
Modelling and Verifying an
Object-Oriented Concurrency Model

in GROOVE
Master’s Thesis

Claudio Corrodi
ETH Zurich

clcorrod@ethz.ch

October 10, 2014 – April 10, 2015

Supervised by:
Christopher M. Poskitt & Alexander Heußner
Prof. Bertrand Meyer

In memory of Renato.

Abstract
SCOOP is a programming model and language that allows concurrent programming
at a high level of abstraction. Several approaches to verifying SCOOP programs
have been proposed in the past, but none of them operate directly on the source
code without modifications or annotations.
We propose a fully automatic approach to verifying (a subset of) SCOOP

programs by translation to graph-based models. First, we present a graph
transformation based semantics for SCOOP. We present an implementation of
the model in the state-of-the-art model checker GROOVE, which can be used to
simulate programs and verify concurrency and consistency properties, such as the
impossibility of deadlocks occurring or the absence of postcondition violations.
Second, we present a translation tool that operates on SCOOP program code
and generates input for the model. We evaluate our approach by inspecting a
number of programs in the form of case studies.

Declaration of originality

The signed declaration of originality is a component of every semester paper, Bachelor’s thesis,
Master’s thesis and any other degree paper undertaken during the course of studies, including the
respective electronic versions.

Lecturers may also require a declaration of originality for other written papers compiled for their
courses.
__

I hereby confirm that I am the sole author of the written work here enclosed and that I have compiled it
in my own words. Parts excepted are corrections of form and content by the supervisor.

Title of work (in block letters):

Authored by (in block letters):
For papers written by groups the names of all authors are required.

Name(s): First name(s):

With my signature I confirm that
− I have committed none of the forms of plagiarism described in the ‘Citation etiquette’ information

sheet.
− I have documented all methods, data and processes truthfully.
− I have not manipulated any data.
− I have mentioned all persons who were significant facilitators of the work.

I am aware that the work may be screened electronically for plagiarism.

Place, date Signature(s)

For papers written by groups the names of all authors are
required. Their signatures collectively guarantee the entire
content of the written paper.

Modelling and Verifying an Object-Oriented Concurrency Model in GROOVE

Zürich, April 10, 2015

ClaudioCorrodi

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Research Hypothesis and Contributions 2
1.3 Thesis Overview . 2
1.4 Published Work . 3

2 SCOOP: An Object-Oriented Concurrency Model 4
2.1 The SCOOP Model . 4
2.2 A Running Example . 6
2.3 Related Work . 8

3 Graph Transformation Systems & GROOVE 9
3.1 The Algebraic Approach . 9
3.2 GROOVE . 11

3.2.1 Graph Production Systems 11
3.2.2 Type Graphs . 12
3.2.3 Graph Representation . 12
3.2.4 Rule Priorities . 17
3.2.5 Verification by Model Checking 18

3.3 Related Work . 19

4 Towards a Concurrency Model for SCOOP 20
4.1 CoreSCOOP . 20
4.2 CPM . 21

4.2.1 Control Flow . 21
4.2.2 System State . 23
4.2.3 Queries and Other Operations 27
4.2.4 Rule Priorities . 31

4.3 Dining Philosophers . 31
4.3.1 Start Graph . 31
4.3.2 Rule Applications . 34

5 CPM+OO: An Extension for Objects 40
5.1 Type Graph Overview . 40

5.1.1 Processors, Frames, and Objects 40
5.1.2 Variables, Parameters, and Results 42
5.1.3 Actions . 42
5.1.4 Operations . 45
5.1.5 Errors . 45

v

5.1.6 Others . 45
5.2 Modelled SCOOP Features . 48

5.2.1 Local and non-separate Calls 48
5.2.2 Dynamic Object Creation and Variable Names 54
5.2.3 Generic Operators . 55
5.2.4 Lock Passing . 56
5.2.5 Distinguishing Preconditions and Wait Conditions 60

5.3 State-Space Optimisations . 60
5.4 Rules . 64

5.4.1 Control Flow . 64
5.4.2 System State . 69
5.4.3 Queries and Other Operations 71
5.4.4 Optimisations . 72
5.4.5 Errors . 72
5.4.6 Configuration . 74

5.5 Testing . 75
5.6 Future Work . 75

6 Translation 76
6.1 Overview . 76
6.2 Translating Programs . 77
6.3 Supported SCOOP Features . 79
6.4 Output . 80
6.5 Testing . 80
6.6 Future Work . 81

6.6.1 Inheritance . 81
6.6.2 Expanded Types . 82
6.6.3 Miscellaneous . 82

7 Case Studies & Evaluation 83
7.1 Setup . 84
7.2 Case Studies . 84

7.2.1 Dining Philosophers . 85
7.2.2 Dining Savages . 97
7.2.3 Cigarette Smokers Problem 100

7.3 Comparison with CPM . 104
7.4 Scalability and Future Work . 107

8 Conclusion 108
8.1 Contributions . 108
8.2 Future Work . 109

Glossary 110

List of Figures 111

List of Listings 113

List of Tables 114

Bibliography 115

vi

Acknowledgments
I would like to thank Chris Poskitt, Alexander Heußner, and Bertrand Meyer
for supervising this thesis, giving me the opportunity to work on this project,
and providing helpful input in meetings and conference calls. In particular, I
would like to thank Chris Poskitt for providing advice and support in countless
discussions, meetings, and email conversations during the past six months. I
would also like to thank Benjamin Morandi for his input and suggestions.

Claudio Corrodi, April 2015

vii

Author’s Declaration
I declare that the work and results presented in this thesis are my own, except
where otherwise stated. Parts of this thesis have been published in [8], where
I am a contributing author. Details regarding the use of the results of this
publication can be found in Section 1.4.

Claudio Corrodi, April 2015

viii

Chapter 1

Introduction

In this chapter, we start with the motivation of this thesis and describe our
contributions, before we present the research hypothesis and list the goals that
we want to meet in order to consider this thesis a success. An overview of
the thesis structure follows, before we close this chapter with a description of
previously published work present in this thesis.

1.1 Motivation
With the shift to multiprocessor and multicore systems, concurrent and parallel
programming becomes an important part of object-oriented software development.
While object-oriented models and languages allow programming at a high level
of abstraction when writing sequential programs, they often rely on low-level
constructs for concurrency, such as locks, semaphores, and threads. These
constructs are very error prone and difficult to use correctly. Simple Concurrent
Object-Oriented Programming (SCOOP) is a concurrency model and language
that extends Eiffel with concurrency mechanisms. The model hides low-level
constructs in its implementation, and instead provides the user with simple
to use constructs that allows concurrency to be expressed at a high level of
abstraction. In particular, lock management and thread creation is no longer
expressed explicitly.

It is still possible to introduce concurrency bugs with the high-level constructs
from SCOOP, most prominently deadlock. Naturally, these bugs are difficult
to detect, as they may not occur in every program execution. With program
verification approaches, it is possible to prove the correctness of implementations
and make sure that no concurrency related bugs exist for the modelled semantics
and input program.

Currently, there exist several formalisations of SCOOP [24, 14, 1, 16]. They do
not focus on verification but rather resolving language ambiguities. They can not
be used for model checking, due to the state-space explosion problem inherent
to concurrency models. In addition, existing approaches for the verification
of SCOOP programs [3, 23] focus on deadlock prevention and work on either
annotated source code or with manually translated model input.

In this thesis, we propose an alternative approach to verify SCOOP programs.
First, we present a graph-based model that focuses on the concurrency mecha-

1

1 Introduction 2

nisms in SCOOP, leaving out advanced object-oriented features. This leads to a
compact model with a strong formal foundation. Second, we add object-oriented
features from SCOOP to the model, obtaining an expressive formalisation that
allows representing SCOOP programs more directly as model input. The models
are implemented using the state-of-the-art model checker GROOVE. We then
present a translation tool that works directly on SCOOP source code. With this
tool, we are able to translate a subset of SCOOP programs and generate input for
the model checker. By putting these parts together, we provide a fully automatic
tool that allows verification by model checking. We focus on verification of
properties like deadlock or pre- and postcondition violations. By focusing on
the core of SCOOP and abstracting away from internals of the formalisations, we
are able to reduce the state-space sizes. We discuss why our abstractions and
optimisations do not change the expressiveness of the modelled SCOOP subset.

1.2 Research Hypothesis and Contributions
The research hypothesis is as follows.

A subset of valid SCOOP programs can be modelled using a graph
transformation system. These programs can, without modification of
the source code, be automatically translated to input graphs for the
transformation system. Using verification by model checking, it is
possible to verify a number of properties such as absence of deadlock
or absence of precondition violations for a given input program.

To satisfy the hypothesis, we specify the following goals for this project:

• Provide a formalisation of a subset of SCOOP as a graph-based model using
the GROOVE toolkit.

• Create a translation tool that operates on SCOOP source code and generates
input graphs for the model.

• Make informal soundness arguments for the translation and model.

• Provide a simple tool that allows verification of certain properties like
deadlock freedom or absence of precondition failures with a single step by
specifying SCOOP source code and model parameters.

• Evaluate the created translation tool and graph model by inspecting a
number of SCOOP programs that use its concurrency features, as well as a
thorough discussion of the characteristics and performance of the toolchain.

1.3 Thesis Overview
Chapter 2 gives an overview of the SCOOP model and its primary implementation.

Chapter 3 briefly describes the theoretical background of this thesis and gives
a detailed description of GROOVE, the main tool used to implement the graph
models.
Chapter 4 presents a formal model that focuses on the fundamental concur-

rency mechanisms of SCOOP and gives an in-depth description of its implementa-
tion in GROOVE.

1 Introduction 3

Chapter 5 builds on the previous one by extending the model with object-
oriented features and discussing the extended model in detail.

Chapter 6 discusses the design and implementation of a translation tool that
translates SCOOP programs to input graphs for the model described in Chapter 5.
A discussion of future work with respect to Chapters 5 and 6 closes this chapter.

Chapter 7 evaluates our implementations, with a focus on the model described
in Chapter 5. We discuss a number of examples in depth, where we present source
code, generated model input, and obtained results. We look at the performance
of our model in conjunction with GROOVE from several angles.
Chapter 8 concludes this thesis by summarising our contributions and revis-

iting the research hypothesis.
The tools and programs that were written during the course of this project

can be found online at [21].

1.4 Published Work
This thesis contains results published in the following paper, where the author
of this thesis is a contributing author.

[8] Alexander Heußner, Christopher M. Poskitt, Claudio Corrodi, and Ben-
jamin Morandi. “Towards Practical Graph-Based Verification for an Object-
Oriented Concurrency Model”. In: Proc. Graphs as Models (GaM 2015).
Electronic Proceedings in Theoretical Computer Science. To appear. 2015.

This thesis contains results from the paper as follows.

• Chapter 4: The Concurrent Processor Model (CPM) (which was devel-
oped with Poskitt and Heußner) is presented in the paper. The detailed
description of its GROOVE implementation is my own work.

• Chapter 5: A brief overview of CPM with Object Orientation (CPM+OO)
has been given in the paper in Section 5, which I contributed to. In this
thesis, we present the model in more detail. The augmented model in this
chapter is my own work.

• Chapter 7: Programs presented in the paper are reused in this thesis. The
CPM+OO model has undergone several changes since writing the paper, and
the results presented in this thesis are based upon more recent revisions of
the CPM+OO model.

Chapter 2

SCOOP: An
Object-Oriented
Concurrency Model

Simple Concurrent Object-Oriented Programming (SCOOP) [15] is a programming
model that provides concurrent, asynchronous, object-oriented programming.
Its main implementation is an extension to the Eiffel programming language and
is distributed with the EiffelStudio1 software. Several formalisation of the model
exist, with the most recent by Morandi [13], which we consider in this work.
Basic knowledge of the Eiffel programming language, along with concepts

like Design By Contract, is assumed. A general introduction to the language
and its concepts can be found in [12].
In this chapter, we give an overview of the SCOOP model and introduce a

running example for the remainder of this thesis.

2.1 The SCOOP Model
The goal of SCOOP is to enable concurrent programming at a high level of
abstraction, without relying on low-level constructs like locks, semaphores, and
threads. To achieve this, SCOOP adds a new keyword separate to the Eiffel
language, which allows expressing concurrency relations between objects as
follows.
SCOOP introduces the notion of a processor, which is an abstract thread of

execution that is able to execute instructions sequentially. A processor is the
handler of a number of objects, and object references can point to objects that
are handled by the same processor (non-separate references) or objects that
are potentially handled by different processors (separate references). The set of
objects handled by a given processor is called a region.
In the source code, one can annotate types (in particular in feature declara-

tions and formal arguments) as separate, expressing that the reference points
to an object potentially handled by a different processor.

1https://www.eiffel.com/eiffelstudio/, accessed April 10, 2015

4

https://www.eiffel.com/eiffelstudio/

2 SCOOP: An Object-Oriented Concurrency Model 5

With the concept of processors, the semantics of feature calls are different.
If a client executes the call a.f(b1, b2, …), with target a and arguments
b1, b2, …, then the following cases can be distinguished:

• If the target a is handled by the current processor, then the call is applied
immediately.

• If the target a is handled by a different processor, then the client logs the
call with the supplier. The call is then enqueued in the request queue of
the handler of the supplier and processed at some point in the future.

In the second case, depending on whether the call is a command (a call that does
not return a value) or a query, the client waits for the supplier to execute the
request. In the first case, the client can continue execution without waiting. In
the second case, the client needs the result (e.g. as a value in an assignment, or
as a value for parameter passing), and therefore waits until the supplier returns
the value, making the call sequential.

In order to avoid data races, SCOOP only allows calls on separate targets which
are formal arguments of the enclosing routine. When executing a routine, the
SCOOP runtime waits for exclusive access to the request queues of the handlers
of the separate arguments. Once the request queues are locked, the routine
starts executing and, since no other processor has access to the locked request
queues, the requests logged by the routine are guaranteed to be executed in
order and without interleaving requests from other processors. Shared memory,
another source of data races, does not exist in SCOOP, since object data can
only be modified using procedures and not directly accessed from outside (e.g. a
statement like foo.id := 0 is forbidden if id is an attribute).
Contracts, i.e. class invariants and routine pre- and postconditions are an

integral part of Eiffel. Preconditions are Boolean assertions that must hold before
the body is executed. If a precondition does not hold, a runtime error occurs.
In SCOOP, the semantics of preconditions change. While statements involving
non-separate objects behave like before, expressions involving separate objects
can become wait conditions. If a wait condition does not hold, the processor
simply waits until it holds instead of generating a runtime error. For example, a
consumer might have a precondition in its consume routine that states that the
inventory must have an item ready, as seen in Listing 2.1. Since the inventory is
separate and its state can be modified through requests from other processors,
the consumer simply waits until the inventory is not empty anymore. Locks are
acquired before the preconditions and wait conditions are evaluated, but released
if a wait condition does not hold yet, giving other processors the possibility to
enqueue request on the handlers of the targets. Wait conditions are a powerful
and expressive synchronization mechanism. The lack of explicit locking makes
this kind of synchronization particularly easy to use.

1 class CONSUMER
2 feature
3 consume (a_inventory: separate INVENTORY)
4 -- Consume the item held in `a_inventory '.
5 require
6 full_inventory: a_inventory.has_item
7 do
8 consumed_item := a_inventory.item
9 a_inventory.remove

2 SCOOP: An Object-Oriented Concurrency Model 6

10 end
11

12 -- remaining class code omitted
13 end

Listing 2.1: CONSUMER.consume routine implementation.

2.2 A Running Example
Throughout this report, we will use a running example to demonstrate the
contributions of this project, in particular translation to and verification with
our formal models in GROOVE.
The Dining Philosophers Problem is a well known problem that involves

several entities interacting and is well suited for demonstrating concurrency
models. In this problem, a number of philosophers sit at a round table, with a
fork in between each pair of adjacent philosophers. The philosophers each perform
two activities in a loop: thinking and eating. In order to eat, a philosopher needs
to pick up both the left and the right fork before eating, and put them down
afterwards. The goal is to devise an algorithm that abides these rules and does
not get stuck in a deadlock.

Listing 2.2 shows the PHILOSOPHER class of a SCOOP implementation (which
we adapted from an implementation in the EVE [22] source code repository) of
the problem. During his time at the table (feature live), a philosopher eats
times_to_eat times. Notice how there is no code handling picking up and
putting down the forks. Instead, this is done implicitly: the eat routine takes
two objects of type separate FORK as arguments. Once a philosopher is inside
the (empty) eat body, he has exclusive access to the processors handling the
left and right forks, simulating picking up both forks and thus not allowing other
philosophers getting access to the forks. Since both forks are arguments in the
same routine, their respective processors are locked atomically, which guarantees
that no deadlock can occur.
While SCOOP allows concurrent programming at a high level of abstraction,

it can still be difficult to spot problems related to concurrency. For example,
an unexperienced SCOOP programmer may have implemented the eat method
as shown in Listing 2.3. In this implementation, a philosopher first picks up
the left fork, and then the right one. An execution may take place where each
philosopher picks up its left fork and waits for the right one to become available,
which never happens; the program is stuck and a deadlock has occurred.

1 class
2 PHILOSOPHER
3

4 create
5 make
6

7 feature
8

9 make (philosopher: INTEGER; left, right: separate FORK;
round_count: INTEGER)

10 -- Initialise with ID of `philosopher ', forks `left' and `
right', and for `round_count ' times to eat.

11 do
12 -- (initialization left out)

2 SCOOP: An Object-Oriented Concurrency Model 7

13 end
14

15 id: INTEGER
16 -- Philosopher 's id.
17

18 times_to_eat: INTEGER
19 -- How many times does it remain for the philosopher to eat?
20

21 eat (left, right: separate FORK)
22 -- Eat, having acquired `left' and `right' forks.
23 do
24 -- Eating takes place.
25 end
26

27 live
28 do
29 from
30 until
31 times_to_eat < 1
32 loop
33 -- Philosopher `Current.id' waiting for forks.
34 eat (left_fork , right_fork)
35 -- Philosopher `Current.id' has eaten.
36 times_to_eat := times_to_eat - 1
37 end
38 end
39

40 left_fork: separate FORK
41 -- Left fork used for eating.
42

43 right_fork: separate FORK
44 -- Right fork used for eating.
45

46 invariant
47 valid_id: id >= 1
48

49 end

Listing 2.2: Implementation of a philosopher in SCOOP.

1 bad_eat
2 -- Eat, by first picking up `left_fork ' (and picking up `

right_fork '
3 -- in the subsequent `pickup_right ' call).
4 do
5 pickup_left (left_fork)
6 end
7

8 pickup_left (left: separate FORK)
9 -- After having picked up `left', proceed to pick up `

right_fork '.
10 do
11 pickup_right (right_fork)
12 end
13

14 pickup_right (right: separate FORK)
15 -- Both forks have been acquired at this point.
16 do
17 -- eating takes place
18 end

Listing 2.3: Implementation of the eat feature that can result in a deadlock.

2 SCOOP: An Object-Oriented Concurrency Model 8

2.3 Related Work
A first description of SCOOP appeared in 1993 [11] and an updated description
was published in 1997 [10]. A prototype of SCOOP has been implemented between
2005 and 2008 at ETH Zürich, and an implementation maintained by Eiffel
Software2 is currently distributed with the EiffelStudio IDE.

Since its introduction, several formalisations of SCOOP have been proposed [2,
14, 16, 24, 15]. We consider the work done by Morandi et al. [14, 13] in this
thesis.

2https://www.eiffel.com/, accessed April 10, 2015

https://www.eiffel.com/

Chapter 3

Graph Transformation
Systems & GROOVE

In the course of this project, we have been working with the GRaphs for Object-
Oriented VErification (GROOVE) [19] toolkit, which is a set of tools based on a
strong formal foundation in Graph Transformation Systems (GTS) that can be
used for modelling, simulation, and verification. In this section, we give a short
informal introduction to the GTS theory GROOVE is based on and then discuss
the GROOVE toolkit in detail. We showcase its features by providing a GTS for
our running example, the dining philosophers problem.
A graph transformation is, informally speaking, the process of altering an

input graph to get an output graph by using rules that describe the manipulation.
There are a number of different approaches to graph transformation, which
provide a wide range of semantics of rule applications. From an operational
standpoint, the approaches differ in how rules are defined and in the situations
in which they can be matched and applied. One such approach is the algebraic
approach, discussed in [5], which is used by the GROOVE toolkit.

3.1 The Algebraic Approach
In the algebraic approach to graph transformation systems, pushout constructions
(from category theory) are at the core and are used to allow gluing graphs together.
The two main approaches, Double-Pushout (DPO) and Single-Pushout (SPO),
allow for a compact and abstract representation of graph transformations. What
follows is an informal overview of these approaches.

The DPO Approach In the DPO approach, a graph transformation is described
as a rule consisting of three graphs, 𝐿, 𝐾, and 𝑅. The graph 𝐾 describes the
interface of the rule, i.e. the parts of the graph to be matched and preserved.
The left-hand side 𝐿\𝐾 of the rule describes the part that is to be deleted, and
the right-hand side 𝑅\𝐾 the part that is to be created. An application of the
rule described by 𝐿, 𝐾, and 𝑅 on the graph 𝐺, shown by example in Figure 3.1,
is performed by applying the following steps.

1. Find a morphism from 𝐿 to 𝐺, that is, find a structure-preserving mapping

9

3 Graph Transformation Systems & GROOVE 10

𝐿 1 2

3 4

𝐾 1 2 𝑅 1 2

5

𝐺 1 2

3 4

6
𝐷 1 2

6
𝐻 1 2

6

5

Figure 3.1: Rule application in the DPO approach.

from nodes and edges in 𝐿 to nodes and edges in 𝐺. In Figure 3.1, this
mapping is expressed by node identifiers, where nodes in 𝐿 are mapped to
nodes in 𝐺 with the same identifier.

2. Construct a graph 𝐷 from 𝐺 by removing the matched edges and nodes
in 𝐿\𝐾 from 𝐺. The combination of 𝐿 and 𝐷 at the interface nodes and
edges from 𝐾 (in our example nodes 1 and 2) is called glueing and results
in 𝐺.

3. With a similar combination of 𝐷 and 𝑅 using the interface 𝐾, the output
graph 𝐻 is obtained.

The SPO Approach In the SPO approach, specifying 𝐾 is omitted. Instead, a
rule consists only of the left-hand side 𝐿 and the right-hand side 𝑅. An example
application in the SPO approach is shown in Figure 3.2. The following steps are
necessary to apply a rule in the SPO approach.

1. Obtain the common interface 𝐾 = 𝐿 ∩ 𝑅.

2. Find a morphism from 𝐿 to 𝐺, as in the DPO approach.

3. Delete 𝐿\𝐾 from 𝐺, and join 𝑅\𝐾, using the common interface as glueing
nodes and edges. If there are dangling edges (i.e. edges that have a source
or a target, but not both) remaining, delete them as well.

They key difference between SPO and DPO is that in the SPO approach,
dangling edges are allowed in the final graph, which is not possible in the DPO
approach. Figure 3.2 shows a situation where a dangling edge (the edge between
nodes 3 and 4 in 𝐺) remains after deleting 𝐿\𝐾, which is then deleted as well.

