Modelling and verifying asynchronous systems in GROOVE
PROJECT PLAN

Master’s thesis

Project period: 10.10.2014 - 10.04.2015
Student name: Claudio Corrodi

Status: 5th Semester, MSc in Computer Science

Email address: clcorrod@ethz.ch

Supervisor: Dr. Chris Poskitt, Chair of Software Engineering, ETH Zurich
External co-supervisor: Dr. Alexander Heullner, Software Technologies Research Group,

University of Bamberg

1. PROJECT DESCRIPTION

Background

With the rise of multi-core and distributed architectures, demand is increasing for high-level
programming interfaces that alleviate the notorious difficulty of writing efficient and portable
parallel code. Two recent, contrasting developments include Grand Central Dispatch (GCD) [1]
and SCOOP [2,3]. The former is a library present in Apple’s operating systems (with ports
existing for FreeBSD, Linux, and Windows), whereas the latter is a concurrency model for the
object-oriented programming language Eiffel. Both provide concurrency at a higher level of
abstraction than threads, through mechanisms for asynchronously dispatching “units” (or “blocks”)
of code — together with various dependencies between them. Concurrent programs expressed in
such models can often exhibit complex, perplexing, and surprising behaviour, and there is a
pressing need for tools and methods that facilitate their verification and analysis. In the case of
GCD, a formal model has been proposed [15,16] and a translation to Petri nets prototyped [17]; in
the case of SCOOP, a comprehensive operational semantics has been formalised in Maude [3,9]

— but the model is too complex for many of the automatic analyses that the tool supports. For
these and other kinds of asynchronous systems, a formalisation is needed that is natural, quick to
prototype, supported by rigorous theory, and supported by a tool that can perform analyses of
interest on the models.

Scope of the work

This project proposes to investigate, as such a formalism, the use of a graph-based abstract
semantics — a visual, powerful, and rigorous modelling technique based on (algebraic) graph
grammars [4]. By this, we mean a semantics in which program states are abstracted to graphs,
and computational steps to applications of graph rewrite rules (akin to those of Chomsky string
grammars, but lifted to graphs). Such a formalism — while unconventional — appears to be a
natural choice for prototyping systems as complex as SCOOP, e.g. with objects, processors, and
tasks all represented by nodes, and queues, locks, and handlers by edges. Furthermore, it benefits
from a well-developed theoretical foundation [4] and support from a number of tools. The most


mailto:clcorrod@ethz.ch

notable of the latter is GROOVE [5], which is able to perform (bounded) model checking directly
on graph grammars and programs, is equipped with state-pruning strategies that directly exploit the
graph-based representation (e.g. symmetry reduction based on graph isomorphism [6]), and has
had its maturity demonstrated through several encouraging case studies (e.g. modelling Java type
graphs [13,14]).

This project, in particular, aims to develop automatic translations of SCOOP programs to inputs for
the GROOVE model checker to verify, visualise, and analyse. To achieve this, a core (but
expressive) subset of the SCOOP language will be formalised, in GROOVE, as a system of graph
grammar rules. Then, an automatic translation of (this subset of) SCOOP programs to GROOVE
inputs will be developed, and thoroughly evaluated on case studies. Both the formalisation and
translation will be constructed as “parametrically” as possible, in order to allow an analogous
future treatment of GCD and similar such asynchronous systems.

Objectives / intended results

e areview of the relevant literature (see Section 2)

e a formalisation of a core (but expressive) subset of SCOOP as a graph-based system of
rules in GROOVE

e automatic translations of (this subset of) SCOOP programs to GROOVE inputs

e (informal) soundness arguments for the formalisation and translations

e case studies exploring and evaluating the use of GROOVE in analysing and verifying
properties of SCOOP programs

e a critical evaluation, and a collection of “lessons learnt” for others wanting to model and
analyse asynchronous systems (in particular, GCD) in a similar way

2. BACKGROUND MATERIAL

Reading list

This list comprises pointers to papers and resources that may be helpful for the project (larger
resources, such as PhD dissertations, may serve better as definitive references than something to
read in their entirety).

o SCOOP concurrency model
o general background: [2,7,8]
O operational semantics: [3,9]

o GROOVE model checker
o general background and tutorials: [5,10]
o case studies and best practices: [11]
o comparison with SPIN: [12]
o language translation (Java type graph): [13,14]

® formalisations of other asynchronous systems
o Queue-Dispatch Asynchronous Systems (QDAS) for GCD-like systems: [15,16]



3. PROJECT MANAGEMENT

Criteria for success

To be successful the project requires three deliverables. First of all, implementations achieving the
objectives of Section 1 that are well-designed, engineered, and evaluated. Secondly, the project —
from inception to conclusion — should be documented and evaluated to a high standard in a
Master’s thesis that adheres to ETH regulations. Finally, an assessed presentation of the work
should be given (after the report submission) to the Chair of Software Engineering.

Method of work

There will be regular meetings, telephone conferences, and email discussions. A desk will be
provided in the CAB building for the duration of the thesis, and a hot desk will be available — if
desired — in the RZ building on Fridays. The supervisors will provide their early, preliminary
prototypes of SCOOP / GCD programs in GROOVE for the student to learn from and build upon.

Quality management

The documentation will consist of the final report. Implementation work should be version
controlled, with meaningful commit messages throughout. If requested by the student, an optional
code review session can be organised, towards the latter part of the project, with members of the
Chair of Software Engineering.

