in the cloud,

creating a notification system that collects and distributes notifications from each tool in the

IDE can become a reality. In work developed consecutively [11], a notification system that

delivers notifications in real-time as well as notifications that were sent while offline was

designed and implemented.

Refinements and Git Integration with Notifications and Monitoring Christopher Dentel

10

The final notification system is well designed, highly extendible, server push driven and

tailor-maid especially for Cloudstudio. However, like with monitors, use by both clients to the

framework and the final product revealed areas for improvement.

Refinements and Git Integration with Notifications and Monitoring Christopher Dentel

11

Refinements

This report documents each of several refinements which were made to improve the

usability of Cloudstudio’s monitoring and notification tools. For each refinement, the

motivation for the refinement, the implemented solution, challenges faced, and an analysis of the

implementation will be presented.

Configuration Management Transition

The inefficiencies of the configuration management system used in Cloudstudio resulted

in duplication when archiving shadows with the original implementation of monitors [10]. The

configuration management system, presented in Section 4.2 of “Collaborative Software

Development on the Web” [9], does not keep a history of diffs, but instead stored a semi-raw

blob in a MySQL database. When file monitors were implemented for this configuration

management system, a physical copy of the shadow had to be saved, as the configuration

management did not keep track of any previous state. In addition all of the developers’ file

versions were stored together, which made for tedious reconstruction to check for violations of

all of the monitored versions of the files.

 In addition to the difficulties faced in detecting violations, the configuration management

system also posed problems during version rollbacks. As all versions of a line were stored

together, it became impossible at rollback time to determine what lines should be changed to

revert to the original state. As a result, a rollback issued by one developer also destroys the

current uncommitted progress of all other developers for that class.

Work done by Sandra Weber [19] addresses these deficiencies through the migration

from the previously described configuration management system to a system backed by Git.

While this new configuration management system was greatly enhanced both the usability and

resource footprint of Cloudstudio, it was not backwards compatible with the existing monitor

system.

One of the main challenges in migrating to using the new Git based system was a lack of

clear documentation. Several operations required obfuscated method calls with combinations of

null and non-null parameters to achieve the desired results. In addition, several functionalities of

the version control system were not fully implemented at the time of the migration, resulting in

the discovery of bugs or calls to methods which had yet to be defined. For instance, there does

not exist a rollback function that is capable of rolling back a single file to a specified revision. If

such behavior does become available, it would be very beneficial to have it integrated with

monitors.

Regardless of these challenges, the final configuration management system provides a

much more efficient backing for the monitor system. Instead of being forced to copy the entire

contents of a monitored file into a separate database table row, the new system must only keep

track of the revision hash of the monitored file at the time the monitor is placed. This reduces

the overhead of monitoring tremendously. When a monitor’s comparator requests the shadow,

this revision hash can then be queried in the configuration management system to produce the

necessary shadow. In addition, preforming rollbacks reaps this benefit as well, and the rollbacks

can be performed without damaging the current progress of the other developers, a limitation of

Refinements and Git Integration with Notifications and Monitoring Christopher Dentel

12

the earlier monitoring and configuration management combination. This configuration

management system will also be more conducive to the development of the further work

described in the report on monitoring [10].

Context for Monitors

Monitors were developed to allow developers to keep an eye on their current projects

and finished projects. However, these finished projects may still experience intermittent

development, and monitors can be very beneficial here. Monitors are useful for informing a

developer that maintenance is occurring on their code or their code’s suppliers. However, after a

while a developer may not recall why it was important for to monitor a particular aspect. In

addition, as a project nears completion, a developer may wish to use a more or less aggressive

comparator based on their preferences. In the first implementation of monitors [10], there was

no opportunity for developers to document their reasons for monitoring a file. In addition,

there was no ability for a developer to modify their comparator preferences after the monitor

had been placed. Both of these limit the usability of monitors throughout the life of a project.

Figure 2: The file monitor add menu with description field

The ability to add a description as well as to modify the comparators for file monitors

was added to meet these needs. Upon adding file monitors, the developer is now presented with

the opportunity to provide a description (see Figure 2). This is saved with the other monitor

properties. When a monitor is violated, the developer receives a notification describing which

file has been violated as well as the description that they provided when the monitor was placed.

Additionally, the developer can use the menu illustrated in Figure 3 to view the details of the

specified monitor. This menu is accessible through the toolbar in them monitor tool and shows

the developer several relevant details about the file monitor: the file name, when it was last

modified, the user provided description, as well as the ability to change the two comparator

options for file monitors (whether to include whitespace and comments and whether to monitor

other user’s uncommitted changes). When the user dismisses the menu, any updated settings are

saved.