GROOVE allows configuring whether applications which delete dangling edges
are allowed. If so, dangling edges simply get deleted after the application to make
sure the resulting construct is a valid graph. Otherwise, when only cases without
dangling edges are allowed, SPO and DPO are equivalent form an operational
point of view. In our models, we never allow applications with dangling edges,
which requires us to specify all edges incident to a deleted node on the left-hand
side of a rule, ensuring that no edges get deleted “by accident”.

3 Graph Transformation Systems & GROOVE 11

𝐿 1 2

3

𝑅 1 2

4

𝐺 1 2

3 5

𝐻 1 2

4 5

𝑝

𝑠

Figure 3.2: Rule application in the SPO approach. Orange nodes denote the
common interface 𝐾, blue edges and nodes the parts of 𝐿 that are to be deleted,
and green edges and nodes of 𝑅 the ones that are to be added. Note that the
edge between nodes 3 and 5 in 𝐺 is a dangling edge after the deletion of 𝐿\𝐾 in
𝐺, and is therefore deleted as well.

3.2 GROOVE
The GROOVE toolkit is written in Java and consists of a number of components.

The Simulator is a GUI tool that provides features to create and edit Graph
Production Systems (GPS). It is particularly useful for designing a system as it
provides immediate feedback on how the system behaves. One can apply rules to
start graphs and explore a Labelled Transition System (LTS) either by manually
choosing rules to apply one after another, or by automatically exploring the
state-space for a certain amount of applications.

With a finished GPS, using the Simulator to model check various start graphs
can become cumbersome and automating the task becomes difficult. For this
scenario, theGenerator was created, which is a command-line tool that explores
the state-space of a given GPS. Like the Simulator, the Generator can use different
strategies for exploration, such as breadth-first-search or depth-first-search. The
Generator also allows specifying Linear Temporal Logic (LTL) and Computational
Tree Logic (CTL) formulae (a thorough discussion of LTL and CTL can be found in
[9]) and searching for counterexamples. The Generator provides various metrics
such as the size of the LTS, feedback about LTL and CTL formulae, and profiling
information.
Other components that can be used as standalone applications are included

in the above two tools. The Model Checker can be used to verify LTL and
CTL properties for labelled transition systems created by the Generator, but is
included in the Generator as well. The Viewer is a simple GUI tool that can
render graphs from a GPS and is used as part of the Simulator.

3.2.1 Graph Production Systems
GROOVE stores its Graph Production System in .gps folders. Such a folder
consists of the following components (stored as individual files).

• Production rules are stored as .gpr files and encode graph transformations

3 Graph Transformation Systems & GROOVE 12

in the sense of the SPO approach. They are rendered as a single graph
using colour codes to distinguish left-hand side, interface, and right-hand
side, as well as other properties of the rule.

• Type graphs are stored as .gpy files. If active, GROOVE only allows using
rules and start graphs that conform to them. Multiple type graphs can be
active at a time.

• Start graphs are stored as .gst files and represent stating points for the
exploration.

• The system.properties file contains a number of configuration entries,
most notably whether dangling edges should be allowed, the name of the
active start graph, the active type graphs, and the exploration strategy to
be used.
An important system property is whether rules can be matched injectively
or not. If so, distinct nodes that are matched from a source must have a
distinct node in the target graph. Otherwise, multiple nodes in the rule
can be mapped to the same node in the target graph. The configuration
of this property can be overridden for individual rules.

The individual files conform to the Graph eXchange Language (GXL) file
format, which is an XML format that specifies graph information. It is used in
GROOVE to store individual graphs and associated properties in the files mentioned
above. Using an XML representation of GPSS makes pre- and postprocessing of
GROOVE input and output respectively very accessible and easy to handle.
To illustrate how the various components of a GPS work together, we model

the dining philosophers problem as a simple GPS in GROOVE. Note that the
representation in this section is unrelated to SCOOP or the formal models we
introduce in Chapters 4 and 5, and instead is a standalone model of the problem.

3.2.2 Type Graphs
Type graphs determine the form of other graphs in the system, in particular the
form of rules and start graphs. While the feature is optional, it is rather useful
when working on a system, as graphs that do not conform to the specified type
graph are highlighted in the Simulator, which helps to detect typos and other
errors.

Figure 3.3 shows the type graph for a GROOVE solution to the dining philoso-
phers problem. It specifies that a philosopher can be hungry (using an optional
node flag) and has a hunger integer value attached. The only edges in this system
are edges from philosophers to forks. Not only has a philosopher edges to its left
and right forks, but it can also have a lock on them, expressed by the lock edge,
indicating that a philosopher has picked up the forks.

3.2.3 Graph Representation
The GROOVE Simulator augments graph representations from a simple directed
graph with edge labels to a more compact, readable format. As mentioned earlier,
rules are represented as one single graph with nodes and edges of different kinds

3 Graph Transformation Systems & GROOVE 13

Philosopher
hungry

hunger: int
Fork

left
lock
right

Figure 3.3: Type graph of the dining philosophers GTS.

of nodes and edges (in particular, readers, erasers, creators, embargoes, and
conditional creators).

Figure 3.4 shows the start graph for a configuration of the dining philosophers
problem with four philosophers. On the left-hand side, the start graph is shown
as a directed graph with labelled edges. In the middle, the condensed form
that GROOVE uses is shown, where self-edges are collapsed into the nodes, and
on the right-hand side the graph is rendered in GROOVE with internal node
identifiers (note that they are not a part of the model). We use the GROOVE
representations of graphs throughout this report, as the resulting graphs are
intuitive and contain the same information as before. We occasionally enable
node identifiers in order to be able to refer to individual nodes easily.
In this model of the dining philosophers problem, each node that has a

self-edge labelled type:Philosopher—we say “a node of type Philosopher” in
this case—has two outgoing edges to nodes of type Fork, one of them labelled
left and the other one labelled right. In addition, philosophers contain an
integer value denoting the amount of times a philosopher wants to eat, encoded
by the self-edges labelled let:hunger=2. The goal is to find rules that model the
behaviour of the philosophers, namely grabbing the forks, eating, and putting
them back down.

left

right

left

left

right

right

right

left

type:Philosopher
let:hunger=2

type:Philosopher
let:hunger=2

type:Philosopher
let:hunger=2

type:Fork

type:Fork

type:Fork

type:Fork

(a) Dining Philosophers start graph as a di-
rected graph with edge labels.

Philosopher
hunger = 2

Fork

Fork

Philosopher
hunger = 2

Philosopher
hunger = 2

Fork

Philosopher
hunger = 2

Fork

left

right

left

left

right

right

right

left

(b) The same start graph, as rendered by
GROOVE.

n0
Philosopher
hunger = 2

n1
Fork

n2
Fork

n4
Philosopher
hunger = 2

n7
Philosopher
hunger = 2

n6
Fork

n10
Philosopher
hunger = 2

n8
Fork

right

left

left

right

left

left

right

right

(c) Start graph rendered in GROOVE with node
identifiers.

Figure 3.4: Comparison of a start graph as a directed graph with edge labels (left) and as rendered in GROOVE (middle and right). In GROOVE, self-edges are collapsed
and displayed inside the node. In addition, certain values are rendered differently, e.g. type: prefixes are omitted but the following value is printed in bold.

3 Graph Transformation Systems & GROOVE 15

Fork ForkPhilosopher
!+ hungry

Philosopher Philosopher

int 0true

lock

u�0

lock

lock

gt

left right

hunger

lock

u�1

Figure 3.5: Picking up forks. A philosopher with positive hunger locks both forks
if none of them is locked by another philosopher. The hungry flag is created to
indicate that the philosopher has not eaten yet during this round.

Figures 3.5, 3.7, and 3.6 show the rules for picking up the forks, eating, and
putting down the forks. These rules showcase various kinds of node and edge
types, in particular the following.

Reader Edges and nodes that are displayed in black are the ones that are
present in both sides of the rule. These are matched and preserved when
applying the rule.

Creator Creator edges and nodes are only present in the right-hand side of the
rule, which means that they are not required for the rule to match but will
be created upon application.

Embargo These edges and nodes express a negative application condition. The
rule only matches, if there is no match for these edges and nodes in the
source graph. For example, in the pick up rule (Figure 3.5) , we express
with embargo nodes and edges that a philosopher should only lock both
forks if they are not already locked.

Eraser Finally, eraser edges and nodes (dashed blue) are elements that are
only present on the left-hand side of the rule, which means that they are
required for matching but will be deleted when the rule is applied.

Operations Arithmetic operations can be performed using product nodes
(rhombus shaped nodes), which take a number of arguments (via 𝜋 edges)
and point to a result node (operation edge, such as gt for greater than).
Figure 3.5 shows how the greater than operation can be used to enforce
that the rule only matches if the hunger value is greater than zero.

More complex statements can be made with the help of quantifiers. Suppose
the philosophers want to leave the table after having eaten the number of times
that they wanted to. Since philosophers are polite, they do not leave until
everyone at the table has finished. Figure 3.8 shows a rule that achieves this.

3 Graph Transformation Systems & GROOVE 16

Fork ForkPhilosopher
− hungry

int 1

int

lock lock

hunger

u�0 u�1
sub

hunger

left

right

Figure 3.6: A philosopher eats if he is hungry. In the process, the hungry flag
(self-edge with label flag:hungry) is removed, and a product node is used to
decrease the hunger value by one.

Fork ForkPhilosopher
! hungryleft right

lock

lock

Figure 3.7: A philosopher puts down his forks if he has them in his hands (lock
edges) and is not hungry (embargo on the hungry flag).

3 Graph Transformation Systems & GROOVE 17

Fork

Philosopher

Fork

∀>0

∃
Philosopher
hunger = 0

left right @@

in

@

=

@

lock lock

Figure 3.8: The rule for leaving the table matches, if all philosophers (expressed
by the forks and the philosopher reader node) are in a state where the hunger
is zero and they do not have locks on forks, in which case the Philosopher gets
deleted.

We first match all Philosopher nodes that have a left and a right fork attached
with the ∀>0 quantifier (which denotes that in order for the rule to apply, the
subgraph “at” this quantifier (attached via @ edges) has to match at least once,
as opposed to the ∀ quantifier where the rule can match zero occurrences of the
subgraph). Then we require that there must exists a Philosopher node (dashed
blue, attached to the ∃ node via @ edge which in turn is nested inside the ∀>0

quantifier), which is in fact the same as the reader Philosopher node (expressed
with the = edge) and where its hunger value is equal to zero.

Since one of the Philosopher nodes is an eraser node, the matching philoso-
phers get deleted upon rule application, modelling the collective leaving of the
table.

3.2.4 Rule Priorities
In a graph state where more than one rule is applicable, it may be desirable to
force a certain order when exploring the state-space. GROOVE allows controlling
the order of rule applications. Using simple rule priorities—integer values
associated with a rule—a system applies rules with higher priorities before rules
with lower priorities. For example, if our philosophers do not like to eat alone,
we could assign the rule pick_up a higher priority than the rule eat, which means
that as long as there are philosophers which are able to pick up their forks, they
do so, and once no additional philosopher can pick up its forks anymore are the
ones currently having the forks allowed to eat.
GROOVE also provides more advanced mechanisms for controlling rule appli-

cations. In particular, control programs allow specifying complex expressions
with conditionals, loops, choices, and other control flow mechanisms. Since we
do not use control programs in this work, we do not discuss them here. Instead,
we refer the interested reader to [20].

3 Graph Transformation Systems & GROOVE 18

s199 : closed
main.0

s200 : closed
main.0

s201 : closed
main.0

s202 : closed
main.0

s203 : closed
main.0

s204 : closed
main.0

s205 : closed
main.0

s206 : closed
main.0

s207 : closed
main.0

s208 : closed
main.0

s209 : closed
main.0

s210 : result
main.0

pick_up put_down
put_down

eat [2×]

put_down

put_down

eat put_down pick_up

put_down [2×] eat

put_down

leave

Figure 3.9: Excerpt from LTS of the dining philosophers model. After the last
philosopher has put down his forks (transition from 𝑠208 to 𝑠209), all philosophers
leave and the simulation has reached a final state (𝑠210) where no more rule
applications are possible.

3.2.5 Verification by Model Checking
Now that we have modelled the dining philosophers problem, we can generate the
state-space and inspect it. GROOVE has many options for state-space exploration,
for example it can do breadth-first search, depth-first search, random linear
exploration, and other exploration types. A state is called final, if no modifying
rule (a rule with erasers or creators) is applicable anymore. If we want to show
that the dining philosophers example always results in the philosophers leaving
the table (i.e. applying the leave rule before being in a final state), we could do
this by generating the full state-space and inspecting paths and rule applications
in the LTS, which is a graph where nodes represent states and edge labels denote
which rule leads to the outgoing state. An excerpt of an LTS generated with our
example can be seen in Figure 3.9.
Obviously, inspecting an LTS by hand is not feasible for larger state-spaces.

Fortunately, we can specify LTL and CTL formulae in GROOVE. In our example, we
could verify that all executions end up with the leave rule being evaluated with

3 Graph Transformation Systems & GROOVE 19

the LTL formula F leave, expressing that, starting from the initial configuration,
eventually the rule leave is applied. Since one can use arbitrary rules in LTL
and CTL formulae, we can create rules capturing certain properties, such as a
generic deadlock, of a system state and include them in the formulae.

3.3 Related Work
Our focus on GTS is limited to the theory relevant to GROOVE. An introduction
to the algebraic approach, in particular to the DPO approach, can be found in
[17], and a thorough discussion of the algebraic approach in [5].
While we focus on the GROOVE features relevant to this thesis here, the

GROOVE User Manual [20] provides a more detailed description of GROOVE
features. A set of best practices when working with GROOVE is presented in [25].

Several papers [19, 18] discussing GROOVE have been published, and GROOVE
is compared to other simulation and model checking tools in [6].

Chapter 4

Towards a Concurrency
Model for SCOOP

As we have seen in Chapter 2, SCOOP is a rich programming model that pro-
vides a framework for concurrent programming and is equipped with advanced
object-oriented features. While this is great from a user perspective, it also
makes modelling of the complete language a difficult task. To conquer this
difficulty, we first isolate concurrency related features from SCOOP to obtain a
subset of the model called CoreSCOOP. This subset of SCOOP is formalised by
the Concurrent Processor Model (CPM) [8], a GTS based formal model. Thanks
to the modular and extensible nature of the model, more features from SCOOP
are added and eventually become CPM+OO as presented in Chapter 5. In this
chapter, an overview of CoreSCOOP and a detailed description of CPM and its
primary implementation in GROOVE is given. In the next Chapter, we then
present CPM+OO, which adds object-oriented features from SCOOP to CPM.

4.1 CoreSCOOP
We define a small subset of SCOOP called CoreSCOOP. In this subset, only basic
object-oriented features exist. There are only three kinds of data: integers,
Booleans, and references to processors. A processor can execute a simple method
with statements that modify local data—such as assigning a sum of two local
integers to another local variable—as well as asynchronous commands and
synchronous queries, where the target must be a different processor. A method
can not call other methods on the same processor as there are no local calls.
Simple method calls can be simulated by inlining the called method, but this
does obviously not work for recursive calls.
The main part of CoreSCOOP—handling queries and commands—remains as

in SCOOP. To enqueue a feature request in some processors request queue, one has
to first obtain a lock to the queue of the target processor. While SCOOP handles
locking implicitly by requiring separate targets to be controlled, CoreSCOOP
handles locking explicitly, and locking can occur at any place in a method.

CPM is a formal model for CoreSCOOP and follows the specification in [13]. In
the next section, we present this formalisation and its primary implementation
as a GTS in GROOVE.

20

4 Towards a Concurrency Model for SCOOP 21

State
final
init

postcondition_fail
method: string

Action_Anchor

Action
assign_ref
ref: string
value: string

Action
new

name: string
ref: string

Action
…

out

in

check_postcondition

Figure 4.1: Control flow type graph.

4.2 CPM
CPM is a GTS modelling the behaviour of CoreSCOOP. It allows simulating
configurations with a number of processors, each one performing computations
on integer, Boolean, and reference values. We discuss the system, in particular
the production rules involved, in detail in the following sections, by separating
concerns in the following groups: control flow, system state, and queries and
operations. We then discuss how the rules are prioritized to achieve the desired
behaviour.

4.2.1 Control Flow
In a CPM start graph, methods are stored as control flow subgraphs. Figure 4.1
shows the relevant subset of the type graph of CPM. Methods start with an initial
state (nodes of type State with the init flag), which is labelled with the method
name. From state nodes, outgoing edges (labelled in) lead to action nodes, which
in turn have an edge (labelled out) leading to state nodes. A final state node
does not have an outgoing edge and denotes the end of the method. Action
nodes contain information about the type of action (e.g. assignment, processor
creation, locking) and additional data relevant to the action (e.g. a query target
or command parameters).
There are a number of relevant rules, namely the following.

action_… The CPM GTS contains a number of action nodes. These nodes
represent atomic units of work such as assignments, locking, commands,
and so on, and can be compared to statements in a SCOOP program
(although there are explicit locking actions that do not have a counterpart
in SCOOP, where locking is done implicitly). Actions have the lowest
priority, thus are applied when other rules, in particular scheduling rules
for queues, can not be applied anymore. The following actions exists in
CPM:

• action_Assign_… group: These rules perform an assignment operation.
The assignment operation has been split in a number of sub-rules
in order to keep individual rules simple, as there are a number of
different scenarios for assignments: assignments of references and
primitive data, void assignments, assignments to fresh variables and
used variables, assignments to the special Result (return) value.

4 Towards a Concurrency Model for SCOOP 22

• action_Command: This action performs a command, and is shown in
Figure 4.2. Since commands are always asynchronous (and therefore
executed on a different processor), a Queue_Item is created and
put on the processor that handles the target node. This enables
queue management rules to be applied, which then eventually re-
sult in the target processor executing this particular request. Since
the action_Command rule advances the in_method edge, the calling
processor can continue execution (once action rules are enabled again).

• action_Lock_1 and action_Lock_2: These actions acquire locks for
one or two processors respectively, cf. Figure 4.3 for an illustration of
the latter. Embargo nodes prevent the rules from being applied if a
processor is already locked by another one.

• action_Unlock: The counterpart to the lock actions consists of a single
rule, as unlocking multiple locks does not have to happen atomically.

• action_Unlock_Creator: When creating new processors, the created
processor is locked by the creating processor. By convention, the next
action of the creator is a lock action of the created processor. As a
result, the creating processor has to wait until the creation procedure,
which contains a Unlock_Creator action at the end, removes this lock.
This mechanism simulates the behaviour of SCOOP, where creation
procedures—even for separate objects—are executed sequentially.

• action_New_Attached and action_New_Void: These rules create a
new processor and point the designated reference variable to the newly
created processor. Again, this task has been split into two separate
rules for readability reasons and to avoid excessive usage of quantifier
nodes.

• action_Query: As opposed to the command action, the query rule only
binds the result of the executed query to the target (by assigning the
result to the Data_Var matching the store_to edge, see Figure 4.4).
The Queue_Items are instead created by other rules (e.g. bexp_Query
(Figure 4.6) for Boolean queries, which are discussed in the system
state section).

• action_Test: This rule performs a Boolean test by advancing only
if the evaluated expression is true. The preceding state node has in
certain situations two in edges, each pointing to a test action node,
where one action node points to a Boolean expression, and the other
one to its negation, as illustrated in Figure 4.5. This implements an
if-else branching mechanism, and guarantees that the processor can
make progress.

• action_TestPostcondition: In case there is a configuration node that
denotes that we want to check postconditions, this rule is applied
when a processor is in a state preceding an action node with the
test_postcondition flag. The rule matches if the test result evaluates
to true, and puts the processor in a final state.

config_CheckPostcondition In case there is a Configuration node with the
check_postconditions flag, postconditions will be checked. To do so, this
rule follows a final state along the check_postcondition edge to another

4 Towards a Concurrency Model for SCOOP 23

Processor

State

Action
command

State
init

Ref_Var

string

Processor

Queue_Item

string

string

ERROR

State

Param_Ref

Param_Data

∀

∀

Data

Param_Data

Param_Ref
instance

processor

lock

@

param

in

@

out

ref

points_to

handler

method

method

instance

ref

param

processor

method

param

@in_method

param

in_method

name

insert_into

@ method

Figure 4.2: action_Command rule.

state node by redirecting the in_method edge of the relevant processor.
Postconditions are the only situation where a state is followed directly
by another state. The rule does not match if the configuration node is
not present, providing an intuitive way to enable or disable postcondition
checking.

4.2.2 System State
The system state is concerned with processors, queue management, and handling
of data. The relevant type graph is shown in Figure 4.7.

Processors are at the core of CPM states. During their lifetime, they are either
handling requests or they are idle. In the first case, they are executing a method
at a certain position, denoted by the in_method edge. When requests are made
by other processors, a Queue_Item is created which has a insert_into edge to the
target processor, as can be seen in the rules action_Command (Figure 4.2) and
bexp_Query (Figure 4.6). Once a queue item is created, a number of rules come
into action that are responsible for queue management, namely the following:

queue_Insert_EmptyBusy and queue_Insert_NotEmpty These rules can be
applied when a queue request has been made (with an insert_into edge),
and their effect is to simply put the item at the end of the queue.

queue_Remove_ParamRef and queue_Remove_ParamData Nodes repre-
senting parameters are attached to the queue item upon creating it. These
two rules prepare the call by removing the connection between queue item

4 Towards a Concurrency Model for SCOOP 24

State

State

Action
lock

Processor

string

Processor

string

Processor

Ref_Var

Ref_Var

Processor ProcessorProcessor

ERROR

Data

out

lock_1

ref

lock lock

points_to

lock

ref

name
in_method

name

lock

in_method

in

handler

points_to

lock

lock

lock_2

Figure 4.3: action_Lock_2 rule.

Processor

State Action
query

ERROR

State boolResult

Data

Data_Var

string

boolvar

store_to

in

value

res

out

processorin_method name value

handler

result

in_method

Figure 4.4: action_Query rule.

4 Towards a Concurrency Model for SCOOP 25

State
init

method = ”PHILOSOPHER.live”

Action
test

State

Action
test

State

BoolOp
less_than

Op
retrieve_data
var = ”v_2”

Op
constant
value = 1

BoolOp
not

a_2

bexp

out

a_1

bexp

in

out

a_1

in

Figure 4.5: Excerpt from a start graph illustrating usage of two action nodes to
provide an if-else construct.

Processor

State

State
init

Ref_Var

string

Processor

Queue_Item

string

string

ERROR

Param_Ref
∀ Param_Data

∀

Action
query

Data

Result

Result

Param_Ref

Param_Data

get_result

param

processor

@

name

method

in_method

method

instance

result

@

ref

lock

pr
oc
es
so
r

handler

points_to

result

insert_into

@

@

method

instance

processor

param

param

in

ref

processor

method

param

Figure 4.6: bexp_Query rule.

4 Towards a Concurrency Model for SCOOP 26

Queue_Item
method: string

State_AnchorProcessor
name: string

Result
bool: bool
int: int
res: bool
res: int

Param_Ref
void

get: string
param: string

Processor

Data_Var
name: string
value: int
value: bool

Param_Data
get: string
param: string
value: int

Param_Ref
void

Data

Ref_Var Ref_Var
void

Ref_Var_Anchor
name: string

Processor

points_to

lock

instance

processor

var

in_method

get_result

next

handler

param

insert_into

instance

points_to
processor

param

get_result
processor

return

ref

next

param

param

Figure 4.7: Type graph of the system state. Note that self edges are rendered
by an arrow that leads from a label to a node (an example is the instance edge
of the Param_Ref node). We render self-edges in this manner throughout this
thesis.