4. PLAN WITH MILESTONES

Project steps

Due Date Duration Description

October 29 3 Weeks Literature review.

November 5 1 Week Software research (finding existing software and
infrastructure that can be used).

December 3 4 Weeks Formalising graph representation of SCOOP programs.

January 14 6 Weeks Automatic translation of SCOOP programs to GROOVE
models.

January 21 1 Week Evaluate possibility of extending approach to GCD.

February 18 4 Weeks Case studies, verification, and evaluation.

March 18 4 Weeks Writing the report.

April 10 3 Weeks Reserved for unexpected delays.

(deadline)




REFERENCES

[1]

Grand Central Dispatch Reference.
https://developer.apple.com/library/mac/documentation/Performance/Reference/GCD _libdis
patch Ref/Reference/reference.html, accessed October 2014

Piotr Nienaltowski: Practical framework for contract-based concurrent object-oriented
programming. Ph.D. dissertation, ETH Zurich, 2007

Benjamin Morandi, Mischael Schill, Sebastian Nanz, Bertrand Meyer: Prototyping a
Concurrency Model. ACSD 2013: 170-179

Hartmut Ehrig, Karsten Ehrig, Ulrike Prange, Gabriele Taentzer: Fundamentals of
Algebraic Graph Transformation. Monographs in Theoretical Computer Science. An
EATCS Series, Springer 2006

Amir Hossein Ghamarian, Maarten de Mol, Arend Rensink, Eduardo Zambon, Maria
Zimakova: Modelling and analysis using GROOVE. International Journal on Software
Tools for Technology Transfer 14(1): 15-40 (2012)

Arend Rensink: Isomorphism Checking in GROOVE. ECEASST 1 (2006)

Bertrand Meyer and Sebastian Nanz: Concepts of Concurrent Computation: Chapter 9.

Book draft, http://se.inf.ethz.ch/courses/2014a_spring/ccc/reading_materials/book/,
accessed October 2014

SCOOP: Project Homepage. http://cme.ethz.ch/scoop/, accessed October 2014

Benjamin Morandi: Prototyping a concurrency model. Ph.D. dissertation, ETH Zurich,
2014

Arend Rensink, lovka Boneva, Harmen Kastenberg and Tom Staijen: User Manual for the
GROOVE Tool Set. http://groove.cs.utwente.nl/wp-content/uploads/usermanual 1.pdf,
accessed October 2014

Eduardo Zambon, Arend Rensink: Solving the N-Queens Problem with GROOVE -
Towards a Compendium of Best Practices. ECEASST 67 (2014)

Giorgio Delzanno, Arend Rensink, Riccardo Traverso: Graph- versus Vector-Based
Analysis of a Consensus Protocol. GRAPHITE 2014: 44-57

Arend Rensink, Eduardo Zambon: 4 Type Graph Model for Java Programs.
FMOODS/FORTE 2009: 237-242

Eduardo Zambon: Abstract Graph Transformation: Theory and Practice. Ph.D. thesis,
University of Twente, 2013

Gilles Geeraerts, Alexander HeuBner, Jean-Frangois Raskin: Queue-Dispatch
Asynchronous Systems. ACSD 2013: 150-159

Gilles Geeraerts, Alexander HeuBiner, Jean-Francois Raskin: On the Verification of
Concurrent, Asynchronous Programs with Waiting Queues. ACM Transactions on
Embedded Computing. To appear.

Julien Meulemans: G2Q2P. GitHub repository, https://github.com/JulienMe/G2Q2P.
Accessed October 2014



https://www.google.com/url?q=https%3A%2F%2Fdeveloper.apple.com%2Flibrary%2Fmac%2Fdocumentation%2FPerformance%2FReference%2FGCD_libdispatch_Ref%2FReference%2Freference.html&sa=D&sntz=1&usg=AFQjCNHjqAKgyPsHlx87fexnn0ElD2B1-A
https://www.google.com/url?q=https%3A%2F%2Fdeveloper.apple.com%2Flibrary%2Fmac%2Fdocumentation%2FPerformance%2FReference%2FGCD_libdispatch_Ref%2FReference%2Freference.html&sa=D&sntz=1&usg=AFQjCNHjqAKgyPsHlx87fexnn0ElD2B1-A
http://www.google.com/url?q=http%3A%2F%2Fse.inf.ethz.ch%2Fcourses%2F2014a_spring%2Fccc%2Freading_materials%2Fbook%2F&sa=D&sntz=1&usg=AFQjCNE5DINZKl_nn8eVMeb7FWj-OJGg6Q
http://www.google.com/url?q=http%3A%2F%2Fcme.ethz.ch%2Fscoop%2F&sa=D&sntz=1&usg=AFQjCNHsoY0-gDypA4TOWP9dPz7aUGCLFg
http://www.google.com/url?q=http%3A%2F%2Fgroove.cs.utwente.nl%2Fwp-content%2Fuploads%2Fusermanual1.pdf&sa=D&sntz=1&usg=AFQjCNGGRDWI--SS7j0rH1-UsbNKIUBzNQ
https://www.google.com/url?q=https%3A%2F%2Fgithub.com%2FJulienMe%2FG2Q2P&sa=D&sntz=1&usg=AFQjCNEf8L11dVNY6XUhELcJN_1pBpcZ_A