Refinements and Git Integration with Notifications and Monitoring Christopher Dentel

13

If the comparator is modified, the monitor system will recompute whether the aspect

being monitored is violated. It will then also appropriately update the UI to correctly display the

status of this monitor. This analysis and subsequent updating revealed that the code powering

the user interface for monitors was poorly structured, and refactoring this code was a large

challenge due to the many different combinations of events which could occur. The first version

of the UI developed for the first implementation [10] was much less event-driven than the

implementation developed in this report. In attempting to achieve the consistency necessary for

the auto-updating, the programmatic approach to keeping the different view components failed.

The final implementation is almost entirely event driven, with some slight exceptions where

parents may discretely exercise their child without firing an event. This refinement also made it

easier to surface violated monitors when the tool is navigated to. While the tool used to open to

a blank screen and waited for the developer to select which monitor to examine, this new

implementation will open the first violated monitor and will display the violated diff.

Figure 3: About Menu displaying the message as well as options to modify comparator

Blame

 While monitors are effective for helping developers detect when critical code segments

have changed, it is up to the monitoring developer to then determine the next course of action to

take. Sometimes this may be to do nothing, but other times it may be to begin a conversation

about the changes proposed. In order to do this, the developer needs to be able to know who

caused the change that violated the monitor. While a developer could look through the

configuration management logs to determine who is responsible, it would be helpful to have this

information tied into the monitor tool itself.

Refinements and Git Integration with Notifications and Monitoring Christopher Dentel

14

 With the move of the backing configuration management system to Git, Cloudstudio

gained access to the ability to determine the last modifying developer for each line (blame).

Blame was added as a column to the monitoring tool to help monitoring developers determine

with whom they need to communicate. This tool is also beneficial for a proactive developer who

wishes to consult the last responsible developer before making changes to a file.

 One of the challenges encountered, and something which remains a challenge, is getting

the blame out of the Git configuration management wrapper. As mentioned previously, the

configuration management system was still evolving at the time that this project was completed.

The methods available at that time were not reliable and were highly exception prone. However,

the monitor system is “blame ready” whenever blame is conveniently accessible via the

configuration management system.

Additional developer integration of notifications

A previous paper on Cloudstudio’s notification system [11] recommends a usability study

to determine how easily other Cloudstudio developers can add their notifications to the

developed system. There are many tools in Cloudstudio which could make use of the

notification system, one of the tool’s authors used the system.

Denis Cutic of Politecnico di Milano completed a semester project in which he

implemented code reviews into Cloudstudiod. The code review invitation system used a

notification to inform the invited members that they were invited to participate in a code review.

Documentation was prepared describing the creation process and then shared with him. He

found this documentation to be sufficient, and asked only one question during his

implementation, which ended up being an issue caused by a MySQL error. While Denis Cutic’s

success with the system does not prove it to be easily useful, it does suggest that the system is

usable by other developers and in more diverse use cases.

Notification Behavior Upgrades.

In the interim period between the creation of the notification system and the

implementation of the refinements here presented, the notification system was exercised by

several team members. Feedback was generally positive, but there were three issues that were

raised.

Firstly, there was confusion as to the expected behavior when a user clicked on an IDE

Notification (a client to the notification system). If the user was in the IDE portion of the site,

nothing appeared to happen – the notification was not dismissed and the user was not taken to a

different view of Cloudstudio. This behavior was intended in the design of the IDE

Notification. The notification was designed to not dismiss on click, but only when manually

dismissed. Additionally, the on click event for an IDE Notification was to take the user to the

IDE view (where they already were). Yet while this behavior was not a bug and was expected, it

did create the illusion of a lack of response when the item was selected. The notification will

now dismiss on click, and previously dismissed notifications are available in the news view.

d Project title, but no report listed here: http://se.inf.ethz.ch/people/nordio/events_students.html

Refinements and Git Integration with Notifications and Monitoring Christopher Dentel

15

Secondly, there were issues with the onLoadEvent, and a suggestion for further work is

described in the original notification implementation report [11]. This mechanism was designed

to allow for an event to be fired when a notification is pushed to a logged-in user. However this

mechanism also fired events when the notifications were loaded from the database, causing

numerous onLoadEvents to execute at login time. As a temporary refinement, this behavior has

been entirely disabled for now. It will still be beneficial to pursue the refinement to its fullest by

changing the behavior so that onLoadEvents are only executed when a notification does not arrive

through the initial database load.

The third refinement was to remedy “a disappearing notification widget.” When an IDE

Notification was selected, it often appeared that the widget through which this notification was

accessed disappeared. This behavior only exhibited itself when a developer clicked on a commit

notification for a JavaScript project. The implementers of the JavaScript IDE had failed to add

the notification widget that the other IDE’s had, creating the illusion of a disappearing widget

when the JavaScript toolbar replaced the toolbar of the previously loaded project. This widget

has been added to the JavaScript toolbar.