4 Towards a Concurrency Model for SCOOP 27

Processor

State

Queue_Item

State
init

string

Queue_Item

Result

ERROR

get_result

in_method

next

in_
m
ethod

next

method

next

method

Figure 4.8: queue_Remove_Command_MultipleQueued rule.

and parameter node, and attaching the parameter to the processor’s data
node. The next rules will handle the remaining part of the queue item.

queue_Remove_… The remaining four rules in the queue_Remove group re-
move a query or a command request from the top of the queue and activate
the processor to start execution at the given method. There are two rules
for the case with one item on the queue and two rules for the case with
more items on the queue.
Figure 4.8 shows the rule queue_Remove_Command_MultipleQueued,
which handles the case of multiple queue items and the top item being a
command request.

4.2.3 Queries and Other Operations
While there exist a query flag for action nodes, the rule that advances over an
action node only does so after the query has been evaluated and is essentially
an assignment operation where the right-hand side happens to be a query.
Similarly, other assignment operations also contain right-hand sides that need
to be evaluated before the assignment can be performed. For example, in the
assignment r_1 := r_2, the reference on the right-hand side must first be fetched.
The group of rules in this subsection handle this, and they have higher priorities
than the action rules in order to make sure that whenever an action requires
arguments, they are fetched first. The type graph for operations, shown in
Figure 4.9, contains the operation types. Since the operation types are encoded
using flags, it would be possible to have, for example, an Op node with both the
constant and the add flag, as it is not possible to force having exactly one flag.
By convention, we do not support multiple flags for such a node. We set up the
type graph to reflect how the various node types are intended to be used.

4 Towards a Concurrency Model for SCOOP 28

Op_Anchor

Op
constant
value: int

Op
add
divide
multiply
subtract

Op
retrieve_param
param: string

Op
retrieve_data
var: stringState

final

BoolOp_Anchor

BoolOp
less_than

BoolOp
greater_than

Op
query

method: string
ref: string

BoolOp
constant
value: bool

BoolOp
not

Param_Data

Result

Param_Ref
void

BoolOp
is_equal

BoolOp
retrieve_data
var: string

Result

get_result

a_1

param

result

a_1
a_2

param

result

a_1
a_2a_1

a_2
a_1
a_2

Figure 4.9: Type graph of operations and queries.

4 Towards a Concurrency Model for SCOOP 29

Queries do not appear as action nodes themselves. Instead, they are attached
to an assignment action. Similarly, integer and Boolean operations are not
targets either, as they appear in either complex expressions or on the right-hand
side of an assignment. The relevant rules are the following:

aexp_… Arithmetic expression rules evaluate integer expressions, by creating a
Result nodes and attaching them to Op nodes. The following rules exists
for arithmetic expressions:

• aexp_constant: Creates a result with the value specified by the opera-
tion itself.

• aexp_RetrieveParam: Fetches a parameter from the data handled by
the current processor.

• aexp_RetrieveData: Retrieves an integer data value from the current
processor.

• aexp_Multiply, aexp_Divide, aexp_Add, aexp_Subtract: Evaluates the
binary operation and creates a result node.

bexp_… Analogously to the arithmetic expression rules, Boolean expression
rules evaluate Boolean expressions. The following rules exist in CPM:

• bexp_constant, bexp_RetrieveData: Analogous to the arithmetic ex-
pression variants.

• bexp_GreaterThan, bexp_LessThan, bexp_IsEqual, bexp_not: Evalu-
ates the binary operation and creates a result node with a Boolean
result.

bexp_Query The rule for Boolean queries creates a Queue_Item which will be
inserted into the queue of the target processor, as illustrated in Figure 4.6.
It is similar to the action_Command rule. The target processor will execute
the request and once the result is available, it can be matched by the
action_Query rule.

getparam_Ref_… This group consists of rules for fetching method parameters
for command actions. They perform the step of looking up the value
of a reference or data variable and create a Param_Data instance, as
illustrated in Figure 4.10 for the integer case.

Queries and operations often require intermediate nodes. For example, we
attach a Result nodes to an Op after evaluating it. Once the processor has used
this result and moved past the state where it was required, we can safely remove
it in order to keep the graph clutter-free. The following rules clean the graph in
various situations.

cleanup_RemoveParamRef_Attached

cleanup_RemoveParamRef_Void

cleanup_DiscardParamData Once the processor is in a final state of a method,
parameters are not required any more and are removed by these rules.
In fact, we must remove them as otherwise the system may misbehave
in subsequent method calls (e.g. if the next call has the same parameter
names, two nodes of the same parameter exist and rules that match it have
two possible applications).

4 Towards a Concurrency Model for SCOOP 30

Processor

State

Action
command

Data_Var

ERROR

Param_Data

string

int

Param_Data

string

Data

in

processor

get

param

var

param

value

valuein_method

instance

handler

(aexp|bexp|a_1|a_2)*.param

name

Figure 4.10: getparam_Data rule.

4 Towards a Concurrency Model for SCOOP 31

cleanup_exp_DiscardResults_Op

cleanup_exp_DiscardResults_BoolOp Once a processor moves past an action
that has an Op or a BoolOp node attached, the corresponding result nodes
are not required any more and are removed by these rules.

cleanup_FinalState_BoolQuery and cleanup_FinalState These rules are ap-
plied when a processor reaches the final state of a query or command
respectively. The in_method edge is deleted, as well as associated edges
and nodes related to the result value.

4.2.4 Rule Priorities
As mentioned earlier, the rules in CPM are not applied with the same priorities.
This has various reasons. First of all, it enables control on what rules are applied
in which situations. For example, cleanup rules have priorities such that they are
performed before new actions are performed, ensuring that no “leftover” nodes
stay in the graph (e.g. parameter instances from earlier commands and queries).
If the cleanup rules do not have higher priorities, the graph may end up in a
state where an action rule has multiple matches, in particular matches with old
and invalid instance nodes.
Another advantage of rule priorities is that they can be used to attack the

state-space explosion problem. By assigning fine grained priorities to the rules
that do not influence the modelled behaviour, we reduce the possible interleavings
in an execution. For example, it does not matter in which order cleanup rules
are applied, as once all matching cleanup rules are applied, the system always
returns to the same state. By assigning each cleanup rule a unique priority value
and thus forcing a fixed order, these local interleaving scenarios are eliminated.

Of course one has to pay attention to which rules can have different priorities
and which ones need to have the same priorities. Action rules generally should
have the same priorities, since these nodes can create queue items and we are
interested in the interleavings with unique queue item sequences.
Our approach is in line with Zambons and Rensinks paper [25] on best

practices in GROOVE, where they suggest to use some form of rule scheduling
whenever possible. While they mention that “the use of control programs is
usually preferred over priorities”, we think that priorities are sufficient and easier
to maintain in our case.
Table 4.1 shows a list of all rules in CPM and their priorities.

4.3 Dining Philosophers
4.3.1 Start Graph
This section revisits our running example of the dining philosophers by showing
CPM in action. A dining philosophers start configuration for CPM is shown in
Figures 4.11 on page 36 and 4.12 on page 37 (the graph has been split up for
readability, but both make up a single graph and are represented in GROOVE as
such).
Most of the nodes in Figure 4.11 belong to the control flow graph of APPLI-

CATION.make, which is the root procedure in this example. It roughly translates

4 Towards a Concurrency Model for SCOOP 32

Rule Priority
error_Deadlock_2Proc_DiffState 100
error_Deadlock_2Proc_SameState
error_DivideByZero
error_NoSelfRef
error_PostconditionFail
error_VoidCall

config_CheckPostcondition 60

cleanup_RemoveParamRef_Attached 50
cleanup_RemoveParamRef_Void 49
cleanup_DiscardParamData 48
cleanup_exp_DiscardResults_Op 47
cleanup_exp_DiscardResults_BoolOp 46

getparam_Ref_Attached 44
getparam_Ref_Void 43
aexp_constant 41
bexp_constant 40
aexp_RetrieveParam 39
aexp_RetrieveData 38
bexp_RetrieveData 37
bexp_Query 36
aexp_Multiply 35
aexp_Divide 34
aexp_Add 33
aexp_Subtract 32
bexp_GreaterThan 31
bexp_LessThan 30
bexp_IsEqual 29
bexp_not 28

queue_Insert_EmptyBusy 20
queue_Insert_NotEmpty 19
queue_Remove_ParamRef 18
queue_Remove_ParamData 17
queue_Remove_BoolQuery_MultipleQueued 16
queue_Remove_BoolQuery_SingleQueued 15
queue_Remove_Command_MultipleQueued 14
queue_Remove_Command_SingleQueued 13

cleanup_FinalState_BoolQuery 5
cleanup_FinalState 4

action_TestPostcondition 2

action_Assign 0
action_AssignRef_Param_Attached
action_AssignRef_Param_SameTarget
action_AssignRef_Param_Void
action_AssignRef_Ref_Attached
action_AssignRef_Ref_SameTarget
action_AssignRef_Ref_Void
action_Command
action_Lock_1
action_Lock_2
action_New_Attached
action_New_Void
action_Query
action_Test
action_Unlock
action_Unlock_Creator

Table 4.1: Rule priorities. Note that an empty priority means that the rule has
the same priority as the one above it, e.g. all error rules have priority 100.

4 Towards a Concurrency Model for SCOOP 33

to the code in Listing 4.1, with a simple loop that instantiates forks and philoso-
phers and connects them accordingly. In addition to the method graph, there is
also a Processor node. It is the handler of its data, which consists of a number
of reference and integer variables. Note that the variables have generic names
(such as v_1 for Boolean and integer data and r_1 for references), and that
there is a mapping from CPM variable names to the variable names of the code
in the listing.

1 class APPLICATION
2 feature
3 make
4 do
5 -- variable mappings:
6 -- v_1: i
7 -- v_2: philosopher_count
8 -- v_3: round_count
9 -- r_1: first_fork
10 -- r_2: left_fork
11 -- r_3: right_fork
12 -- r_4: a_philosopher
13 from
14 i := 1
15 create first_fork.make
16 until
17 i > philosopher_count
18 loop
19 if i < philosopher_count then
20 create right_fork.make
21 else
22 right_fork := first_fork
23 end
24 create a_philosopher.make (i, left_fork , right_fork ,

round_count)
25 lock (a_philosopher)
26 a_philosopher.live
27 unlock (a_philosopher)
28 left_fork := right_fork
29 i := i + 1
30 end
31

32 i, round_count: INTEGER
33 first_fork , left_fork , right_fork: separate FORK
34 a_philosopher: separate_PHILOSOPHER
35 end
36

37 class FORK
38 feature
39 make
40 do
41 end
42 end
43

44 class PHILOSOPHER
45 feature
46 make (philosopher: INTEGER;
47 left, right: separate FORK;
48 round_count: INTEGER)
49 do
50 -- variable mappings:
51 -- p_1: philosopher
52 -- p_2: left

4 Towards a Concurrency Model for SCOOP 34

53 -- p_3: right
54 -- p_4: round_count
55 -- v_1: id
56 -- v_2: times_to_eat
57 -- r_1: left_fork
58 -- r_2: right_fork
59 id := philosopher
60 left_fork := left
61 right_fork := right
62 times_to_eat := round_count
63 end
64

65 live
66 do
67 lock (left_fork , right_fork)
68 -- eat
69 unlock (left_fork)
70 unlock (right_fork)
71 times_to_eat := times_to_eat - 1
72 end
73

74 left_fork , right_fork: separate FORK
75 id, times_to_eat: INTEGER
76 end

Listing 4.1: APPLICATION class for the dining philosophers.

Figure 4.12 shows the control flow graphs for forks and philosophers. Proces-
sors representing forks do not execute any code after their creation procedure.
They are created, the unlock_creator action is performed, and afterwards they
just exist in the system, but do not execute more requests (as no other processor
ever performs a command or query on a fork). In the make method of the philoso-
pher, the object is initialized by assigning the parameters to the processor’s
reference variables and data variables. Finally, the subgraph representing the live
method is traversed to perform the main loop of the philosophers. Most notably,
this subgraph contains actions to lock (representing atomically acquiring the
forks and eating) and unlock the fork processors.

4.3.2 Rule Applications
With the start graph presented in the previous section, we can now inspect the
behaviour of CPM. With the GROOVE Simulator, it is possible to follow the
state-space exploration visually. Applicable rules are pointed out to the user and
the part of the graph that matches is highlighted. Figure 4.13 on page 38 shows
the program right before the first creation procedure (a command) is performed.
At this point, the rule action_Command (see Figure 4.2 on page 23) is the only
rule that has a match and is highlighted in green. After applying the rule, the
graph looks as depicted in Figure 4.14 on page 39.
Of course, going through rules using the Simulator is a rather tedious task

that may be a useful tool for developing, testing, and debugging such systems,
but it is not for verification purposes. Fortunately, as we have seen in Chapter 3,
GROOVE provides utilities to verify for LTL and CTL formulae. This is where the
error rules come into play. To verify whether the program deadlocks, one can
simply try to find a counterexample for the formula

! F (error_deadlock_2Proc_DiffStates | error_Deadlock_2Proc_SameState),

4 Towards a Concurrency Model for SCOOP 35

which states that, starting from the start graph state, there is no future state
where either one of the mentioned rules matches.

Processor
name = ”APPLICATION”

State
init

method = ”APPLICATION.make”

Action
assign

var = ”v_1”

Ref_Var
void

name = ”r_1”

State

Ref_Var
void

name = ”r_2”

Ref_Var
void

name = ”r_3”

Data_Var
name = ”v_1”
value = 0

Action
assign_ref
ref = ”r_2”
value = ”r_1”

State
Action
test

State
final

DataData_Var
name = ”v_2”
value = 2

Data_Var
name = ”v_3”
value = 1

Op
constant
value = 1

Ref_Var
void

name = ”r_4”

BoolOp
greater_than

Op
retrieve_data
var = ”v_1”

Op
retrieve_data
var = ”v_2”BoolOp

not
Action
test

Action
test

BoolOp
less_than

Op
retrieve_data
var = ”v_1”

Op
retrieve_data
var = ”v_2”

State

Action
test

BoolOp
not

State

State

Action
new

name = ”FORK”
ref = ”r_3”

Action
assign_ref
ref = ”r_3”
value = ”r_1”

State

State

Action
assign_ref
ref = ”r_2”
value = ”r_3”

State
Action
assign

var = ”v_1”

Op
add

Op
retrieve_data
var = ”v_1”

Op
constant
value = 1

Action
lock

lock_1 = ”r_4”

State

Action
command

method = ”PHILOSOPHER.live”
ref = ”r_4”

State
Action
unlock

release = ”r_4”
State

State
Action
new

name = ”FORK”
ref = ”r_1”

Action
new

name = ”PHILOSOPHER”
ref = ”r_4”

Action
command

method = ”PHILOSOPHER.make”
ref = ”r_4”

State

Action
command

method = ”FORK.make”
ref = ”r_1”

State

State

Action
command

method = ”FORK.make”
ref = ”r_3”

Param_Data
get = ”v_1”
param = ”p_1”

Param_Ref
get = ”r_2”
param = ”p_2”

Param_Ref
get = ”r_3”
param = ”p_3”

Param_Data
get = ”v_3”
param = ”p_4”

in

ref

out

a_1

in

in

in

in

out

out

out

out

in

out

out

out

var

a_1

in

out

in

in

in

in

a_1

ref

out

var

out

ref

param

a_1

bexp

bexp

in out

param

out

ref

out

handler

out

in

aexp

a_2

var

param

in_method

param
out

in in

a_2

bexp

in

aexp

out

a_2

a_1

bexp

in

out

in

Figure 4.11: Subgraph of the dining philosophers start graph in CPM, consisting of the initial processor starting at the root method APPLICATION.make.

State
init

method = ”PHILOSOPHER.make”

Action
assign

var = ”v_1”

Op
retrieve_param
param = ”p_1”

State

Action
assign_ref
ref = ”r_1”
value = ”p_2”

State Action
unlock_creator

State
final

State
init

method = ”PHILOSOPHER.live”
Action
test

State
final

Action
test

State

BoolOp
less_than

Op
retrieve_data
var = ”v_2”

Op
constant
value = 1BoolOp

not
Action
lock

lock_1 = ”r_1”
lock_2 = ”r_2”

State
Action
unlock

release = ”r_1”

State

Action
assign

var = ”v_2”

Op
subtract

Op
retrieve_data
var = ”v_2”

Op
constant
value = 1

Action
assign_ref
ref = ”r_2”
value = ”p_3”

State
Action
assign

var = ”v_2”

Op
retrieve_param
param = ”p_4”

State

Action
unlock

release = ”r_2”State

State
init

method = ”FORK.make”

Action
unlock_creator

State
final

in

in

in

aexp

inin

in

a_2

in

a_1

out

out

out

out

in

aexp

in

in

a_1

out

aexp

out

bexp

a_1

out

in

outin

out

out

out

bexp

out

a_2

Figure 4.12: Various features of the PHILOSOPHER start graph.

Action
command

method = ”FORK.make”
ref = ”r_1”

Processor
name = ”APPLICATION”

Action
test

Action
assign_ref
ref = ”r_2”
value = ”r_1”

Action
new

name = ”FORK”
ref = ”r_3”

State

State
init

method = ”APPLICATION.make”
State

Action
assign_ref
ref = ”r_3”
value = ”r_1”

State

State

Action
command

method = ”PHILOSOPHER.live”
ref = ”r_4”

Data_Var
name = ”v_3”
value = false

Action
lock

lock_1 = ”r_4”

State

Result
bool = false

Ref_Var
name = ”r_1”

Action
assign_ref
ref = ”r_2”
value = ”r_3”

Action
new

name = ”FORK”
ref = ”r_1”

Action
test

State

Action
unlock_creator

Op
retrieve_data
var = ”v_1”

State

State

Param_Ref
get = ”r_2”
param = ”p_2”

Data

Action
test

Action
new

name = ”PHILOSOPHER”
ref = ”r_4”

Action
command

method = ”FORK.make”
ref = ”r_3”

Op
retrieve_data
var = ”v_1”

BoolOp
not

State

Param_Ref
get = ”r_3”
param = ”p_3”

State
init

method = ”FORK.make”

Processor
name = ”FORK” State

Param_Data
get = ”v_1”
param = ”p_1”

Op
retrieve_data
var = ”v_2”

Op
retrieve_data
var = ”v_1”

Op
retrieve_data
var = ”v_2”

Data

Action
command

method = ”PHILOSOPHER.make”
ref = ”r_4”

State

Ref_Var
void

name = ”r_2”

Ref_Var
void

name = ”r_2”

Data_Var
name = ”v_3”
value = 1

Action
assign

var = ”v_1”

Op
constant
value = 1

Ref_Var
void

name = ”r_1”

State

Op
add

Op
constant
value = 1

State

BoolOp
not

Action
assign

var = ”v_1”

Action
test

Data_Var
name = ”v_1”
value = 1

BoolOp
less_than

State
final

Data_Var
name = ”v_2”
value = 0

State

State

State
final

Ref_Var
void

name = ”r_3”

BoolOp
greater_than

Param_Data
get = ”v_3”
param = ”p_4”

Ref_Var
void

name = ”r_4”

Data_Var
name = ”v_1”
value = 0

Action
unlock

release = ”r_4”

Data_Var
name = ”v_2”
value = 2

var

points_to

bexp

ref

out

in

var

bexp

out

in

out

in

var

in

out

ref

var

out

inout

aexp

out param

in
out

var

bexp

out

ref

a_2

in

out

handler

out

handler
var

param

lock

in

in

aexp

in

ref

in

a_2

param

out

out

out

out

in_method

bexp

a_1

param

out

a_1

in

a_1

out

in in

in

ref

a_1

in

in

in

out

return

ref

a_1

a_2

out
in

Figure 4.13: Configuration where the processor is about to execute a command action. The match is highlighted with dashed lines.

Action
command

method = ”FORK.make”
ref = ”r_1”

Processor
name = ”APPLICATION”

Action
test

Action
assign_ref
ref = ”r_2”
value = ”r_1”

Action
new

name = ”FORK”
ref = ”r_3”

State

State
init

method = ”APPLICATION.make”
State

Action
assign_ref
ref = ”r_3”
value = ”r_1”

State

State

Action
command

method = ”PHILOSOPHER.live”
ref = ”r_4”

Data_Var
name = ”v_3”
value = false

Action
lock

lock_1 = ”r_4”

State

Result
bool = false

Ref_Var
name = ”r_1”

Action
assign_ref
ref = ”r_2”
value = ”r_3”

Action
new

name = ”FORK”
ref = ”r_1”

Action
test

State

Action
unlock_creator

Op
retrieve_data
var = ”v_1”

State

State

Param_Ref
get = ”r_2”
param = ”p_2”

Data

Action
test

Action
new

name = ”PHILOSOPHER”
ref = ”r_4”

Action
command

method = ”FORK.make”
ref = ”r_3”

Op
retrieve_data
var = ”v_1”

BoolOp
not

State

Param_Ref
get = ”r_3”
param = ”p_3”

State
init

method = ”FORK.make”

Processor
name = ”FORK” State

Param_Data
get = ”v_1”
param = ”p_1”

Op
retrieve_data
var = ”v_2”

Op
retrieve_data
var = ”v_1”

Op
retrieve_data
var = ”v_2”

Data

Action
command

method = ”PHILOSOPHER.make”
ref = ”r_4”

State

Ref_Var
void

name = ”r_2”

Ref_Var
void

name = ”r_2”

Data_Var
name = ”v_3”
value = 1

Action
assign

var = ”v_1”

Op
constant
value = 1

Ref_Var
void

name = ”r_1”

State

Op
add

Op
constant
value = 1

State

BoolOp
not

Action
assign

var = ”v_1”

Action
test

Data_Var
name = ”v_1”
value = 1

BoolOp
less_than

State
final

Data_Var
name = ”v_2”
value = 0

State

State

State
final

Ref_Var
void

name = ”r_3”

BoolOp
greater_than

Param_Data
get = ”v_3”
param = ”p_4”

Ref_Var
void

name = ”r_4”

Data_Var
name = ”v_1”
value = 0

Action
unlock

release = ”r_4”

Data_Var
name = ”v_2”
value = 2

Queue_Item
method = ”FORK.make”

var

points_to

bexp

ref

out

in

var

bexp

out

in

out

in

var

in

out

ref

var

out

inout

aexp

out param

in
out

var

bexp

out

ref

a_2

in

out

handler

out

handler
var

param

lock

in

in

aexp

in

ref

in

a_2

param

out

out

out

out

bexp

a_1

param

out

a_1

in

a_1

out

in in

in

ref

a_1

in

in

in

out

return

ref

a_1

a_2

out
in

in_method

insert_into

Figure 4.14: Configuration right after an application of the command action rule. A new request has been created and is about to be inserted into the request queue of
the target processor.

Chapter 5

CPM+OO: An Extension
for Objects

CPM with Object Orientation (CPM+OO) builds on top of CPM, and aims to
bring back object-oriented concepts that have been intentionally left out from
CoreSCOOP and CPM. While CPM focuses on the concurrency aspects of SCOOP,
it can be difficult to map real-world SCOOP programs, with processors potentially
handling multiple objects, non-separate calls within routine bodies, and other
SCOOP features that are not directly modelled in CPM. These enhancements
allow a more direct mapping of SCOOP programs to the graph model and clear
the path for an automatic translation tool from SCOOP programs to CPM+OO
(cf. Chapter 6).

In this Chapter, we discuss various extensions made to the CPM model. We
explain how the changes affect the behaviour of the system and make informal
arguments for the preservation of soundness and completeness.

5.1 Type Graph Overview
We start by giving an overview over the changes of various parts of the type
graph, which may seem overwhelming at first, as the type graph has changed
significantly between CPM and CPM+OO. The goal of this section is not to
provide a complete description, but instead relate the updated type graph to
the various added concepts, which will then be explained in detail in subsequent
sections.

5.1.1 Processors, Frames, and Objects
To model local calls and non-separate objects, we introduce the notion of stack
frames and object instances to the model. A subgraph of the CPM+OO type
graph with processor and object related nodes can be seen in Figure 5.1.

40

Queue_Item
method: string

State_Anchor

Processor
in_creation
token

name: string

Param_Ref

Frame

Param

State

Object

Local_Data

Var

Queue_Item Param_Data

Local_Ref

Super_Query_Op

Local_Ref

Object
type: string

Data_Var

Ref_Var_Anchor

Class
name: string

in_method
wait_for_restored_locks

ref

var

next

ref

query_result
result

insert_into

next
param

ref

var

lock
next

passed_lock
restore_locks

wait

param

next

active_frame

controls
lock

restore_locks

wait_for_restored_locks

handler

return_state

current

paramframe

var

var

Figure 5.1: Type graph of processors and objects.

5 CPM+OO: An Extension for Objects 42

At the core of the type graph is the Processor. Tied to it is the Queue_Item
with its parameters and method name that is intended to be executed.
The basic Data node has been replaced with the Object node by simple

renaming (note that the type graph simply puts syntactic restrictions on the
graphs, different semantics introduced in CPM+OO come only with the rule
changes). A processor can now be the handler of multiple objects (whereas CPM
restricted a processor to be the handler of exactly one data node).
Introducing nested routine calls brings the requirement for some call stack

representation. This is achieved by introducing the Frame node type and its
attached nodes. A processor that is executing a program always works with a
current stack frame, which handles local variables, passed parameters, a reference
to the Current object, and the state it needs to return to in case the current
call is a nested call. When creating requests, a queue item has a stack frame
attached, which contains passed parameters.

5.1.2 Variables, Parameters, and Results
The next group of related types is concerned with the representation and handling
of variable declarations and bindings of values to parameters and query results.
Figure 5.2 shows the relevant type graph.
Variable declarations are, as in CPM, divided into three different subtypes:

reference, integer and Boolean variables. While integer and Boolean data
variables did not change, reference variables now point to objects instead of
processors. In addition, reference variables now have a flag denoting whether it
is declared as separate or not.

Parameter nodes represent values passed to commands and queries. Parame-
ters can be local variables (corresponding to variables in the local block) or
attributes of the current object, as well as arbitrary expressions (Param_Expr
with an expr edge to an operation node). Adding arbitrary expressions (as
opposed to local variables and attributes only) as parameters allows representing
complex expressions with a single action node in CPM+OO. This is not possible
in CPM, where helper variables are required to simulate complex expressions.

5.1.3 Actions
The type graph for actions, shown in Figure 5.3, looks similar to the one in
CPM. One important difference is that we use subtypes for the different kinds
of actions as opposed to flags. This has the advantage that we can not have a
single action node with multiple types, a property which can not be enforced in
GROOVE using flags.
To support arbitrary expressions (e.g. sum := a1.count + a2.count)

as parameters and operands, we replace a number of string attributes with edges
to nodes of type Super_Op (and its subtypes). For example, the unlock action
node Action_Assign_Ref is pointing to a RefOp node, which means that we
can use arbitrary expressions on the right-hand side of the assignment.

The type Action_Token is a supertype of actions that are local to a processor,
or, in the case of queries, potentially local to a processor. This is later used in
a mechanism to mitigate the state-space explosion problem and is discussed in
detail in Section 5.3.

5 CPM+OO: An Extension for Objects 43

Result
res: int
res: boolObject

Param_Ref
void

get: string

Object

Param
param: string

Param_Data
get: string
value: int
value: bool

Param_Local_Data
get: string
value: bool
value: int

Param_Expr

Super_Op

Processor

Param_Local_Ref
void

get: string

Object

Void
Processor

Queue_Item

Frame

Data_Var
bvalue: bool
value: int

Ref_Var
separate
void

Object

Var
name: stringRef_Var_Anchor

State
final

Void

points_to

res

instance

res

points_to

get_result

points_to

processor

points_to

get_result

expr

get_result

processor

Figure 5.2: Type graph of variable, parameter, and result nodes.

Action_Assign_Ref
ref: stringAction_LockAction_Unlock

Action

Action_New
name: string
ref: string

Action_Unlock_Creator

Action_Test
precondition_fail

BoolOp

Action_Assign
var: string

Op

Action_Assign_ResultAction_Command
method: string

State_Anchor

State
final
init

method: string

Local_Data
bvalue: bool
name: string
value: int

Param

RefOp

RefOp

Op

RefOpRefOp

Action_Test_Postconditions

BoolOp

State

State_Postcondition_Fail

Action_Token

Local_Ref
separate
void

name: string

Object

Processor

Processor

Processor Action_Test

Param_Expr

Action_Noop
expr

out

ref

target bexp

check_postcondition

var

instance

in_method

ref

aexp

points_to

processor

expr
expr

bexp

instance

processor

aexp bexp

out

in

bexp

param

Figure 5.3: Type graph of actions.

5 CPM+OO: An Extension for Objects 45

ERROR
method: string
processor: string
ref: string
status: string

Action

Processor

processor

action

Figure 5.4: Type graph of errors.

5.1.4 Operations
The group of operation types (cf. Figure 5.6 on page 47) has undergone a number
of changes during development of the CPM+OO model. Integer, Boolean, and
reference operations (Op, BoolOp, and RefOp types) do now inherit from the
same Super_Op supertype, which can be matched in certain rules to cover all
kinds of operations. The different operations (e.g. “greater than” and “equals”
operations) are represented as unique types, which is more restrictive than
representing the operations with flags for one single node type. Other additions
include types for the handling of local declarations as well as types for integer
and reference type queries.

5.1.5 Errors
As in CPM, the ERROR type (Figure 5.4) is used for recording information about
detected issues with the program. This includes both undesirable properties
in the behaviour of the program (e.g. a deadlock situation) as well as invalid
configurations (e.g. multiple handlers for a single object). The latter kind of
error is used to aid the development and evolution of the model and is designed
to catch bugs in the model itself, not errors in the behaviour of the modelled
runtime.
Recording information in error nodes is useful for postprocessing. Since all

rules have an ERROR embargo node, rules can only be applied as long as there
is no error node. Once an error node is created, the system is in a final state.
Our postprocessing tools can then simply go through all the final states and
check whether there is an error node, and if so, generate output based on the
context of the error.

5.1.6 Others
Figure 5.5 shows the remaining types in CPM+OO. They are used in the model
as follows:

• Reset_Token and Action_Executed_Indicator: These two types are
used for an optimisation technique that forces processors that are per-
forming non-separate actions to advance as far as possible before yielding
control to the next processor. We describe the state-space optimisation
involving these types in detail in Section 5.3.

• Configuration: A node of this type can be included in a start graph to
enable special behaviour of the model. In particular, one can add the

5 CPM+OO: An Extension for Objects 46

Reset_Token Configuration
check_postconditions

Action_Executed_Indicator Init
root_class: string
root_method: string

Figure 5.5: Miscellaneous types.

check_postconditions flag to enable postcondition checking.

• Init: The initialization type allows specifying the root class and procedure.

BoolOp

BoolOp_Equals BoolOp_Greater_Than

Op_Query
method: string
ref: stringBoolOp_Constant

value: bool

BoolOp_Not

Op

Op

Op_Constant
value: int

Op_Add

Op_Retrieve_Param
param: string

Op_Retrieve_Data
var: string

Op_Subtract

State
BoolOp_Query
method: string

Super_Op

RefOp

RefOp_Query
method: string

Result

RefOp_Retrieve_Param
retrieve_ref
var: string

BoolOp_Less_Than

RefOp_Retrieve_Ref
var: string

BoolOp_Retrieve_Param
param: string

RefOp_Retrieve_Local_Ref
var: string

Op_Retrieve_Local_Data
var: string

BoolOp_Greater_Equals

BoolOp_Less_Equals

RefOp

Super_Query_Op

Param

Param

BoolOp_And

BoolOp

BoolOp_Retrieve_Data
var: string

Op_Multiply

param

a_1
a_2

a_1
a_2

a_1
a_2

r_1
r_2

a_1
a_2

a_1
a_2

b_1
b_2

a_1
a_2a_1
a_2

targetresult

get_result

a_1
a_2

a_1

Figure 5.6: Type graph of operations.

5 CPM+OO: An Extension for Objects 48

5.2 Modelled SCOOP Features
5.2.1 Local and non-separate Calls
In CPM, calls are always performed by adding a new queue item to the request
queue of a remote processor. Local calls are not supported, instead one has to
perform inlining of the method bodies where local calls would occur. CPM+OO
instead provides mechanisms for local routine calls (i.e. where the target is the
current object) and non-separate calls (where the target may be a different
object, but is handled by the current processor).
To achieve this, we use the call stack representation introduced in the type

graph, and introduce rules that handle non-separate calls. The corresponding
rules for separate calls are derived from the CPM rules that create feature requests
and are enhanced with the notion of a call stack and adapted to the object
representation.
In the following, we first discuss separate calls. We show how we the CPM

rules to work with objects, frames, and other changes in the CPM+OO type graph.
We then present features that are missing inCPM, such as non-separate calls.

Separate Calls

The rules handling creation of feature requests, i.e. separate feature calls, are
similar to what we have seen in CPM (rules action_Command and bexp_Query,
see Figures 4.2 on page 23 and 4.3 on page 24). Figure 5.11 shows the rule
action_Command_separate from CPM+OO. While the rule is much larger than its
CPM counterpart, the semantic behaviour of the two do not differ much. There
are several reasons why the CPM+OO rule requires more nodes. First, CPM+OO
supports additional parameter nodes for a command (in particular, expressions,
local references, and local data), resulting in more pairs of parameters and
instances, but they follow the same structure as data and reference parameters in
CPM. Second, to the lower left, there is a construct nesting an ∃ quantifier inside
a ∀ quantifier. Since the parameter node is at the ∀ quantifier and its instance
at the ∃ quantifier, this expresses that the rule matches, if for all Param_Expr
nodes of the command, there exists an instance of type Param. This construct is
used to enforce that the rule is only applied once all parameter expressions are
evaluated (i.e. once instance nodes have been created). Once the requirements
are met, a queue item is created, similar to what the CPM rule does. But instead
of attaching parameters directly to the queue item, we create a Frame node,
representing the prepared stack frame which can be put on top of the frame stack
once the request is handled. Note that the action does not specify a reference
denoting the call target as a simple string any more, instead it points to a
parameter expression via the target edge which allows using complex expressions
as targets (e.g. foo.get_counter ().count).
Once a processor has queue items attached, the scheduling rules for queues

are applied. These work analogously to the CPM counterparts. For example,
Figure 5.7 shows the rule queue_Remove_SingleQueued in CPM, while Figure 5.8
shows the corresponding rule from CPM+OO. In CPM+OO, we not only point the
processor to the routine that should be executed, but also set the active frame
edge to the frame attached to the request, thus providing information about the
routine arguments and the target object (this is needed since the processor may

5 CPM+OO: An Extension for Objects 49

Processor

State

Queue_Item

State
init

string

Queue_Item

Result

ERROR

method

in
_
m
et
ho
d

get_result

method

next

in_method

next

Figure 5.7: Rule queue_Remove_Command_SingleQueued in CPM.

be handling multiple objects and needs to know to which one Current refers
to). Note that, since we attach certain information related to the request type to
the frame instead of directly attaching it to the request, CPM+OO requires only
two general queue_Remove_… rules (as opposed to different rules for queries
and commands in CPM).
After the execution of a request, several rules take care of cleaning up the

frame and handling of possible return values. For example, the rule cleanup_Fi-
nalState_Commands_Empty_Call_Stack, shown in Figure 5.9, shows how the
stack frame is deleted after a command when the processor becomes idle.

Non-separate Calls

Thanks to stack frames, we can now also simulate non-separate calls and local calls
(calls with target Current). These commands and queries, as per the formal
semantics, do not create a feature request that is enqueued in the processor’s
request queue. Instead, they are directly (and sequentially) executed by the
calling processor. We stay with the command example, but the case for queries
is again similar. The rule action_Command_non-separate, shown in Figure 5.12,
handles command calls. Again, a stack frame is created. But instead of creating
a new request, the processor updates its current frame pointer to the newly
created frame, and starts executing the desired method body. The created frame
points to the current frame via next edge. In addition, the created frame also
includes an edge to the state after the command node, labelled return_state.
This allows returning to the correct position once the command finishes and the
stack frame is removed.

Once a procedure has been processed and the processor points to a final state

5 CPM+OO: An Extension for Objects 50

Processor

State

Queue_Item

State
init

string

ERROR

Frame
Frame

in
_
m
et
ho
d

active_frame

method

active_
fram

e

frame

in_method

next

method

Figure 5.8: Rule queue_Remove_SingleQueued in CPM+OO.

Processor

State
final

Result

ERROR

Frame

Object

in_method

active_frame

current

get_result

Figure 5.9: Rule cleanup_FinalState_Command_Empty_Call_Stack.

5 CPM+OO: An Extension for Objects 51

n0
Processor

n1
State
final

n3
Result

n4
ERROR

n2
Frame

n6
State

n5
Frame

n7
Object

get_result

active_frame

next

in_method

return_state

active_frame

in_method

current

Figure 5.10: Rule cleanup_FinalState_Command.

node, several high-priority scheduling rules may be applied, depending on the
state of the call stack and the type of feature (command or query). These rules
(which in fact are the same ones that handle the analogous case for separate
features) start with the prefix cleanup_FinalState_… and pop the current frame
from the frame stack. Figure 5.10 shows the cleanup_FinalState_Command rule
that deletes a frame and instructs the processor to continue at the position after
the call in the calling procedure, and resets the active frame edge to point to the
original stack frame.

Processor

State

Action_Command

State

Queue_Item

Object

∀

Processor

Frame

Param_Data
Param_Data

Param_Ref

Param_Ref

ERROR

State
init

Param_Local_Data

Param_Data

string

∀

∀

string

Local_Data

Local_Data
∀

Param_Expr

Param_Refstring

Param_Expr

Param_Expr
Param_Ref

∀

Param_Data

∀

∀

Param

∃

Param_Expr

∀

Reset_Token

∃

Reset_Token

∃

Reset_Token

@

param

paramparam

@

instance

instance

@

processor
param

param

@

@

in_method

@

param

processor

instance

processor

in

processor

target

instance

method

wait_for_restored_locks

instance

instance

in

handler

insert_into

in

frame

restore_locks

param
var

processor

param

!=

@

in

@

@

var

method

@

@

method

@

param

out

current

instance

@

param

processor

param

processor

points_to

method

@

@

param

instance

@

in_method

@

Figure 5.11: Rule action_Command_separate.

Processor
token

State

Action_Command

State

Object

∀

Frame

Param_Data
Param_Data

Param_Ref

Param_Ref

State
init

Param_Local_Data

Param_Data

string

∀

∀

string

Local_Data

Local_Data

∀

Param_Expr
Param_Data

∀

Param_Ref

Param_Expr ∀

Param_Expr
Frame

Param_Ref
string

Local_Ref

Local_Ref

∀

∃ ∃

ERROR

∀

Action_Executed_Indicator

∃

Action_Executed_Indicator
∃

Action_Executed_Indicator

Processor

∀

next

ref

@

in

target

@

processor

return_stateprocessor

var

param

@

param

@

var

@

out

@

active_frame

@

param

param

param

current

@

processor

@

instance

in

@

@

processor

param

in

instance

@

@

processor

param

in_method

method

active_frame

@

@

instance

points_to

param

param

in

@

processor

instance

method

handler

param

wait_for_restored_locks

@

instance

processor processor

controls

instance

ref

@

method

param

in

in_method

instance

instance

lock

Figure 5.12: Rule action_Command_non-separate.

5 CPM+OO: An Extension for Objects 54

Class
name = ”PHILOSOPHER”

Data_Var
name = ”id”
value = 0

Data_Var
name = ”times_to_eat”

value = 0

Ref_Var
separate
void

name = ”left_fork”

Ref_Var
separate
void

name = ”right_fork”

var

ref

ref

var

Figure 5.13: Object template for the PHILOSOPHER class.

5.2.2 Dynamic Object Creation and Variable Names
When creating processors and associated data nodes in CPM, the rules ac-
tion_New_Void and action_New_Attached are applied to create a fixed number
of reference and data variable nodes. To map a certain program to CPM, one
has to first determine how many variables are required to represent the program
and then adjust these rules to make sure that enough variables are available for
the mapping. If a program involves several classes, CPM does not distinguish
between them when creating data and handlers. Instead, all processors get the
maximum number of data and reference variables.
To make direct translations of SCOOP programs easier and interpreting

generated start graphs more intuitive, we introduce variable names in CPM+OO
that can be directly mapped to the names in the source code. To achieve this,
we encode the reference, Boolean, and integer attributes of classes in the start
graph itself. An example of this can be seen in Figure 5.13, where we include all
variables relevant to the PHILOSOPHER class. We call these constructs object
templates.
To make use of object templates, we modify the semantics for object cre-

ation slightly. The rules action_New_From_Template and action_New_Lo-
cal_From_Template handle object creation for attributes and local variables
respectively. We attach the class name to Action_New nodes, denoting the
type of object that we want to create. Then, the rule matches the template with
the corresponding name, copies the template variables, and attaches them to the
newly created object. The created object now contains attributes corresponding
to its declared type. We can use arbitrary variable names as opposed to being
restricted to generic ones as in CPM. In addition, objects now only have variables
relevant to their types attached.

5 CPM+OO: An Extension for Objects 55

Action
command

method = ”FORK.make”
ref = ”r_1”

(a) CPM command with target spec-
ified as an edge (let:ref=”r_1”).

Action_Command
method = ”FORK.make”

Param_Expr
param = ”Current”

RefOp_Retrieve_Ref
var = ”first_fork”

target

expr

(b) CPM+OO command with generic
target via RefOp node.

Figure 5.14: Comparison of a command node in CPM and CPM+OO.

5.2.3 Generic Operators
In CPM, actions that require arguments, such as assignments or commands, are
limited in that the arguments of these actions, including targets for queries and
commands, can only be local data or reference variables, or simple operations
like addition or negation. As a consequence, expressions that do not conform
to this restriction have to be split up. For example, to represent the statement
account.withdraw (account.balance), we require two actions, the first
one being a query for account.balance that is assigned to a (temporary)
variable, and the second one being the command with this variable as an
argument.

To enable more generic expressions, we change the representation of parameter
nodes (see Figures 4.7 on page 26 and 5.2 on page 43 for the relevant type graphs
of CPM and CPM+OO respectively). In CPM+OO, we can use the supertype Param
instead of using specific types. We still have the Param_Ref and Param_Data
types, as well as analogous Param_Local_Ref and Param_Local_Data types,
which can be used to represent and fetch attributes and local reference and data
values. In addition, and this is where the added flexibility comes from, we also
provide a Param_Expr type, which has an expr edge to the Super_Op type.
With this addition, we can now use arbitrary operations to fetch parameter data
as opposed to only local and attribute values. Consequently, command actions
and query operations do not specify the target via string any more. Instead, as
seen in the type graphs in Figures 5.1 on page 41 and 5.6 on page 47, these nodes
now have a target edge that points to a Param_Expr node which specifies the
target. Once targets and parameters are evaluated, the behaviour is the same as
if one would have used the Param_Ref and Param_Data types from CPM.
Figure 5.14 shows how a RefOp node can be used to specify the target, as

opposed to a simple string with an attribute variable name (which is how targets
are handled in CPM).

5 CPM+OO: An Extension for Objects 56

5.2.4 Lock Passing
Lock passing is necessary to avoid deadlock in certain situations. For example,
when an object a holds the locks of the handlers of b and c, and creates a query
request on b that in turn requires locking of c, then b can not proceed until
a releases the lock on c, which in turn can not happen until b completes the
request. No processor can make progress, and a deadlock has occurred.
To solve this problem, Morandi [13] defines a lock passing mechanism for

feature calls. In his thesis, he defines feature calls as follows [13, p.19] (edited to
reflect only relevant parts and for formatting):

A client 𝑝 performs the following steps to call a feature 𝑓 with target expression
𝑒0 and argument expressions 𝑒1, ⋯ , 𝑒u�.

1. Target evaluation. Evaluate the target expression 𝑒0 with supplier 𝑞.

2. Argument passing. Evaluate the argument expressions and bind them to
the formal arguments.

3. Lock passing. Pass all locks to 𝑞 if a controlled argument expression gets
attached to an attached formal argument of reference type.

4. Feature request. Generate a feature request to apply 𝑓 to the target.

• If the feature call is non-separate, i.e. 𝑝 = 𝑞, then ask 𝑞 to process
the feature request immediately using its call stack and wait for
termination.

• Otherwise, add the request to the end of 𝑞’s request queue.

5. Wait by necessity. If 𝑓 is a query, then wait for the result.

6. Lock revocation. If lock passing happened, then wait for the locks to come
back.

To achieve this behaviour, we introduce a number of rules that interact with
each other.

pass_locks This rule, shown in Figure 5.17, matches if at least one of the
attached arguments is controlled, i.e., if the current processor (node 𝑛0)
has a lock on some processor (node 𝑛1) that handles an object that is
passed to the command. The target processor (node 𝑛2) receives all locks
(lock edges) from the client processor. In addition, several edges are created
for bookkeeping purposes. Edges labelled passed_lock point to processors
that the client held a lock on and are required to know which locks to
restore. The receiving processor has an edge restore_locks that points
to the client, which allows giving back the locks to the correct processor
later. Finally, an edge wait_for_restored_locks is added in order to make
sure that the client does not continue execution before getting the locks
back (which is ensured by a wait_for_restored_locks embargo edge in each
action rule).

pass_locks_query Analogously to the previous rule, this one passes the locks
for queries. While the previous one only passes locks if the arguments
fulfill the requirements, this rule always passes the locks regardless of the
arguments. This decision follows Clarification 5.4.2 in [13, p. 115].