Refinements and Git Integration with Notifications and Monitoring Christopher Dentel

16

Table of Figures

Figure 1: Cloudstudio IDE view. ... 8

Figure 2: The file monitor add menu with description field ... 12

Figure 3: About Menu displaying the message as well as options to modify comparator 13

Refinements and Git Integration with Notifications and Monitoring Christopher Dentel

17

References

[1] H.-C. Estler, M. Nordio, C. A. Furia, B. Meyer and J. Schneider, "Agile vs. Structured

Distributed Software Development: A Case Study," in 7th International Conference on Global

Software Engineering, IEEE, 2012.

[2] E. Carmel and R. Agarwal, "Tactical Approaches for Alleviating Distance in Global

Software Development," IEEE Softw., vol. 18, no. 2, pp. 22-29, March 2001.

[3] E. Carmel, Global software teams: collaborating across borders and time zones, Upper

Saddle River, NJ, USA: Prentice Hall PTR, 1999.

[4] M. Nordio, R. Mitin, B. Meyer, C. Ghezzi, E. Di Nitto and G. Tamburrelli, "The Role of

Contracts in Distributed Development," in Proceedings of Software Engineering Approaches for

Offshore and Outsourced Development, 2009.

[5] J. A. Espinosa, K. Nan and E. Carmel, "Do Gradations of Time Zone Separation Make a

Difference in Performance? A First Laboratory Study," in Proceedings of the IEEE International

Conference on Global Software Engineering (ICGSE 2007), IEEE, 2007, pp. 12-22.

[6] M. Nordio, H.-C. Estler, B. Meyer, Ghezzi, C. Ghezzi and E. Di Nitto, "How do

Distribution and Time Zones affect Software Development? A Case Study on

Communication," in Proceedings of the IEEE International Conference on Global Software Engineering

(ICGSE 2011), IEEE, 2011.

[7] M. Nordio, R. Mitin and B. Meyer, "Advanced Hands-on Training for Distributed and

Outsourced Software Engineering," in Proceedings of the 32nd ACM/IEEE International

Conference on Software Engineering (ICSE), 2010.

[8] M. Nordio, C. Ghezzi, B. Meyer, E. Di Nitto, G. Tamburrelli, J. Tschannen, N. Aguirre and

V. Kulkarni, "Teaching Software Engineering using Globally Distributed Projects: the

DOSE course," in Collaborative Teaching of Globally Distributed Software Development - Community

Building Workshop (CTGDSD), ACM, 2011.

[9] M. Nordio, H.-C. Estler, C. A. Furia and B. Meyer, "Collaborative Software Development

on the Web," 2011.

[10] C. Dentel, "Monitors: Keeping Informed on Code Changes," Independent Research, ETH

Zürich, 2012.

[11] C. Dentel, "News and Notification: Propagating Relevant Changes to Developers," Software

Engineering Laboratory: Open Source Eiffel Studio, ETH Zürich, 2012.

[12] M. Nordio, C. Calcagno, B. Meyer, P. Müller and J. Tschannen, "Reasoning About Function

Objects," in TOOLS-Europe, J. Vitek, Ed., Springer-Verlag, 2010.

Refinements and Git Integration with Notifications and Monitoring Christopher Dentel

18

[13] J. Tschannen, C. A. Furia, M. Nordio and B. Meyer, "Verifying Eiffel Programs With

Boogie," in First International Workshop on Intermediate Verification Languages (BOOGIE 2011),

2011.

[14] Y. Wei, H. Roth, C. A. Furia, Y. Pei, A. Horton, M. Steindorfer, M. Nordio and B. Meyer,

"Stateful Testing: Finding More Errors in Code and Contracts," in 26th IEEE/ACM

International Conference on Automated Software Engineering (ASE), IEEE, 2011.

[15] B. Meyer, A. Fiva, I. Ciupa, A. Leitner, Y. Wei and E. Stapf, "Programs That Test

Themselves," IEEE Computer, vol. 42, no. 9, pp. 56-55, 2009.

[16] Y. Pei, Y. Wei, C. A. Furia, M. Nordio and B. Meyer, "Code-Based Automated Program

Fixing," in 26th IEEE/ACM International Conference on Automated Software Engineering (ASE),

IEEE, 2011.

[17] J. Tschannen, C. A. Furia, M. Nordio and B. Meyer, "Usable Verification of Object-

Oriented Programs by Combining Static and Dynamic Techniques," in Proceedings of the 9th

International Conference on Software Engineering and Formal Methods, 2011.

[18] A. Dima, "Developing JavaScript Applications in Eiffel," Masters Thesis, ETH Zürich,

2011.

[19] S. Weber, "Automatic Version Control System for Distributed Software Development,"

Masters Thesis, ETH Zürich, 2012.