5 CPM+OO: An Extension for Objects 57

n8
Processor

n9
Processor

n0
State
final

n4
State

n13
Processor

∀

n2
Processor

∀

n5
Frame

active_frame

passed_lock

passed_lock

@

lock

lock

lock

lock

@

restore_locks

lock

passed_lock

in_method

in_method

wait_for_restored_locks

lock

Figure 5.15: Rule restore_locks_b.

restore_locks_… These two rules handle restoring rules for commands when
lock passing has occurred. Figure 5.15 shows one of the rules, where the
client (node 𝑛8) gets all the locks that have been passed earlier. To do
this, edges restore_locks (which are created when creating the queue item
with commands and queries that require lock passing) from the frame from
the original request need to be present, which ensures that the locks get
restored at the right point in the call stack even if the request triggers
further feature calls.

cleanup_Restore_Locks_Query Similar as before, this rule (Figure 5.16) han-
dles restoring locks of query requests.

Note that we do not support separate callbacks as described in the original
semantics.
The above rules all have higher priority than action and query rules, which

ensures that whenever the system is in a state where lock passing or revocation
is required, it will apply the corresponding rule. It is therefore impossible for the
system to miss passing the locks or continue without restoring the locks first. The
latter is additionally enforced by adding embargo edges (wait_for_restored_locks
in action and query nodes), which catches the case where locks are not properly
restored due to no restore lock rule being applicable (this situation would indicate
a problem with the CPM+OO model, not with the semantics or the inspected
program).

5 CPM+OO: An Extension for Objects 58

Processor

State
final

ERROR

Frame

Processor Processor

∀

Processor

∀

Super_Query_Op

Processor=

lock

loc
k

wait_for_restored_locks

lock

active_frame

passed_lock

in_method

lock

passed_lock

@

@

lock

lock

restore_locks

Figure 5.16: Rule cleanup_Restore_Locks_Query.

n0
Processor

n1
Processor

n2
Processor

n3
State

n4
State

n5
Action_Command

n6
Object

n7
Object

∀>0

n9
Processor

n10
Param_Expr

n11
RefOp

n12
Result

n15
Param_Expr

n14
RefOp

n13
Result∀

@

handler

result

result

lock

lock

in

exprres

in_method

param

@

@

target

wait_for_restored_locks
passed_lock

expr

lock

@
res

@

lock

lock
lock

restore_locks

out

passed_lock

@

handler

passed_lock

Figure 5.17: Rule pass_locks, that matches and is applied when at least one of the parameters is controlled.

5 CPM+OO: An Extension for Objects 60

5.2.5 Distinguishing Preconditions and Wait Conditions
In SCOOP, a statement in a require block involving separate arguments can
either be a precondition or a wait condition, depending on the context from
which it is called. If the processor executing the statement already held request
queue locks to all involved processors of separate arguments before the call, then
no other processor can enqueue requests to the queues of those handlers. As a
result, the outcome of the statement can not change over time, and therefore it
is a precondition. But in the case where the calling processor does not hold all
locks, the result may change over time, and therefore the statement is a wait
condition.
In CPM+OO, we distinguish between preconditions and wait conditions. The

Action_Test nodes that denote the path that is to be followed if a precondition
or wait condition evaluates to False are always marked with a precondition_fail
flag. This does not necessarily mean, as described above, that the statement
is in fact a precondition. Instead, the rule action_Test determines, based on
the participating parameters, whether the statement is a precondition or a wait
condition. In the first case, the rule creates an ERROR node, stating that a
precondition has failed, and as a result, the system is in a final state. But if
the statement turns out to be a wait condition, the rule handles it as such by
following the action to the next state. Eventually, the processor returns the locks
(which gives other processors the possibility to modify the state of the involved
objects) before acquiring them again and evaluating the wait conditions again.

5.3 State-Space Optimisations
The state-space explosion problem is omnipresent in concurrent systems and
therefore it is also present in CPM and CPM+OO. Obviously, this is an issue
that one can not get rid of completely. Still, it can be of practical value to
try and mitigate the problem as much as possible. We implement a number of
optimisations that aim to reduce the state-space problem by avoiding unnecessary
interleavings. Similar optimisations are already present in CPM, such as fine
grained rule priorities for certain rules. Of course, we have to pay attention to
the interleavings that are left out with these optimisations. In the following, we
present additional measures taken to decrease the size of the state-space and
argue why we are confident that they are not problematic with regards to the
properties that can be verified using the CPM+OO model.

Quantifier Usage

In GROOVE, quantifiers can be used to create flexible rules, such as ones that
match a type of node several times, or ones that express a logical “or”, matching
one part of the rule or another. While there are several situations where
quantifiers are used in CPM, we extended this usage further in CPM+OO to help
reduce the size of the state-space. The rule IntOp_RetrieveData (which is known
as aexp_RetrieveData in CPM) is an example, shown in Figure 5.18, that uses a
simple ∀> quantifier with several nodes attached, which means that the rule now
creates Result nodes for each Op_Retrieve_Data attached to the action that
is matched. In a situation with multiple Op_Retrieve_Data, CPM+OO creates
all result nodes in one single rule application, whereas in CPM, the state-space

5 CPM+OO: An Extension for Objects 61

State Action State

Processor Op_Retrieve_Data

Data_Var

int

stringObject

ERRORResult

∀>0

Frame

value

var

@

result

out

@

(param|aexp|bexp|a_1|a_2|expr)*

in

handler

current

@
active_frame

name

processor

var

@

res

in_method

@

Figure 5.18: Rule IntOp_RetrieveData.

diverges at that point, exploring the different orders of creating these nodes, and
converges once all result nodes have been created (since the resulting state is
always the same, regardless of the order).

Scheduler Optimisation

Suppose we have a dining philosophers instance with only two philosophers
(and thus with two forks). We are interested in the different interleavings that
can occur with regards to locking, or more general, we are interested in the
interleavings possible where philosophers and forks and their processors interact
with each other by locking request queues. When simulating the instance with
CPM or any version of CPM+OO, all the relevant interleavings are captured.
Unfortunately, CPM and CPM+OO without scheduler optimisations also explore
a large number of interleavings that we are not interested in, as they cover the
same behaviour with respect to the outcome of the program. For example, one
execution could execute the complete code of the first philosopher before the
second one starts. In the next interleaving, the second philosopher might execute
a (local) identifier assignment, then the first one executes everything, before
the second one executes the remaining part. With respect to the interaction of
processors and objects, these two interleavings are equal.

More generally, we can split actions and queries in two groups: non-separate
and separate. In the first case, everything is handled on the current processor,
no other processors are involved. In the latter case, different processors may
be included and therefore, we want to explore all possible executions (since
the outcome of executing SCOOP programs is determined by the order in which
requests are enqueued). The idea behind this optimisation is that as long as
a processor is executing locally (e.g. a philosopher initializing by performing
integer assignments for the identifier and number of times to eat attributes)
without having an impact on any processor’s request queue, we can advance it
as far as possible. Once a processor is at a point where a non-separate action or

5 CPM+OO: An Extension for Objects 62

query is about to be executed, it waits until all other processors have reached a
similar position (or have finished executing and are idle). All processors that
are not idle are potentially about to interact with other processors. At this
point, it is important to explore all interleavings, as different orders in locking
and enqueuing requests may result in different situations (e.g. in the dining
philosophers example, when the first philosopher has a fork and is about to pick
up the second, but the second philosopher is about to pick up the same fork, we
want to explore both situations where one or the other philosopher “wins”).

Implementation We implement this idea by introducing an execution token
and organising the processors in a linked list. In a CPM+OO state, at most
one processor has a token flag, which denotes that it is allowed to perform
non-separate steps. To achieve this, we give the non-separate rules a higher
priority and add the token as a requirement to match. These rules (e.g. rule
action_Command_non-separate) can only be executed by the processor that has
the token. Once a processor can not perform more non-separate actions, it passes
the token to the next processor. This is repeated, until no processor can make
non-separate progress any more. Once this is the case, the separate rules (such
as action_Command_separate) can be applied. These do not require the token,
which means multiple rules may be applicable in a given state, and since these
rules all have the same priority, all interleavings are explored by the system.
In the following, note that non-separate rules have priority 4 and separate

rules have priority 1. The rules pass_token, pass_token_first, and reset_to-
ken are relevant for this mechanism. These rules with priorities 3, 2, and 0
respectively handle the movement of the token flag along processors and are
shown in Figure 5.19. The token is cycled until there is one full cycle where
no processor has made progress. To achieve this, we use a node of type Ac-
tion_Executed_Indicator. Such a node is created whenever a non-separate
action is performed, e.g. by the rule action_AssignRef. When the token is on the
last processor, it gets moved to the first one (thus restarting the cycle) only if
there is an indicator node. When the token has run through the list without an
action having been performed, the rule is not applicable anymore, which enables
rules with lower priority, in particular the separate rules. At this point, all
different interleavings between separate rules are explored as intended. Similar
to the Action_Executed_Indicator, separate actions create a Reset_Token
node that indicates that a separate step has been performed, which means that
some processor may possibly continue with non-separate steps. If such a node
exists, the reset_token rule can be applied which removes the node and puts the
token back on the first processor, restarting the cycle to perform non-separate
steps. In case there is no such Reset_Token node, the rule cleanup_token is
applied that removes the token from the processor holding it, ensuring that there
are not several final configurations with the only difference being that the token
is on a different processor.

As we will see later in Chapter 7, this optimisation results in a huge improve-
ment in the size of the state-space and allows us to verify programs where the
state-spaces have been too big before.

We argue that this mechanism does not leave out interleavings of interest, as
all the possible sequences in which requests get added to queues are preserved.
By forcing a certain order for local computations, where the order of execution

5 CPM+OO: An Extension for Objects 63

Processor
− token

Processor
+ token

next

(a) Rule pass_token.
∀>0

Processor
+ token

Processor

Action_Executed_Indicator Processor
− token

@

next

(b) Rule pass_token_first.

Reset_Token

∀>0

Processor
+ token

Processor

Processor
− token

next@

(c) Rule reset_token.

Figure 5.19: Rules handling token movement.

5 CPM+OO: An Extension for Objects 64

has no influence on the outcome, we can avoid exploring a large number of states.

5.4 Rules
Here, we provide a complete overview of all rules and their priorities in the
CPM+OO system. Together with the type graph we have presented, this makes
up the complete GTS of CPM+OO. While we discuss certain rules in detail, we
do not show graphs for every rule, but instead refer the interested reader to
the supplementary material repository [21]. In addition, we also present the
priorities of the rules as we have done for CPM.
We divide the rules in CPM+OO into the following categories and discuss

them in the subsequent sections.

• Control Flow

• System State

• Queries and Other Operations

• Optimisations

• Errors

• Configuration

5.4.1 Control Flow
Control flow rules handle movement along feature graphs, in particular moving
from a state via an action node to the next state. Table 5.1 summarizes these
rules and their priorities. Most rules have direct counterparts in CPM, although
new variants have been introduced to handle additional features like non-separate
calls. What follows is a short discussion of the rules.

action_Assign_Data This rule handles an integer or Boolean assignment oper-
ation where the target is an attribute of the current object.

action_Assign_Local_Data Similarly, this rule handles integer and Boolean
assignments to variables declared in the local block. The rule accesses
local data stored on the frame instead data stored on the object, since
local declarations are only valid within the context of the current call and
therefore of the current call stack frame.

action_AssignRef Analogously to the previous two, this rule handles reference
assignments. While CPM uses a number of rules for reference assignments
(action_AssignRef_Ref_… rules), the CPM+OO rule is not injective, and
we make additional use of quantifiers to express alternatives, which makes
it possible to cover all cases with a single rule.

action_Assign_Local_Ref Analogously to action_Assign_Local_Data, this
rule handles the case for reference assignments to local variables.

action_AssignResult_… For each data type, CPM+OO has a rule for assign-
ment to the special Result value, representing return values in queries.
Figure 5.20 shows the rule for reference values.

5 CPM+OO: An Extension for Objects 65

action_Command_non-separate

action_Command_separate

action_Command_separate_restore_locks The non-separate command rule
creates a new stack frame, sets it up with parameters, and puts it on top
of the frame stack of the current processor. In addition, the rule points
the current processor to the designated feature. This represents a local
call that is executed immediately. The separate cases on the other hand
create a feature request and attach the created frame to it. The request
is attached to the target processor and will then get processed by queue
management rules. The calling processor can proceed since the separate
rules only match if the target processor differs from the calling processor,
which means that the command is asynchronous.

action_CreateRoot Since CPM+OO allows specifying the root class and pro-
cedure, we need a rule that creates the initial object, which is what
action_CreateRoot does. The configuration node with root class name and
procedure name is deleted in this rule, ensuring that only one root object
is created. The object is created according to the class template, similar
to what the rule action_New_From_Template does.

action_New_From_Template

action_New_Local_From_Template To instantiate attributes and local vari-
ables, these rules match Action_New nodes and their context. The created
object is then attached to the specified variable, where the first rule handles
attributes and the second one local variables.

action_Lock The lock action rule takes, as opposed to the lock rules in CPM, a
variable number of references. The rule can only be applied if all handlers
of the specified objects are not locked. Applying this rule implies that all
locks are obtained atomically. Figure 5.21 shows the rule graph.

action_Test A form of branching is provided with the test action, which works
analogously to the CPM test action.

action_Noop This rule simply skips an Action_Noop node and, as the name
indicates, performs no real operation.

action_TestPostcondition Like the CPM rule of the same name, this one ad-
vances a processor in a final state to the first state of the postcondition, if
the graph is configured to check postconditions.

action_Unlock_Creator

action_Unlock_Creator_non-separate Since created objects are locked by
their creators, they need to have an unlock action as their last action
in creation procedures, which removes the lock, allowing the creator to
continue execution (since the creator immediately, by convention, has to
follow with a pair of lock and unlock actions for the same object that was
just created). These rules handle the separate and non-separate case.

5 CPM+OO: An Extension for Objects 66

action_Unlock_Expr If a feature obtains locks at the start, there are corre-
sponding unlock actions that release them at the end of the feature. This
rule handles the unlock actions. Not only does it release held locks, but
in case the lock is not held (which can happen if several passed separate
arguments have the same handler) the action becomes an empty operation.

Aside from these rules, the rules involved in lock passing belong to this group.
They are not repeated here, instead we refer to Section 5.2.4, where they are
described in detail.

5 CPM+OO: An Extension for Objects 67

Processor
token

State Action_Assign_Result

State

RefOp

Object

Object

Result

Frame
Ref_Var

ERROR

∀

Action_Executed_Indicator

∃

Action_Executed_Indicator

∃

Action_Executed_Indicator

result

res

processor

@

result

in

active_frame

points_to

in

in_method

@

current

out
in_method

handler

in

ref

@

wait_for_restored_locks

Figure 5.20: Rule action_AssignResult_Ref.

State
State

Action_Lock

Processor

ERROR

RefOp Result

Processor
! in_creation

∀

∃

Object

Processor

Result

Processor

∃

Object

Processor

∃

∀

Processor
! in_creation∃

∀

Reset_Token

∃

Reset_Token

∃

Reset_Token

Void

Result

∃

Frame

active_frame

res

expr

res

handler

wait

in

@

@

@

@

@

in

handler

@

wait_for_restored_locks

handler

lock

@

@

lock

lock

@

in

in

@

result

=

result

@

lock

@@

in

in

in_method

lock

in

in

in_method

processor

in

!=processor

@

res

result

@

@

out

Figure 5.21: Rule action_Lock.

5 CPM+OO: An Extension for Objects 69

Rule Priority

restore_locks_a 71
restore_locks_b 70
action_TestPostcondition 20
prepare_lock_wait 19
pass_locks_query_new 18
pass_locks_ 17

action_Assign_Data 6
action_Assign_Local_Data
action_Assign_Local_Ref
action_Assign_Ref
action_AssignResult_Bool
action_AssignResult_Int
action_AssignResult_Ref
action_Command_non-separate
action_CreateRoot
action_New_From_Template
action_New_Local_From_Template
action_Noop
action_Test
action_Unlock_Expr

action_Command_separate 1
action_Command_separate_restore_locks
action_Lock
action_Unlock_Creator
action_Unlock_Creator_non-separate

Table 5.1: Control flow rules.

5.4.2 System State
The rules in the system state group, listed in Table 5.2, are concerned with
queue management and graph maintenance. The former includes rules that
insert queue items into the request queue and remove them when processing an
item. The latter deal with various graph states with leftover nodes, e.g. when a
processor has reached a final state and results need to be discarded.

cleanup_exp_DiscardResults_BoolOp

cleanup_exp_DiscardResults_Op

cleanup_exp_DiscardResults_RefOp

cleanup_exp_DiscardResults_RefOp_Void After evaluating an operation (in
the form of Super_Op nodes), it has a Result node attached which is
then used by the action to process. Once a processor moves past the action
node, these rules are are applied to remove the Result nodes since they
are not used anymore.

cleanup_remove_Void In certain situations, it can happen that Void nodes
are left without being connected to any part of the graph. These are
removed by this rule in order to avoid creating several states in the LTS
that only differ in the amount of unconnected Void nodes.

cleanup_Frame_Remove_controls Frames can have controls edges to proces-
sors which have been controlled prior to the call. This is required to

5 CPM+OO: An Extension for Objects 70

determine whether a statement in the require block is a pre- or wait
condition.

cleanup_FinalState_… A number of cleanup rules are applied once a processor
reaches the final state of the procedure it is executing. They perform a
range of tasks, including removing the current frame or setting the result
value such that the calling processor has access to it. The following rule
exist in this set.

• cleanup_FinalState
• cleanup_FinalState_with_Return_Value
• cleanup_FinalState_BoolQuery
• cleanup_FinalState_BoolQuery_with_next_frame
• cleanup_FinalState_Command_Empty_Call_Stack
• cleanup_FinalState_Command
• cleanup_FinalState_IntQuery
• cleanup_FinalState_IntQuery_with_next_frame
• cleanup_FinalState_Local_Data_Objects
• cleanup_FinalState_Local_Ref_Objects
• cleanup_FinalState_Param_Data_Objects
• cleanup_FinalState_Param_Ref_Objects
• cleanup_FinalState_RefQuery
• cleanup_FinalState_RefQuery_with_next_frame

queue_Insert_EmptyBusy

queue_Insert_NotEmpty When a client creates a request queue item, it does
not actually insert the item directly into the request queue. Instead, rules
like action_Command_separate simply let the Queue_Item point to the
target processor via insert_into edge. The actual insertion into the queue,
depending on whether it is currently empty or not, is performed with the
queue_Insert_EmptyBusy and queue_Insert_NotEmpty rules respectively.

queue_Remove_SingleQueued

queue_Remove_MultipleQueued Once the request queue has items, these
rules are used to remove a queue item from the request queue and instruct
the processor to start execution at the designated procedure. The first one
handles the case where exactly one item is on the queue, the second one
cases with more than one item on the queue.

prepare_lock_wait Before a lock action is performed, a wait edge is inserted
from the processor executing the action to the processors it intends to lock.
These edges are in particular useful for detecting deadlock with the rule
error_deadlock. These edges are deleted once the target processors are
locked.

5 CPM+OO: An Extension for Objects 71

Rule Priority

cleanup_Remove_Void 700

queue_Insert_EmptyBusy 600
queue_Insert_NotEmpty 590

cleanup_exp_DiscardResults_RefOp_Void 461
cleanup_exp_DiscardResults_RefOp 460
cleanup_exp_DiscardResults_Op 450
cleanup_exp_DiscardResults_BoolOp 440

queue_Remove_MultipleQueued 160
queue_Remove_SingleQueued 159

cleanup_Restore_Locks_Query 69
cleanup_Frame_Remove_controls 66
cleanup_FinalState_IntQuery 65
cleanup_FinalState_IntQuery_with_next_frame 64
cleanup_FinalState_RefQuery_with_next_frame 63
cleanup_FinalState_RefQuery 62
cleanup_FinalState_BoolQuery_with_next_frame 61
cleanup_FinalState_Objects_with_Return_Value 60
cleanup_FinalState_BoolQuery 59
cleanup_FinalState_Local_Data 58
cleanup_FinalState_Command 57
cleanup_FinalState_Command_Empty_Call_Stack 56
cleanup_FinalState 55
cleanup_FinalState_Param_Data 53
cleanup_FinalState_Param_Ref 52
cleanup_FinalState_Local_Ref 51

remove_wait_and_lock 16

Table 5.2: System state rules.

remove_wait_and_lock When a processor is in a state before a lock action,
it first creates a wait edge that points to the processor it intends to lock.
The rule action_Lock can only be applied if for all target processors, either
the lock is already held, or a wait edge exists. In the former case, the
graph is not modified any further. This rule handles the situation where
a processor has both a wait and a lock edge, in which case the wait edge
simply gets deleted.

5.4.3 Queries and Other Operations
As in CPM, we group rules related to queries and operations on integers, Booleans,
and references together. Table 5.3 lists all rules in this group. A description of
rules and rule families follows.

BoolOp_Query_… The Boolean query rules handle separate and non-separate
queries, where a new frame is created. In the separate case, a request
queue item is created and attached to the target processor, whereas in the
non-separate case, the frame is put on the current processor’s frame stack
and the processor is instructed to start executing the query.

BoolOp_RetrieveData Similar to other RetrieveData rules in both CPM and
CPM+OO, this rule fetches attributes of the current object of Boolean types.

5 CPM+OO: An Extension for Objects 72

BoolOp_… Other Boolean operations include constants, conjunction, disjunc-
tion, equality, and others. These rules, with their arguments evaluated,
perform the corresponding operation and attach the result to the matched
BoolOp node.

IntOp_… Similar to the rules handling Boolean operations, these rules handle
various integer operations, such as simple addition.

RefOp_… Analogously, a number of rules handle fetching references. This
includes getting attributes or local references, but also creating query
requests.

getlocal_… The getlocal_Data and getlocal_Ref rules prepare instances for
local variables, which are attached to the created frame later when a
command or query is called.

getparam_… Once the values of Param nodes have been evaluated, these
rules are applied to create instances in the form of Param_Data and
Param_Ref nodes which are then passed to the called query or command.

5.4.4 Optimisations
Optimisation rules are those involved in handling the execution token discussed
earlier, and are listed along with their priorities in Table 5.4. A thorough
discussion of the involved types and rules is given in Section 5.3.

5.4.5 Errors
In this group of rules, we collect error conditions. This includes properties such
as presence of a deadlock or a void call, which we are interested in when verifying
programs. In addition, we also have rules that aid us during development and
serve as “sanity checks”. For example, the rule debug_multiple_handlers matches,
if an object has more than one handler. Since this situation is not possible
according to the SCOOP specification, a match of this rule means that there is
an error in our model. Matching such “bad states” was used extensively during
development to catch bugs, but the corresponding rules have been removed from
the final GTS.
The priorities of the current error rules are listed in Table 5.5 on page 74, a

short description of them follows.

error_deadlock A large part of the motivation behind this work is detecting,
amongst other properties, deadlocks in SCOOP programs. This rule, shown
in Figure 5.22, detects deadlocks by matching, if a processor 𝑛1 has a lock
on some processor 𝑛4, but is also waiting on a processor 𝑛2, which in turn
is locked by some other processor (not shown, but expressed using the
regular expression edge -lock.wait)+) which again is waiting on 𝑛4. An
example configuration where this rule matches is shown in Section 7.2.1.

error_deadlock_2 and error_deadlock_3 Deadlock situations can not only
occur in the above case where no processor is able to acquire locks and
make progress. For example, when two processors execute the same feature

5 CPM+OO: An Extension for Objects 73

Rule Priority

getparam_Expr_Op 432
getparam_Expr_BoolOp 431
getparam_Expr_RefOp 429
getparam_Local_Ref 413
getparam_Local_Data 412
getparam_Data 411
getlocal_Data 410
getlocal_Ref 409

IntOp_constant 400
BoolOp_constant 390
RefOp_RetrieveRef_Local 386
RefOp_RetrieveParam 385
RefOp_RetrieveRef_Void 384
RefOp_RetrieveRef 383
IntOp_RetrieveParam 382
IntOp_RetrieveLocalData 381
IntOp_RetrieveData 380
IntOp_RetrieveData_with_Target 379
IntOp_Multiply 351
IntOp_Add 350
IntOp_Subtract 340
BoolOp_RetrieveData 334
BoolOp_And 333
BoolOp_GreaterEquals 332
BoolOp_Equals 331
BoolOp_GreaterThan 330
BoolOp_Equals_Ref_False 329
BoolOp_Equals_Ref_True 329
BoolOp_Equals_Ref_Void 329
BoolOp_LessEquals 321
BoolOp_LessThan 320
BoolOp_Not 310

BoolOp_Query_debug_non-separate 0
BoolOp_Query_separate
BoolOp_Query_separate_restore_locks
IntOp_Query
IntOp_Query_separate
IntOp_Query_separate_restore_locks
RefOp_Query_non-separate
RefOp_Query_separate
RefOp_Query_separate_restore_locks

Table 5.3: Query and operation rules.

Rule Priority

pass_token 3
pass_token_first 2
cleanup_token 0
reset_token 0

Table 5.4: State-space optimisation rules.

5 CPM+OO: An Extension for Objects 74

ERROR
status = ”Deadlock detected”

Processor

Processor

Processor

ERROR

lock

wait

(−lock.wait)+

Figure 5.22: Rule error_deadlock.

Rule Priority

debug_Multiple_Handlers 1000
error_Command_Void_Target
error_Deadlock
error_Deadlock_2
error_Deadlock_3
error_Postcondition_Fail
error_Query_Void_Target

Table 5.5: Error rules.

which contains a wait condition that requires the other processor to finish
this particular feature, then both processors can lock the request queue of
the other one. They then both wait for the other one to handle the query
request generated in the wait condition and therefore none of them makes
progress. The rules error_deadlock_2 and error_deadlock_3 handle such
situations for two or more processors respectively.

error_PostconditionFail If a postcondition is evaluated to False, this rule
puts the processor in a special state of type State_Postcondition_Fail
and creates an ERROR node with attached information about where the
postcondition has failed.

error_Command_Void_Target

error_Query_Void_Target If a target of a command or query has been eval-
uated to a void reference, then the call is invalid, which is detected and
reported with these two rules.

5.4.6 Configuration
Currently, there is only one rule in this category, the rule config_CheckPostcon-
dition, which is applied if one specifies that postcondition should be checked. It
has a high priority and advances a processor from a final state to the start of

5 CPM+OO: An Extension for Objects 75

the postcondition, ensuring that no cleanup rules are applied before the postcon-
ditions have been checked. The processor will evaluate the postconditions and
if everything evaluates to true, end up in another final state where the normal
cleanup rules can be applied. If no such configuration node exists, this rule can
not be applied and the cleanup rules take place, ignoring possible postcondition
related parts of the graph.

5.5 Testing
The CPM+OO model has been developed in an iterative fashion by adding features
described in this chapter to the CPM model one by one. Changing the GTS is
error-prone. It is all too easy to alter the behaviour such that it does not reflect
the intended one any more by adding rules that contain bugs, changing priorities
that result in certain rules being applied in a state where we do not want the rule
to be applicable, or altering the type graph and rendering existing rules useless.
To ensure that the model stays true to the intended behaviour, we use a number
of start graphs representing test programs and specify the expected output. For
example, along with evolving the model, we also evolve the examples of the
dining philosophers with both the correct and the deadlock implementation. Our
testing utilities then explore the state-spaces of these examples and match it
against the expected behaviour which checks properties like state-space size, the
number of final configurations, and whether ERROR nodes are present in final
configurations.
Once we finalised the type graph for the current CPM+OO model, we used

this testing approach in combination with our translation tool, described in
Chapter 6. This allows us to write SCOOP programs and specify the expected
output of our state-space exploration tool. The testing utility then first translates
the source code to a CPM+OO start graph, and then explores the state-space and
checks whether the actual output matches the expected output.

5.6 Future Work
With CPM+OO at its current state, we are able to simulate a number of SCOOP
features directly in the model, as opposed to simulating them using more basic
CPM constructs. We added rules and types to CPM that make the model more
expressive and allow start graphs that closely resemble the corresponding SCOOP
source code.

To support more SCOOP features, one possible way is to extend the CPM+OO
model to directly support those features. This has the advantage that programs
that make use of those features can be represented directly in a compact and
readable fashion. Another approach is simulating these features using existing
CPM+OO functionality. In our automatic translation tool, it would require addi-
tional work to express features not directly supported by CPM+OO, resembling
the work of traditional compilers.
We have several strategies in mind on how to implement certain missing

features. Since they often not only involve considerations regarding the CPM+OO
model, but also the translation tool discussed in the next chapter, we postpone
a more thorough discussion of future work until Section 6.6.

Chapter 6

Translation

With CPM+OO, we introduced object-oriented features of SCOOP to the CPM
model. Thanks to that effort, more SCOOP programs can now be represented and
simulated using the model. Since both CPM and the extensions that we introduce
in CPM+OO are closely modelled after SCOOP, mapping source code to start
graphs becomes a less tedious task. In this chapter, we discuss the automatic
translation tool that translates a subset of SCOOP to CPM+OO start graphs.

6.1 Overview
Translating a SCOOP program to CPM+OO consists of a number of steps, as
depicted in Figure 6.1 where the tool progresses from top to bottom. In the
first step, SCOOP source files are parsed and syntax trees are generated. Using
these syntax trees, an internal representation of the program is created in two
steps: First the syntax trees are walked to gather typing information of features
and variables. Then, in a second pass through the syntax tree, we use typing
information to create a structure that closely relates to the CPM+OO type graph.
In the final two steps, the intermediate representation is transformed to a simple
graph representation, which also contains layout information. Finally, this graph
can be traversed and rendered as an XML file that can be used in the CPM+OO
transformation system.
The tool is implemented in Java and uses a number of libraries, namely the

following.

ANTLR 4.4 ANother Tool for Language Recognition (ANTLR) is a parser gen-
erator that, given a grammar in Extended Backus-Naur Form (EBNF),
generates a lexer and parser in Java. The created classes offer a large
amount of flexibility and implement the visitor pattern, providing a natural
way to traverse the parse tree. While this is possible with other parser
generators as well, the modern and clean nature of the generated classes
have convinced us to use ANTLR for this project.

JUnit The JUnit framework is used to automatically test various aspects of
the implementation.

Apache Commons The commons libraries offer a wide variety of reusable

76

6 Translation 77

software components. This project makes use of the mathematics features,
in particular for case studies and evaluation purposes.

GROOVE Not only does GROOVE provide graphical and command-line interfaces,
but it can also be used as a library in custom software. We use the library
to perform exploration and verification from within our toolchain. This
enables us to create more specific output tailored to CPM+OO as opposed to
the generic GTS output provided by the command-line interface of GROOVE.

What follows are more detailed technical descriptions of the individual steps.

6.2 Translating Programs
With the help of ANTLR, the first step of parsing consists of writing a grammar
in the ANTLR grammar format. We did not write this from scratch; instead we
adapted the grammar found in EVE [22] for this usage. During this process, we
modified the grammar to conform to the ANTLR file format. Given this grammar,
ANTLR is able to generate a lexer and a parser which can be used in our tool.
It is important to note that at this stage, we consider all SCOOP programs.

This means that we are able to parse programs with more advanced features,
such as inheritance and generics. The decision whether a program is translatable
or whether it contains unsupported features is performed when inspecting the
syntax tree (steps 2a and 2b in Figure 6.1).
To perform step 2a, the tool uses a class that implements the SCOOP syntax

tree visitor. It keeps track of the class currently inspected and stores the following
type information for each class:

• Declared routines and their parameter types and return types (if any).

• Declared attributes and their types.

• A list of creation procedures.

It is necessary to record this typing information in advance, as we need to know
the types of symbols in the next step. In a single-pass approach, it is possible
to encounter symbols from classes that have not yet been analysed, therefore
making it impossible to know whether it is an integer, Boolean, or reference
symbol.
After having gathered the types of declarations, we pass through the parse

tree once again. This time, we create a number of CPMOGraph objects, one for each
parsed class. The CPMOGraph class and its subclasses are closely related to the
CPM+OO type graph. In fact, most types in CPM+OO have a direct representation
as a subclass of CPMOGraph. For example, we use a class BoolConstant that
inherits from BoolOp, which in turn inherits from the class Op. Similarly, in
CPM+OO the BoolOp_Constant type is a subtype of BoolOp, which in turn is a
subtype of Super_Op. This direct correlation is useful in a variety of ways. In
particular, translating a CPMOGraph to a CPM+OO start graph is straightforward,
as we can simply go through the structure and create a CPM+OO graph node (in
a generic graph representation) for each encountered CPMOGraph object. This
also means that the “compiler effort”, i.e. relating source code statements (in
the form of parts of the syntax tree) to CPM+OO nodes is concentrated in one

6 Translation 78

*.e files

Parser

Syntax Tree

Type Information

CPM+OO Objects

Graph

GXL Output

1

2a

2b

2b

3

4

generated by ANTLR parser gen-
erator

collect typing information

create CPM+OO representation
using gathered type information
to distinguish integers, Booleans,
and references

create simple graph representa-
tion with layouting information

render as GXL for usage in
GROOVE and CLI tools

Figure 6.1: Overview of the steps included in translating a set of Eiffel classes to
a CPM+OO graph rendered as a GXL file.

6 Translation 79

step, namely the visitor class that implements step 2b. This second visitor also
handles situations of input programs that use features currently not supported.
If our tool encounters such a feature in step 2b, it either ignores it (in cases
where the feature does not influence the program execution, e.g. a note block
at the top of a class) or aborts the translation and prints the part of the source
code that resulted in the tool to fail. This way, we have a single point in the
tool where the decision is made whether a program is supported, and only one
point at which translation can fail due to the nature of the input program.

6.3 Supported SCOOP Features
For correct translation and simulation in CPM+OO, we require a complete SCOOP
program to be passed as a set of input files. In particular, all referenced classes
must be part of the input. A number of other restrictions on the input programs
apply for the tools to function correctly. In this section, we give an overview of
the supported features of SCOOP and discuss the parts that are missing.
The translation tool focuses on the basic features of SCOOP. The goal is

not to support the complete SCOOP language, but enough of the language to
allow writing expressive programs in an object-oriented manner. The following
features are currently supported.

Classes and Objects CPM+OO supports objects and classes natively. The
translation creates object templates for each input class consisting of the
class name and the names and types of its attributes.

Feature declarations Both routines (with the do keyword) and attributes are
translated. While attributes are part of the class template, we also create a
getter routine (consisting of simply assigning the attribute to Result) for
each attribute. This makes it possible to create Queue_Items that call
the getter functions instead of accessing the data from other processors
directly (which would cause CPM+OO to misbehave, as the requests would
not be served in FIFO order anymore).

Routine declartions In routines, we support common constructs such as for-
mal arguments, preconditions, wait conditions, and postconditions.

Local declarations Local variables of reference, integer, and Boolean type are
supported. Integer and Boolean types are special native types in CPM+OO
and behave like expanded types. Generic support for expanded types is
currently not available.

Instructions A number of instructions are supported, namely:

• Creation calls with the create keyword and an explicit creation
procedure.

• Local calls (with target Current).
• Qualified calls.
• Assignment instruction.
• if-then-else conditional.
• Loop instruction.

6 Translation 80

• Integer and Boolean literals.

Expressions We support arbitrarily complex expressions, which are translated
to a single Op node in the output graph. As a consequence of leaving out
a number of features such as agents, expressions related to those features
are not supported (e.g. agents inside expressions).

Both CPM+OO and the translation tool currently lack support for a number
of features. Most prominently, we do not support inheritance. With this, a
number of related SCOOP features are not supported either, for example partial
classes, the redefinition of features, arrays, generics, agents, and others. In
addition, we currently leave out a number of other language features, such as
class invariants, old values in postconditions, and others. In Section 6.6, we
give an overview of the most important features currently missing and present
possible implementation strategies as future work.

6.4 Output
Once the intermediate representation of the input files is generated (in the
form of CPMOGraph objects), the remaining task is outputting the representation
as a GXL file. To achieve this, we use the visitor pattern once again: The
interface CPMOGraphVisitor allows implementing classes that pass through the
CPM+OO structure. This is used to create a simple graph representation using
the output.graph.Graph class and its subclasses. These classes implement a
straightforward graph representation with nodes and directed edges. In addition,
nodes can also store position values. This allows us to create start graphs that are
“human readable” when rendered in GROOVE. In particular, we organise routine
subgraphs by aligning states and actions from left to right, while attaching
additional nodes, like parameters and target operations, above them.

Using two separate steps to output a CPMOGraph structure to XML may seem
unnecessary, as we could as well just have generated the GXL file directly. But
using a separate simple graph representation has the advantage that we can
separate the tasks of creating graphs with layout information and rendering them
in some format (in our case GXL). This leaves more flexibility when extending
the program, for example when we want to render the graph in another output
format we can traverse a simple graph structure with edges and positioned nodes.
When extending the CPM+OO model, we simply have to adjust the part that
generates a graph from CPMOGraph objects, but do not have to adjust anything
related to the GXL output. This leaves us with a well structured design that
cleanly separates concerns and can easily be extended at various stages.

6.5 Testing
As briefly mentioned in Section 5.5, we test our translation tool in conjunction
with the model by providing SCOOP programs, translating them, and exploring
their state-spaces. The output is matched against the expected output using
the JUnit framework. With this approach, the start graph is implicitly tested
against the type graph presented in Section 5.1. By assuming that the model
behaves correctly at this point, we can test the translation tool by simulating

6 Translation 81

the generated start graph and analysing the output. In case the output does not
match, we most likely have an error in the translation tool.

We do realise that this is hardly “unit testing” in the traditional sense, instead
we test the toolchain as a whole. While this may be suboptimal in general, we
are confident that it is sufficient for the size of this project and due to the fact
that this is a prototype implementation. In addition, we develop only a single
part of the toolchain at a time, i.e. we either change the translation tool or the
CPM+OO model, which allows us to check the influence of the changes on the
final output.
To make sure that we catch the expected behaviours when translating and

modelling, we use a wide range of test input programs and specify the expected
behaviour. This includes small programs that focus on certain features, e.g.
ones that use a wide range of available query types, as well as larger example
programs that resemble real programs, such as the ones used in the case studies
in Chapter 7.

6.6 Future Work
In Section 5.6, we briefly discussed features missing from the CPM+OO model,
and in Section 6.3 we named some SCOOP features that are not handled in
the translation tool. In this section, we propose ideas to how certain features
could be implemented in the future. Since this not necessarily only affects the
translation to the CPM+OO model, but may require changes in the model itself,
we discuss possible changes to the CPM+OO model as well.

In general, supporting additional features can be tackled by either extending
the compiler to translate to the current CPM+OO model, which means that the
feature is simulated using more primitive CPM+OO constructs, or by extending
CPM+OO itself by adding direct support of these features. The advantage of the
latter is that program representations become easier to read and understand, and
a more direct translation can be made from source code to start graph. While
this is a desirable outcome, it also requires careful reasoning about the model
changes, something one can avoid if only the compiler is extended.

6.6.1 Inheritance
The most important feature towards supporting more complex SCOOP programs
is inheritance. The main difficulty in supporting inheritance is the complexity
and feature-richness of the semantics related to inheritance. SCOOP offers a
wide range of mechanisms, such as multiple inheritance, redefining, undefining,
and renaming of features, partial classes, and others. As a result, adding these
features to either the translation tool or CPM+OO requires careful analysis of the
underlying semantics. Identifying and isolating individual parts of the inheritance
mechanisms and modelling them one by one (where possible) seems to be the
right approach to tackle this task, which allows us to be confident in the resulting
model.
To implement simple inheritance (i.e. using the inherit keyword), one

strategy would be to “unfold” the inheritance structure during translation. This
means that for a class FOO that inherits feature baz from class BAR, we simply
create the feature baz for both classes (in fact, it would suffice to have a feature

6 Translation 82

with two init state nodes, one for FOO.baz and one for BAR.baz). Whether
this is a feasible approach remains to be evaluated.
Extending CPM+OO for handling simple inheritance is another possibility.

Implementing the semantics directly would require representing the inheritance
structure in the start graph. When performing queries and commands, rules
would then need to first determine the dynamic type of the target object and
based on this traverse the inheritance structure and select the correct feature to
be applied.

6.6.2 Expanded Types
In CPM+OO, we only support integer and Boolean expanded types. A more gen-
eral approach would distinguish between expanded types and normal (reference)
types. Supporting expanded types is an important step towards full support of
SCOOP, but will require considerable effort and requires extending the CPM+OO
model, as expanded types are treated different than normal types in the SCOOP
semantics [13], and adding them to CPM+OO has implications on existing parts
of the model.

6.6.3 Miscellaneous
A number of other features are currently not supported by our toolchain. This
includes more exotic features of SCOOP like non-object calls, assigner calls, but
also basic features like character and floating point number literals or class
invariants. Adding these features to CPM+OO have currently lower priorities
as opposed to inheritance and expanded types, but will be considered once the
above is implemented properly.

Chapter 7

Case Studies & Evaluation

In the previous two chapters, we discussed the main contribution of this work that
allows us to automatically map a subset of SCOOP to CPM+OO start graphs and to
verify state-space properties using GROOVE. One part of the motivation behind
this work is to provide a “one-click” solution that verifies certain properties—e.g.
deciding whether a deadlock can occur—for a given input program written in
that SCOOP subset.
In this chapter, we inspect various SCOOP programs as case studies, show

how they are translated to a CPM+OO graph using our toolchain, and show the
properties we can verify. We provide metrics for the programs to show how
the model behaves in various situations and present insights about the gained
verification results. We compare our toolchain to CPM and discuss the obtained
results, before we close this chapter with an outlook on future work.
We use the following abbreviations to denote program configurations in this

chapter.

DP(𝑛, 𝑚, {eat, bad_eat}) Dining philosophers with 𝑛 philosophers and 𝑚
rounds, as presented throughout this thesis. The last parameter indicates
which implementation is used, where eat denotes the correct implementation
and bad_eat the implementation that can result in deadlock. This program
is presented as a case study in Section 7.2.1.

DS(𝑛, 𝑚, 𝑜, {bad, good}) Dining savages with pot size 𝑛, 𝑚 savages, and 𝑜
hunger per savage. The final parameter indicates which implementation
is used, where bad is the one that can result in savages being stuck, and
good the one that always terminates. This program is presented as a case
study in Section 7.2.2.

CS(𝑛) Cigarette smokers problem with 𝑛 rounds. In this problem, a number of
cigarette smokers require different ingredients to build cigarettes, which are
provided by a dealer. This program is discussed as a case study in 7.2.3.

SEPC(𝑛) Single-element producer/consumer with 𝑛 rounds. In this program,
a producer and a consumer are created. The producer creates 𝑛 items that
are consumed by the consumer. The producer has a buffer of size 1, which
means that produce and consume calls have to alternate.

83

7 Case Studies & Evaluation 84

Counter(𝑛, 𝑚) Counter with 𝑛 counters and 𝑚 counts per counter. This is
a simple program that spawns a number of counters (𝑛), which simply
perform the task of incrementing an integer from 0 to 𝑚. While it does not
require any synchronisation, it is a small and easy to understand example
that showcases SCOOP features.

BS(𝑛, 𝑚, 𝑜) Barbershop with 𝑛 customers, 𝑚 chairs, and 𝑜 haircuts per cus-
tomer. This program solves the barbershop problem, where a barber serves
several customers. The barber can only cut one customer’s hair at a
time. Luckily, a waiting room with a number of chairs is available, where
customers can wait. Customers can come in the barbershop and take a
seat in the waiting room if there is an unoccupied chair. Otherwise, they
leave and come back later.

While the cigarette smokers program is our own implementation, the others are
taken from the EVE source code repository [22] and adapted to match the input
specification of our toolchain.

The above programs make up the main part of the benchmark programs that
we used during development of CPM+OO and the translation tool. In addition,
we have a number of smaller programs that focus on a certain aspects of the
model and translation (e.g. one program provides a wide range of statements
involving queries).

7.1 Setup
The values presented in this chapter have been, if not otherwise stated, obtained
using the latest revision of the tools, as described in Chapters 4, 5 and 6. We
investigate how the system behaves with different setups (e.g. disabling the token
passing mechanism for state-space reduction) and use the following two main
configurations.

Default Here, all optimisations are turned on, and all rules (in particular error
rules) are enabled. Pre- and postconditions are checked as well.

No token optimisation In this configuration, we disable the token optimisa-
tion, giving all actions and query operations the same priority. Error rules
and pre- and postcondition checking are still enabled.

Values presented in this Chapter represent the median of five (where ap-
plicable), and are obtained from a workstation with an Intel Core i7-4810MQ
CPU and 16 GB main memory. Runtimes and memory usage are obtained using
Java library classes (for CPM+OO measurements) and GNU time 1.7 (for CPM
measurements in Table 7.6 only).

7.2 Case Studies
In this section, we take a closer look at three programs.
We start by we revisiting the dining philosophers problem one last time

and show how the implementation behaves using our toolchain. We present
the implementation and (parts of) the generated start graph, before discussing

7 Case Studies & Evaluation 85

evaluation results. In addition, we compare CPM+OO to CPM+OO without
token optimisations, and we show how a deadlock can be detected in the bad
implementation.
In the second case study, we present the dining savages problem and again

inspect two implementations, where the “bad” implementation does not behave as
expected. We point out how our toolchain is not able to detect certain undesired
behaviours.

Finally, we present the cigarette smokers problem, where we show our imple-
mentation and discuss results obtained using both full state-space exploration
and LTL formula checking.

7.2.1 Dining Philosophers
In this section, we conclude our running example by presenting an implementation
in SCOOP that is in the subset of programs supported by our translation tool.
We discuss parts of the start graph and take a closer look at how the program is
simulated. Finally, we show how we can detect problems with the implementation,
in particular, we show by example how one can detect a deadlock situation.

Source Code

Listings 7.1, 7.2, and 7.3 show the three classes APPLICATION, PHILOSOPHER,
and FORK that make up the full working example, with APPLICATION.make as
the root procedure. The philosopher not only contains a correct implementation
of the eat feature (which gets called on line 51 in Listing 7.2), but also an
implementation called bad_eat which, when called instead of eat, can result in
deadlock. When discussing the analysis we take a look at how CPM+OO handles
both variants.

1 class
2 APPLICATION
3

4 create
5 make
6

7 feature -- Initialisation
8

9 i: INTEGER
10 first_fork , left_fork , right_fork: separate FORK
11 a_philosopher: separate PHILOSOPHER
12

13 make
14 -- Create philosophers and forks
15 -- and initiate the dinner.
16 do
17 philosopher_count := 3
18 round_count := 1
19

20 -- Dining Philosophers with `philosopher_count ' philosophers
and `round_count ' rounds.

21

22 from
23 i := 1
24 create first_fork.make
25 left_fork := first_fork
26 until

7 Case Studies & Evaluation 86

27 i > philosopher_count
28 loop
29 if i < philosopher_count then
30 create right_fork.make
31 else
32 right_fork := first_fork
33 end
34 create a_philosopher.make (i, left_fork , right_fork ,

round_count)
35 launch_philosopher (a_philosopher)
36 left_fork := right_fork
37 i := i + 1
38 end
39 end
40

41 feature {NONE} -- Implementation
42

43 philosopher_count: INTEGER
44 -- Number of philosophers.
45

46 round_count: INTEGER
47 -- Number of times each philosopher should eat.
48

49 launch_philosopher (philosopher: separate PHILOSOPHER)
50 -- Launch a_philosopher.
51 do
52 philosopher.live
53 end
54

55 end

Listing 7.1: APPLICATION class.

1 class
2 PHILOSOPHER
3

4 create
5 make
6

7 feature -- Initialisation
8

9 make (philosopher: INTEGER; left, right: separate FORK;
round_count: INTEGER)

10 -- Initialise with ID of `philosopher ', forks `left' and `
right', and for `round_count ' times to eat.

11 require
12 valid_id: philosopher > 0
13 valid_times_to_eat: round_count > 0
14 do
15 id := philosopher
16 left_fork := left
17 right_fork := right
18 times_to_eat := round_count
19 ensure
20 id_set: id = philosopher
21 left_fork_set: left_fork = left
22 right_fork_set: right_fork = right
23 times_to_eat_set: times_to_eat = round_count
24 end
25

26 feature -- Access
27

7 Case Studies & Evaluation 87

28 id: INTEGER
29 -- Philosopher 's id.
30

31 feature -- Measurement
32

33 times_to_eat: INTEGER
34 -- How many times does it remain for the philosopher to eat?
35

36 feature -- Basic operations
37

38 eat (left, right: separate FORK)
39 -- Eat, having acquired `left' and `right' forks.
40 do
41 -- Eating takes place.
42 end
43

44 live
45 do
46 from
47 until
48 times_to_eat < 1
49 loop
50 -- Philosopher `Current.id' waiting for forks.
51 eat (left_fork , right_fork)
52 --bad_eat
53 -- Philosopher `Current.id' has eaten.
54 times_to_eat := times_to_eat - 1
55 end
56 end
57

58 bad_eat
59 -- Eat, by first picking up `left_fork ' (and picking up `

right_fork '
60 -- in the `pickup_left ' call.
61 do
62 pickup_left (left_fork)
63 end
64

65 pickup_left (left: separate FORK)
66 -- After having picked up `left', proceed to pick up `

right_fork '.
67 do
68 pickup_right (right_fork)
69 end
70

71 pickup_right (right: separate FORK)
72 -- Both forks have been acquired at this point.
73 do
74 -- eating takes place
75 end
76

77 feature {NONE} -- Access
78

79 left_fork: separate FORK
80 -- Left fork used for eating.
81

82 right_fork: separate FORK
83 -- Right fork used for eating.
84

85 invariant
86 valid_id: id >= 1
87

7 Case Studies & Evaluation 88

88 end

Listing 7.2: PHILOSOPHER class.

1 class
2 FORK
3

4 create
5 make
6

7 feature -- Initialisation
8

9 make
10 do
11 end
12

13 end

Listing 7.3: FORK class.

In the root procedure (APPLICATION.make), we create three philosophers
and forks between each pair of adjacent philosophers. The philosophers get
initialized with an identifier, the two separate forks they need to pick up, and
a round count value, indicating how often they need to eat before terminating.
Note that philosophers are started using the call launch_philosopher (
a_philosopher). This is required since a_philosopher is of separate type
and must be controlled. Passing them as an argument makes it controlled in
the called feature, where we are allowed to make the call philosopher.live.
The code of the philosopher’s make procedure also uses pre- and postconditions,
which we can inspect later through model checking by our verification tools.
Note that the preconditions are not wait conditions, as no involved variables are
of separate type.

Start Graph

We do not include the complete generated start graph here—with 287 nodes
and 789 edges it is too large to print. Instead, we refer to [21], where one
can find the CPM+OO GTS and the start graph dining_philosophers_3_philoso-
phers_1_round_eat, which represents this instance. We focus on highlighting
several interesting parts of the graph and its behaviour under CPM+OO here.
Figure 7.1 shows the live procedure of the philosopher (nodes have been

rearranged manually for improved readability, but note that the translation
tool already performs basic positioning of the graph nodes). The feature starts
at node 𝑛5. The first statement in the feature (until times_to_eat < 1)
is represented as a pair of Boolean operations with nodes 𝑛9 and 𝑛11 and
corresponding Action_Test nodes that implement the branching. Following
the path to 𝑛19 means that times_to_eat < 1 and consequently we end up
in node 𝑛2, the final state. Otherwise, the other branch is followed where the
loop body is implemented with state nodes 𝑛14, 𝑛18, and 𝑛15. Inside the loop,
two actions represent the statements eat (left_fork , right_fork) and
times_to_eat := times_to_eat - 1. State 𝑛15 leads to two test actions
evaluating the until part.

n5
State
init

method = ”PHILOSOPHER.live”
n1

Action_Test

n9
BoolOp_Not

n11
BoolOp_Less_Than

n16
Op_Retrieve_Data
var = ”times_to_eat”

n17
Op_Constant
value = 1

n14
State

n13
Action_Command

method = ”PHILOSOPHER.eat”

n20
Param_Expr

param = ”Current”

n23
RefOp_Retrieve_Ref

var = ”Current”

n7
Param_Expr
param = ”left”

n6
RefOp_Retrieve_Ref
var = ”left_fork”

n12
Param_Expr
param = ”right”

n10
RefOp_Retrieve_Ref
var = ”right_fork”

n18
State

n22
Action_Assign

var = ”times_to_eat”

n8
Op_Subtract

n3
Op_Retrieve_Data
var = ”times_to_eat”

n0
Op_Constant
value = 1

n15
State

n21
Action_Test

n4
Action_Test

n2
State
final

n19
Action_Test bexp

target

expr

bexp

in

param

a_1

a_2

out

param

a_2

in

in

out

out

in

expr

a_1

in

a_1

bexp

aexp

out

in

out

expr

bexp

out

Figure 7.1: Representation of PHILOSOPHER.live in the start graph.

7 Case Studies & Evaluation 90

The creation procedure in the philosopher class, shown in Figure 7.2, ini-
tializes a number of attributes. In addition, it contains pre- and postconditions
which validate the passed arguments and ensure that the attributes have been
successfully set. In the graph, the procedure starts at node 𝑛51 with an init state.
First, the handlers of the separate arguments are locked with an Action_Lock
node. The following test actions represent preconditions. Note that nodes 𝑛43
and 𝑛6 have a flag precondition_fail . This denotes that these actions represent
the path that is taken when a pre- or wait condition fails. This does not nec-
essarily mean that the tested statement is a precondition. Depending on the
objects included in the test and whether their handlers are controlled or not,
they are either preconditions or wait conditions. This can only be detected at
runtime, which is handled by the rule action_Test. When the rule is applied
with an action with the precondition_fail flag and it turns out that it is in fact
a precondition, then the rule creates an ERROR node, which has the effect
that the system is immediately in a final state, which can be analysed by the
postprocessing tools.
Once a processor is in state 𝑛56, the method body gets executed. When the

processor reaches node 𝑛50, there are two possibilities: Either postcondition
checking is disabled, in which case the processor returns to the calling procedure
or becomes idle, or postcondition checking is enabled, in which case the edge to
𝑛20 is followed.

n51
State
init

method = ”PHILOSOPHER.make”

n64
Action_Lock

n47
RefOp_Retrieve_Param

var = ”left”

n41
RefOp_Retrieve_Param

var = ”right”

n24
State

n40
Action_Test

n3
BoolOp_Greater_Than

n27
Op_Retrieve_Param
param = ”philosopher”

n45
Op_Constant
value = 0

n56
State

n21
Action_Test

n30
BoolOp_Greater_Than

n60
Op_Retrieve_Param
param = ”round_count”

n2
Op_Constant
value = 0

n53
State

n5
Action_Assign
var = ”id”

n18
Op_Retrieve_Param
param = ”philosopher”

n8
State

n31
Action_Assign_Ref
ref = ”left_fork”

n54
RefOp_Retrieve_Param

var = ”left”

n29
State

n1
Action_Assign_Ref
ref = ”right_fork”

n7
RefOp_Retrieve_Param

var = ”right”

n26
State

n39
Action_Assign

var = ”times_to_eat”

n9
Op_Retrieve_Param
param = ”round_count”

n61
State

n59
Action_Unlock

n10
RefOp_Retrieve_Param

var = ”left”

n28
State

n13
Action_Unlock

n15
RefOp_Retrieve_Param

var = ”right”

n23
State

n22
Action_Unlock_Creator

n50
State
final

n20
State

n62
Action_Test

n4
BoolOp_Equals

n58
Op_Retrieve_Data

var = ”id”

n34
Op_Retrieve_Param
param = ”philosopher”

n55
State_Postcondition_Fail

n48
State

n17
Action_Test

n63
BoolOp_Equals

n33
RefOp_Retrieve_Ref
var = ”left_fork”

n52
RefOp_Retrieve_Param

var = ”left”

n66
State

n37
Action_Test

n19
BoolOp_Equals

n46
RefOp_Retrieve_Ref
var = ”right_fork”

n35
RefOp_Retrieve_Param

var = ”right”

n42
State

n11
Action_Test

n49
BoolOp_Equals

n57
Op_Retrieve_Data
var = ”times_to_eat”

n14
Op_Retrieve_Param
param = ”round_count”

n36
State
final

n6
Action_Test
precondition_fail

n32
BoolOp_Not

n44
State

n38
Action_Unlock

n12
RefOp_Retrieve_Param

var = ”left”

n0
State

n16
Action_Unlock

n65
RefOp_Retrieve_Param

var = ”right”

n43
Action_Test
precondition_fail

n25
BoolOp_Not

out

out

bexp

bexp

in

out

out

in

bexp

out

out

out

in

in

out

in

out

out out

a_1

a_1

out

r_2

out

expr

in

aexp

a_1

in

out

a_1

bexp

a_2

r_2

in

expr

bexp

a_2

in

in

expr

bexp

in

out

r_1

out

bexp

in

in

in

aexpexpr
expr

bexp

out

in

a_1

expr

a_2

in

out

out

out

expr

a_2

check_postcondition

out in

a_1 r_1

in

out

expr

Figure 7.2: PHILOSOPHER.make start graph.

7 Case Studies & Evaluation 92

Results

With the start graph discussed earlier, we can now verify different properties
of the dining philosophers instance. We are not only interested in whether a
deadlock can occur, but we also want to make sure that we never have a call
where the target is a void reference, or that postconditions never fail.

We start with the default configuration with optimisations enabled. Table 7.1
shows results with varying numbers of philosophers and rounds (number of times
each philosopher eats) for both implementations (eat and bad_eat). To obtain
these results, we used breadth-first search and explored the full state space.
Example output from our command-line tool for an instance with the bad_eat
implementation looks as follows.

1 SCOOP sources: dining_philosophers/
dining_philosophers_2_philosophers_1_round_bad_eat

2 Exploration type: TERMINATION
3 Start graph size (#nodes / #edges): 326 / 494
4 Final graph size (#nodes / #edges): 382 / 650 (0.00, 0.00)
5 Median States: 1282 (0.00)
6 Median Transitions: 1309 (0.00)
7 Median wall clock time: 1.38 (0.57)
8 Median total memory used: 539,321,016 (102,715,198.36)
9 Median new memory since start: 2,618,731 (204,233.22)
10 Min/max result states: 2/2
11 Min/max final states: 2/2
12

13 The simulation generated an error node with label: "Deadlock
detected".

Our tool explores the complete state-space and inspects final graphs. If there
are nodes of type ERROR, the associated information is fetched and reported.
While this kind of output is rather rudimentary, one can use GROOVE to save
the offending traces and inspect the program execution to find the root cause of
the error.
In cases where no error node is present, our tool first checks whether there

are in_method edges in final states, which means that there are processors still
executing code while no rule can be applied any more. This indicates that the
program is stuck. This situation should not arise, as it means that the program
is stuck without a corresponding error rule, which can be either a bug in our
implementation, or an error situation we did not define and capture with a rule
yet.

Inspecting the numbers in Table 7.1 reveals that we are able to verify deadlock
freedom, absence of pre- and postcondition failures (although only a limited
number of such statements are in the source code) for the correct implementation
with up to seven philosophers, which requires less than 150,000 states and
transitions. The runtimes are reasonable, with most instances being evaluated
in less than a minute. The numbers for the bad_eat implementation are
substantially larger. Due to the fact that locking of the forks is not atomic
anymore, more interleavings are possible. Even with the smallest instance, this
results in an increase of roughly 40% in the amount of states and transitions. With
larger instances, the effect is even bigger, with the one with seven philosophers
having a state-space of almost 3,000,000 states. The runtime of roughly 85
minutes is substantially longer than the runtime of the corresponding correct
implementation.

7 Case Studies & Evaluation 93

u� u� Impl. States Transitions Time [stddev] (s) Memory [stddev] (GB)

2 1 eat 962 1019 1.26 [0.49] 0.59 [0.09]
3 1 2976 3134 3.08 [0.70] 0.67 [0.18]
3 2 7974 8662 8.23 [0.67] 0.96 [0.20]
3 3 16,208 17,836 15.89 [0.70] 1.96 [0.41]
3 5 45,264 50,410 45.98 [0.87] 3.16 [0.72]
4 1 8326 8720 9.38 [0.84] 1.29 [0.27]
5 1 21,814 22,748 26.18 [0.87] 2.98 [0.91]
6 1 54,638 56,788 75.14 [1.03] 4.23 [0.27]
7 1 132,518 137,372 202.84 [3.82] 5.51 [0.41]

2 1 bad_eat 1358 1423 1.70 [0.44] 0.49 [0.07]
3 1 6528 6888 6.69 [0.43] 0.99 [0.19]
3 2 21,130 22,372 22.12 [1.31] 1.91 [0.42]
3 3 47,859 50,759 48.81 [1.69] 3.82 [0.76]
3 5 150,471 159,855 155.88 [3.26] 5.17 [0.24]
4 1 31,105 32,961 37.89 [1.20] 3.11 [0.88]
5 1 144,891 154,116 187.63 [2.51] 5.25 [0.24]
6 1 662,009 706,430 963.65 [10.73] 9.36 [1.04]
7 1 2,972,519 3,181,087 5001.01 [21.04] 12.46 [0.10]

Table 7.1: Results from full state-space exploration of various instances of the
dining philosophers program, where 𝑛 denotes the number of philosophers and 𝑖
the number of times each philosopher eats.

If one is only interested in detecting whether a deadlock can occur or not, an
alternative approach is to use LTL formula exploration instead of full state-space
exploration. In this approach, one can instruct GROOVE to try and find a
counterexample to an LTL formula. To detect a deadlock, we can use the formula
! F error_deadlock. Table 7.2 shows the corresponding results. As we can see,
the numbers of explored states and transitions for the correct implementation
do not differ from Table 7.1, as, in order to prove that no counterexample exists,
one has to explore the full state-space. For the bad implementation on the
other hand, the number of explored states and transitions are substantially
smaller. While this may seem like an improvement at first, taking a look at
the runtimes reveals that checking the formula comes at a cost. While the
smaller instances of the correct implementation take roughly the same time in
both cases, using LTL exploration takes longer with the larger instances. In
the bad implementation, finding a counterexample is faster for small instances,
but with larger ones, it takes longer to check the formula, even though fewer
states are explored. In the case with 6 philosophers, finding a counterexample
requires (on average) only 441,416 states compared to the 662,009 states of the
full state-space. Nevertheless, finding the counterexample takes more than twice
the time as compared to exploring the full state-space.

Disabling Optimisations The above numbers are quite promising, as we not
only can verify a minimal dining philosophers program, but also instances with
a larger number of involved processors and rounds. Reducing the runtimes has
helped us immensely during development, as we can test changes made to the
system almost instantly, where we previously had to wait several minutes for a
result. The story is quite different if we look at earlier revisions of CPM+OO. The
feature that has the biggest impact is the optimisation using the execution token
which marks the processor that is allowed to execute sequential actions, and
where the system only processes separate actions once no processor can make
sequential progress any more. If we disable this functionality, we obtain the

7 Case Studies & Evaluation 94

u� u� Impl. States Transitions Time [stddev] (s) Memory [stddev] (GB)

2 1 eat 962 1019 1.01 [0.30] 0.64 [0.14]
3 1 2976 3134 3.21 [0.78] 0.81 [0.15]
3 2 7974 8662 8.20 [0.74] 1.21 [0.26]
3 3 16,208 17,836 17.18 [0.98] 2.09 [0.42]
3 5 45,264 50,410 60.23 [1.60] 3.65 [0.56]
4 1 8326 8720 8.94 [0.75] 1.36 [0.29]
5 1 21,814 22,748 28.35 [0.88] 3.61 [0.85]
6 1 54,638 56,788 102.30 [1.79] 4.25 [0.23]

2 1 bad_eat 828 837 0.92 [0.55] 0.46 [0.09]
3 1 3549 3686 3.59 [0.87] 0.80 [0.16]
3 2 4718 4891 4.52 [1.44] 1.02 [0.20]
3 3 3950 4080 4.12 [2.83] 0.94 [0.18]
3 5 2192 2218 2.12 [4.09] 1.25 [0.24]
4 1 18,549 19,412 22.03 [0.68] 2.96 [0.78]
5 1 85,059 89,623 174.54 [20.11] 4.23 [0.05]
6 1 441,416 467,285 2150.79 [112.63] 5.97 [0.25]

Table 7.2: Exploration of LTL formula ! F error_deadlock. Exploration with
more than six philosophers has been aborted after more than 2,500,000 states.

u� u� Impl. States Transitions Time [stddev] (s) Memory [stddev] (GB)

2 1 eat 15,480 18,265 15.43 [0.90] 1.97 [0.32]
3 1 252,112 304,409 328.91 [19.60] 6.15 [0.58]
3 2 711,640 877,576 769.02 [9.55] 9.18 [1.13]
3 3 1,526,582 1,903,627 1690.66 [29.32] 12.56 [1.85]

2 1 bad_eat 21,236 24,417 20.53 [0.94] 2.63 [0.49]
3 1 425,983 499,660 487.62 [14.94] 7.87 [0.78]
3 2 1,445,738 1,710,118 1579.87 [19.29] 12.52 [1.49]
3 3 3,417,959 4,059,490 4065.24 [169.68] 12.60 [0.19]

Table 7.3: Results from verifying the correct implementation without token
optimisation.

numbers presented in Table 7.3. Verifying the instance with three philosophers
and a single round already results in more than 250,000 states and 300,000
transitions, a huge difference compared to the numbers with the optimisation
turned on.
The difference can be explained with the fact that without the token mecha-

nism, large chunks of the program get simulated over and over again in different
interleavings without affecting the outcome. For example, consider the situation
where a processor is in state 𝑛5 of Figure 7.1 and has already evaluated the
arguments to the test action nodes. Without the token optimisation, at this
point all other processors could simulate their states until they are finished.
Another execution plan would first advance our processor to node 𝑛14 (assuming
𝑛9 has been evaluated to true), before simulating the remaining processors all
over again. There is no value in considering both variants, as the outcome of
the test action, which is a purely local step, does not depend on any outside
properties of the system (in particular, it does not depend on the states of
other processors). With the token mechanism, we force the system to take one
particular path in these situations and only allow branching at points where
processors can potentially interact with each other and where different outcomes
can originate.

7 Case Studies & Evaluation 95

Detecting Deadlocks The “eat” implementation behaves as expected. The
simulation is unable to find any issues with it, in particular, we are not able
to find a situation where the program deadlocks. In this section though, we
inspect the alternative implementation of the philosopher’s behaviour (i.e. the
bad_eat method in Listing 7.2). Since we want to find out whether a deadlock
can occur or not, we can do so by using the LTL formula ! F error_deadlock,
which states that, starting from the start graph, there is no future state where
the rule error_deadlock matches. GROOVE explores the state-space and reports
whether a counterexample exists for the formula. If so, we have a situation where
a deadlock occurs and we can inspect the trace that leads from the start graph
to that particular state.
When using the bad_eat implementation, we can in fact find counterexam-

ples to the formula. Figure 7.3 shows an excerpt of such a state with the involved
processors, locks, and states. Both processors are in the pickup_right com-
mand and hold their left fork (which is the other one’s right fork). Each processor
holds the lock to the processor the other one is waiting for. As a result, no
processor can make progress, and we have a deadlock situation which is detected
by the error_deadlock rule.

RefOp_Retrieve_Param
var = ”right”

State
State
finalAction_Unlock

State
init

method = ”PHILOSOPHER.pickup_right”

RefOp_Retrieve_Param
var = ”right”

Action_Lock

Object
type = ”FORK”

ProcessorObject
type = ”FORK” Processor

Processor Processor

Result

Result

expr

processor

in

lock

lock

in_method

reswait

next handler

next

out

next

result
in_method

res

handler

result

processor

wait

out in

expr

Figure 7.3: Deadlock situation with 2 philosophers.

7 Case Studies & Evaluation 97

7.2.2 Dining Savages
Our second case study is the dining savages problem. The premise is that there
are a number of savages that share a single pot that contains their food. A cook
can fill the pot, and each savage can get servings from it. Since the pot is rather
small, the number of servings is limited and only one savage can get a serving at
a time. If a savage is trying to get a serving when the pot is empty, he notifies
the cook to fill it up again, waits until the cook does is job, and then gets his
serving.

Source Code

Our implementation of the program consists of four classes. Apart from the
APPLICATION class that initializes and starts the system, there are classes for
representing the cook, a savage, and the pot. In our implementation, we have
three configuration variables, namely the pot size (number of servings the pot
can hold), the number of savages, and the hunger of a savage (which is the
number of servings a savage is going to take before terminating). The program
first creates all objects and then launches the savages. Listing 7.4 shows relevant
code of the savage class. During the lifetime of a savage, it executes the live
feature which is a simple loop that executes step a number of times. In a step,
a savage calls fill_pot which notifies the cook to fill the pot, if necessary. The
program continues, since fill_pot can return even if the pot is empty, as the
command that can get called in the routine body is asynchronous. Afterwards,
get_serving_from_pot gets called. Since—in case the pot was empty or
has become empty in the meantime—we can not be sure whether the cook
already filled the pot, we use the wait condition not my_pot.is_empty. This
ensures that the savage gets the serving from a non-empty pot. Once the wait
condition is satisfied, the savage has exclusive access to the pot, which means
that it is impossible for the pot to become empty before the savage can call
my_pot.get_meal. The final command in a step of the savage is eating, which
simply decreases the hunger value to avoid having an infinite loop in the live
procedure.
While the original implementation defines step without an argument, we

pass the pot to this feature in our adapted implementation. We do this to avoid
processors being stuck in a wait condition that never gets fulfilled. Consider the
instance where the pot can hold one serving and two savages want to eat only
once. Without passing the pot to the step feature call, the following sequence
can occur.

• Savage 1 calls fill_pot, sees that the pot is full and therefore does not
ask the cook to fill it.

• Savage 2 calls fill_pot, sees the same, and does not ask the cook either.

• Savage 1 calls get_serving_from_pot, passes the wait condition, and
returns. The pot is now empty. Savage 1 has finished its loop and does
not execute anything any more.

• Savage 2 calls get_serving_from_pot, but is stuck in the wait condi-
tion, as the pot is now empty. Since Savage 1 has finished, the pot will
never get filled again and Savage 2 is stuck forever.

7 Case Studies & Evaluation 98

By passing the pot as an argument to the step routine, we ensure that for one
savage in a single step, all operations involving the pot are executed without
interleaving requests from another savage. This makes the above interleaving
impossible and as a result, savages can not get stuck any more. Note that the con-
dition in get_serving_from_pot is now a precondition, as the request queue
of the handler of the pot is already locked when get_serving_from_pot
gets called. We call this the “good” implementation, but also take a look at the
implementation where we do not pass the pot to step, which we call “bad”.

1 feature {NONE} -- Access
2 step (a_pot: separate POT)
3 -- Perform a savage's tasks.
4 do
5 fill_pot (a_pot, cook)
6 get_serving_from_pot (a_pot)
7 eat
8 end
9

10 over: BOOLEAN
11 do
12 Result := hunger = 0
13 end
14

15 feature {NONE} -- Implementation
16 fill_pot (my_pot: separate POT; my_cook: separate COOK)
17 -- Fills pot if it's empty.
18 do
19 if my_pot.is_empty then
20 my_cook.cook (my_pot)
21 end
22 end
23

24 get_serving_from_pot (my_pot: separate POT)
25 -- Gets the meal from the pot
26 require
27 not my_pot.is_empty
28 do
29 my_pot.get_meal
30 end
31

32 eat
33 -- Eat the meal.
34 require
35 hunger > 0
36 do
37 hunger := hunger - 1
38 end
39

40 feature {NONE}
41

42 id: INTEGER
43 pot: separate POT
44 cook: separate COOK
45

46 hunger: INTEGER
47

48 feature -- Process behaviour
49 live
50 do
51 from
52 until

7 Case Studies & Evaluation 99

53 over
54 loop
55 step (pot)
56 end
57 end
58 end

Listing 7.4: Savage implementation. escapechar

Parts of the source code of the cook is shown in Listing 7.5. In the require
block of the cook feature, we use another wait condition to make sure that the
pot is in fact empty when the feature body gets executed.

1 feature
2

3 do_cooking
4 -- Wrapper call to control pot.
5 do
6 cook (pot)
7 end
8

9 cook (a_pot: separate POT)
10 -- Fill the pot.
11 require
12 a_pot.is_empty
13 do
14 a_pot.fill
15 ensure
16 a_pot.is_full
17 end
18 end

Listing 7.5: Cook implementation.

Results

Table 7.4 lists results obtained with CPM+OO for a number of instances of the
dining savages program. The instances range from two to four savages and two
to six total calls to the get_serving_from_pot routine. Like in the dining
philosophers case, the number of involved processors has the largest impact.
Even if we lower the number of times a savage eats in the last instance (with 4
savages), the state-space is by far the biggest in both implementations. This is
no surprise, as with more processors, the number of synchronisation points (i.e.
situations during the execution where multiple non-separate actions or queries
can be performed) increases, and individual synchronisation points may include
more processors, resulting in more branching in the LTS.
Comparing both implementations paints a similar picture as what we have

seen in the dining philosophers example. In the “bad” implementation, we
perform less restrictive locking, thus allow more possible interleavings. While
the impact of the smaller instances is negligible, it becomes obvious with the
larger ones. In the instance with 4 savages, the “bad” implementation takes
about three times longer than the “good” implementation. Note that we do full
state-space exploration here, and our tool does not report an issue with both
implementations, i.e. no ERROR nodes get generated. While savages can get
stuck in wait conditions in the “bad” implementation, these situations are not
deadlock situations. A processor may never proceed past the wait condition, but

7 Case Studies & Evaluation 100

n m o Impl. States Transitions Time [stddev] (s) Memory [stddev] (GB)

1 2 1 good 3365 3472 4.91 [0.54] 0.70 [0.09]
4 2 2 5710 5923 8.58 [0.65] 0.99 [0.18]
2 2 2 6121 6340 9.28 [0.53] 0.88 [0.16]
2 3 2 66,592 70,044 124.51 [1.63] 4.51 [0.51]
2 4 1 155,578 165,157 329.14 [5.04] 5.75 [0.42]

1 2 1 bad 4193 4396 7.07 [0.66] 0.78 [0.13]
4 2 2 8479 8999 13.35 [0.62] 1.11 [0.21]
2 2 2 9147 9668 14.39 [0.82] 1.26 [0.26]
2 3 2 178,493 191,810 346.94 [2.16] 5.93 [0.39]
2 4 1 431,900 466,498 962.53 [12.65] 8.76 [0.94]

Table 7.4: Results of various instances of the dining savages program.

it can make progress in the sense that the wait condition is checked over and
over again (as requests are generated for and executed by the handler of the
pot). The target processor is idle and can execute the requests from the stuck
processor. In the LTS, this results in a local cycle of states, where there is no
path that “breaks out” from this cycle. Currently, we are unable to detect such
situations, and whether it is possible to detect them using LTL or CTL formulae
remains to be investigated in future work.

7.2.3 Cigarette Smokers Problem
In our final case study, we implement and evaluate the cigarette smokers problem.
In this problem, there are three cigarette smokers wanting to build cigarettes and
smoke them. Their problem is that each one has only one of the required three
ingredients, namely tobacco, matches, or papers. Thankfully, a dealer is available
that has an infinite amount of each ingredient. The dealer randomly makes two
of them available at a time, allowing the smoker with the third ingredient to
retrieve them and then build and smoke a cigarette.

The original premise, which we borrow from [4], states that both the dealer’s
supply as well as the smoker’s desire to smoke are infinite. We change this in
order to get a program that terminates. In particular, we now require that all
smokers only retrieve ingredients and smoke 𝑛 times. In addition, the dealer puts
out each distinctive pair of ingredients exactly 𝑛 times. As a result, nobody is
stuck waiting, as once the dealer has put out every pair 𝑛 times, he can go home,
and all smokers are satisfied as they were able to build and smoke a cigarette 𝑛
times.

Source Code

Our implementation of the problem consists of three main classes, DEALER,
CLIENT, and INGREDIENT_PAIR. The dealer is a simple class resembling a
semaphore and is used to make sure that no two pairs are available at the same
time (which would imply that all three ingredients are available, which is not
allowed in the problem statement). Listing 7.6 shows the full source code of the
DEALER class. Instead of using a class to represent individual ingredients, we
use one to represent pairs of ingredients. Since we want a limited amount of
each pair, we can use this representation to force each pair a fixed number of
times. Ingredient pairs (Listing 7.7) are created with a separate dealer, and the
put_out feature is called after creation. A pair then, if the dealer is not busy,

7 Case Studies & Evaluation 101

1 class
2 DEALER
3

4 create
5 make
6

7 feature
8 make
9 do
10 is_available := true
11 end
12

13 set_available
14 do
15 is_available := true
16 end
17

18 set_busy
19 do
20 is_available := false
21 end
22

23 is_available: BOOLEAN
24 end

Listing 7.6: DEALER class.

puts itself out, ready to be consumed by a client (Listing 7.8). Once a pair is
consumed via the consume feature, it either terminates, or tries to put itself
out again. A client gets initialized with a pair of ingredients, and simply calls
consume 𝑛 times which is blocked until its ingredient pair is actually out.
With pairs of ingredients as separate objects, we introduce the randomness

specified in the problem statement. The dealer serves as semaphore that can be
occupied by one pair at a time, ensuring that no two pairs are out at the same
time. The source code is, thanks to expressive wait conditions, rather simple
and clear.

Results

The generated start graph of the cigarette smokers program consists of more
than 400 nodes and 1100 edges. We are confident that our implementation works
correctly, and therefore it is no surprise that no ERROR states are generated
when verifying instances of this program. Table 7.5 shows results for various
instances of the program, where we varied the number of times each smoker and
ingredient pair execute their corresponding loops. In the top half of the table,
we explore the full state-space and report on any ERROR nodes generated in
final states. While the state-space grows quickly, we nevertheless are able to
verify in a reasonable amount of time that instances with up to 5 rounds do not
exhibit any of the bad properties we are looking for.
In the lower half, we used the LTL formula !F error_deadlock to find coun-

terexamples for a deadlock error rule. Since we did not find such an error in
the full state-space exploration above, it is no surprise that the exploration does
not find such a counterexample when using LTL property checking either. We
can observe once again that formula checking comes at a cost: all instances take

7 Case Studies & Evaluation 102

1 class
2 INGREDIENT_PAIR
3

4 create
5 make
6

7 feature
8 make (an_id: INTEGER; a_count: INTEGER; a_dealer: separate DEALER

)
9 do
10 id := an_id
11 dealer := a_dealer
12 is_out := false
13 capacity := a_count
14 end
15

16 put_out
17 do
18 put_out_with_dealer (dealer)
19 end
20

21 put_out_with_dealer (a_dealer: separate DEALER)
22 require
23 a_dealer.is_available
24 do
25 a_dealer.set_busy
26 is_out := true
27 end
28

29 is_out: BOOLEAN
30

31 consume
32 do
33 consume_with_dealer (dealer)
34

35 capacity := capacity - 1
36 if capacity > 0 then
37 put_out
38 end
39 end
40

41 consume_with_dealer (a_dealer: separate DEALER)
42 do
43 a_dealer.set_available
44 end
45

46 dealer: separate DEALER
47 id: INTEGER
48 capacity: INTEGER
49 -- total times the pair is available
50

51 end

Listing 7.7: INGREDIENT_PAIR class.

7 Case Studies & Evaluation 103

1 class
2 CLIENT
3

4 create
5 make
6

7 feature
8 make (an_id, a_count: INTEGER; a_ingredients: separate

INGREDIENT_PAIR)
9 do
10 id := an_id
11 count := a_count
12 ingredients := a_ingredients
13 end
14

15 start
16 local
17 i: INTEGER
18 do
19 from
20 i := 0
21 until
22 i = count
23 loop
24 consume
25 i := i + 1
26 end
27 end
28

29 consume
30 do
31 consume_with_pair (ingredients)
32 end
33

34 consume_with_pair (a_pair: separate INGREDIENT_PAIR)
35 require
36 a_pair.is_out
37 do
38 a_pair.consume
39 end
40

41 id: INTEGER
42 count: INTEGER
43 ingredients: separate INGREDIENT_PAIR
44

45 end

Listing 7.8: CLIENT class.

7 Case Studies & Evaluation 104

Rounds Type States Transitions Time [stddev] (s) Memory [stddev] (GB)

1 default 69,130 75,013 191.99 [4.56] 4.64 [0.25]
2 269,497 291,593 755.23 [16.03] 6.24 [0.63]
3 602,402 649,519 1918.49 [27.66] 8.57 [0.73]
4 1,101,193 1,184,059 3084.29 [46.23] 9.74 [1.27]
5 1,799,218 1,930,481 5007.15 [84.28] 12.45 [1.06]

1 deadlock 69,130 75,013 233.25 [2.62] 4.65 [0.14]
2 269,497 291,593 1376.87 [24.35] 5.66 [0.25]
3 602,402 649,519 4025.06 [54.42] 5.57 [0.10]

Table 7.5: Results of various instances of the cigarette smokers program.

more time in the lower half of the table compared to their counterparts in the
upper half. While we can argue that in these cases we gain more information
and are faster when exploring the full state space, it is important to note that
LTL checking has value as well. In particular, when looking at instances where
we are no longer able to explore the full state-space, i.e. when having to rely on
bounded model checking, looking for counterexamples of properties is the only
way to gain any valuable information.

7.3 Comparison with CPM
In this section, we take a look at how various variants of our models perform.
In CPM+OO, we introduced a number of abstractions and except considerable
overhead in the form of a larger state-space, as compared to CPM. To reduce
the state-space size in CPM+OO, we used several optimisations, in particular we
used more quantifiers in certain rules and we introduced the token execution
optimisation.
Since there is currently no translation tool that can generate start graphs

for CPM, we have to create start graphs by hand. This makes translation of
real-world examples tedious and is error-prone. As a result, there are only a
limited number of start graphs for use with CPM available. Most notably, we have
start graphs for the dining philosophers problem with both implementations,
as well as a start graph for single-element producer/consumer. It is important
to note that start graphs between CPM and CPM+OO for the same program
do differ substantially, making the comparison more difficult. The graphs for
CPM are simpler in most regards: there are no local calls, no evaluation of call
targets (instead it is directly specified by the name of an attribute), and other
abstractions introduced in CPM+OO are missing as well. Nevertheless, it is
interesting to compare results of those two models. Additional abstractions in
CPM+OO have led to less direct action applications, which resulted in additional
rules and interleavings, but using optimisations has helped reduce the state-space
again.
Table 7.6 shows results obtained for the dining philosophers and the single-

element producer/consumer examples with three models, namely CPM, CPM+OO,
and CPM+OO without token optimisation. In the case of CPM, we use start
graphs translated and adapted by hand. In the other cases, we use our SCOOP
reference implementations and generate start graphs with our translation tool.

Comparing the numbers of CPM to the ones of CPM+OO without optimisations
shows that the size of the state-space of the latter exceeds the size of the

7 Case Studies & Evaluation 105

state-space generated with CPM. The DP(3, 2, bad_eat) instance takes around
27 minutes to verify using CPM+OO without the token optimisation, whereas the
same instance verified with CPM takes less than 4 minutes. Compared to CPM+OO
without optimisations, CPM performs better across all instances. We explain this
with the above arguments, namely that CPM+OO increases complexity and adds
more abstractions that require additional computations. In addition, the start
graphs of the CPM instances have been generated by hand and are optimised for
these examples.

Fortunately, the token optimisation has a huge impact in the performance of
CPM+OO. When enabling the optimisations, we can verify each instance in under
30 seconds. Not only does this outperform CPM+OO without optimisations by a
huge margin, but it is also considerably faster and generates smaller state-spaces
than CPM with optimised start graphs.

We realise that comparing the models using start graphs that differ as much
as they do is not optimal. Still, in our opinion this comparison gives a good
impression of the effect of optimisations and shows that—although CPM+OO is
inherently more complex than CPM—we manage to not only preserve the size of
generated state-spaces, but thanks to optimisations we are even able to produce
smaller state-spaces focusing on the synchronization points of the programs.

7
C
ase

Studies
&
Evaluation

106

Model Program States Transitions Time [stddev] (s) Memory [stddev] (GB)

CPM DP(2, 1, bad_eat) 3923 4990 8.89 [1.16] 1.11 [0.08]
DP(3, 1, bad_eat) 41,347 54,749 71.27 [1.68] 3.51 [0.56]
DP(3, 2, bad_eat) 138,059 180,173 231.29 [11.12] 4.93 [0.04]

DP(2, 1, eat) 3404 4281 8.06 [0.19] 1.10 [0.01]
DP(3, 1, eat) 32,155 41,793 56.38 [0.86] 2.70 [0.87]
DP(3, 2, eat) 104,131 133,304 185.22 [3.95] 4.80 [0.06]

SEPC(5) 17,864 21,763 37.76 [1.51] 2.81 [0.64]
SEPC(20) 76,949 93,718 148.51 [5.73] 4.71 [0.09]

CPM+OO (no token) DP(2, 1, bad_eat) 21,236 24,417 20.53 [0.94] 2.63 [0.49]
DP(3, 1, bad_eat) 425,983 499,660 487.62 [14.94] 7.87 [0.78]
DP(3, 2, bad_eat) 1,445,738 1,710,118 1579.87 [19.29] 12.52 [1.49]

DP(2, 1, eat) 15,480 18,265 15.43 [0.90] 1.97 [0.32]
DP(3, 1, eat) 252,112 304,409 328.91 [19.60] 6.15 [0.58]
DP(3, 2, eat) 711,640 877,576 769.02 [9.55] 9.18 [1.13]

SEPC(5) 106,526 126,392 152.03 [3.30] 4.67 [0.22]
SEPC(20) 462,221 549,527 685.70 [13.13] 7.07 [0.90]

CPM+OO DP(2, 1, bad_eat) 1358 1423 1.70 [0.44] 0.49 [0.07]
DP(3, 1, bad_eat) 6528 6888 6.69 [0.43] 0.99 [0.19]
DP(3, 2, bad_eat) 21,130 22,372 22.12 [1.31] 1.91 [0.42]

DP(2, 1, eat) 962 1019 1.26 [0.49] 0.59 [0.09]
DP(3, 1, eat) 2976 3134 3.08 [0.70] 0.67 [0.18]
DP(3, 2, eat) 7974 8662 8.23 [0.67] 0.96 [0.20]

SEPC(5) 2338 2412 3.70 [0.90] 0.61 [0.10]
SEPC(20) 9088 9372 13.28 [0.79] 0.98 [0.18]

Table 7.6: Comparison of performance of CPM, CPM+OO, and CPM+OO without token optimisation.

7 Case Studies & Evaluation 107

7.4 Scalability and Future Work
So far, we have only considered input programs that resulted in state-spaces
that can be fully explored with our toolchain. In our development environment,
we have generated LTSS with up to 4,000,000 states, at which point we ran out
of memory. The number of states that can be explored depends on a number
of variables though. For example, the chosen exploration strategy can be a
factor, as well as the model and start graph. With larger programs where full
state-space exploration is not feasible any more, one can consider doing bounded
verification, where one explores only parts of the state-space. It is important to
note that with bounded verification, it is only possible to search for instances of
errors, but there is no guarantee that an error can be found, and the absence of
errors can not be proved.
GROOVE offers a range of different exploration strategies. So far, we have

used breadth-first-search and LTL exploration. For larger state-spaces, this
may not be the optimal choice. For example, when searching the state-space
with breadth-first search, one can only reach a particular depth. This may be
undesirable, e.g. when the synchronization points that may result in a deadlock
occur only later in a program. By searching for counterexamples with depth-first
search instead, one may be able to actually reach such synchronization points.
Of course, with this approach, not all branches are explored and one might as
well miss the ones that result in a deadlock. GROOVE also offers other exploration
strategies, such as random linear exploration, where exactly one path is followed
per state, or conditional exploration with restrictions on the number of edges and
nodes in a state. Custom exploration strategies tailored to CPM and CPM+OO
should also be considered.
A thorough investigation regarding bounded exploration and using various

exploration strategies to gain confidence in the obtained results is out of scope
of this thesis and remains to be done in future work.

Chapter 8

Conclusion

In this chapter, we conclude the thesis. We start with a review of the research
hypothesis and summarise our efforts and contributions, before we close the
thesis with some final words on future work.

8.1 Contributions
In Section 1.2, we stated the following research hypothesis.

A subset of valid SCOOP programs can be modelled using a graph
transformation system. These programs can, without modification of
the source code, be automatically translated to input graphs for the
transformation system. Using verification by model checking, it is
possible to verify a number of properties such as absence of deadlock
or absence of precondition violations for a given input program.

In our opinion, this thesis satisfies the hypothesis with the following contri-
butions.
In Chapters 4 and 5, we described formal models, implemented in GROOVE,

that can be used to simulate a subset of SCOOP programs. In the former, we
discussed CPM, which focuses on the concurrency features of SCOOP. In the
latter, we extend CPM by adding object-oriented features from SCOOP to obtain
the CPM+OO model. By careful (informal) reasoning in individual steps, we were
able to preserve confidence in the correctness and completeness of the model.
In Chapter 6, we presented a simple compiler that takes a subset of valid

SCOOP programs as input and generates input graphs for our formal model.
While we are not able to support the complete SCOOP language, we were able to
translate a number of real-world concurrent example programs, as later discussed
in Chapter 7. In addition, by embedding the GROOVE binaries, we also created
a simple command-line interface that can be used to verify SCOOP programs
matching the input specification with one single command. This supports the
research hypothesis, as the tool works on unmodified SCOOP code.
We evaluated our approach in Chapter 7 with several case studies. We

investigated a number of implementations of problems suited for demonstrating
concurrent programming, such as the well-known dining philosophers problem,
and we have shown how our translation tool and the models behave. We discussed

108

8 Conclusion 109

various aspects of the current version of the CPM+OO model, but also presented
the effects of state-space optimisations and a comparison to CPM. We have seen
that our toolchain can verify properties like absence of deadlock or absence of
precondition violations for the inspected programs, which supports the research
hypothesis.

8.2 Future Work
With our tools and model, we are able to translate a number of SCOOP programs
and can verify certain properties, such as the absence of deadlock scenarios.
While our input programs already use a number of object-oriented features of
SCOOP, we are a long way from supporting the complete language. In particular,
both the translation tool and the model lack support for inheritance. Our focus
in the future is to extend the model and compiler to support a larger subset of
SCOOP programs.
We provide a simple tool that works on SCOOP source code and prints out

verification results with a single command. The tool outputs simple messages
that state which errors could be found. Ideally, the tool should be integrated with
the EVE [22] integrated development environment, which combines a number
of other verification and analysis approaches. Ultimately, the goal should be to
provide a GUI interface that is intuitive and easy to use. The output should be
more verbose, extracting more information about the situations that occur (e.g.
stating which features processors are executing when a deadlock is detected).

In this thesis, we have been using sample input programs that generate small
state-spaces that can be fully explored within minutes or hours. A thorough
investigation and evaluation of our work with respect to larger programs and
bounded verification remains to be done.
While this thesis focuses on the SCOOP model, it may be possible to adapt

our approach to other concurrency languages and models, such as Grand Central
Dispatch (GCD) [7]. An evaluation remains as future work.

Glossary

ANTLR ANother Tool for Language Recognition.

CPM+OO CPM with Object Orientation.

CPM Concurrent Processor Model.

CTL Computational Tree Logic.

CoreSCOOP A subset of scoop focusing on concurrency features.

DPO Double-Pushout.

EBNF Extended Backus-Naur Form.

GCD Grand Central Dispatch.

GPS Graph Production System.

GROOVE GRaphs for Object-Oriented VErification.

GTS Graph Transformation System.

GXL Graph eXchange Language.

LTL Linear Temporal Logic.

LTS Labelled Transition System.

SCOOP Simple Concurrent Object-Oriented Programming.

SPO Single-Pushout.

110

List of Figures

3.1 DPO Rule Application . 10
3.2 SPO Rule Application . 11
3.3 Dining philosophers type graph 13
3.4 Start Graph Comparison . 14
3.5 Rule pick_up . 15
3.6 Rule eat . 16
3.7 Rule put_down . 16
3.8 Rule leave . 17
3.9 GROOVE LTS excerpt . 18

4.1 Control flow type graph . 21
4.2 Command action rule . 23
4.3 Lock_2 action rule . 24
4.4 Query action rule . 24
4.5 Test action start configuration . 25
4.6 Boolean query expression rule . 25
4.7 System state type graph . 26
4.8 Remove queue item rule . 27
4.9 Operations and queries type graph 28
4.10 Integer parameter fetching rule 30
4.11 Dining philosophers start graph, APPLICATION.make part . . . 36
4.12 Features of the PHILOSOPHER start graph 37
4.13 Dining philosophers configuration before command action 38
4.14 Dining philosophers configuration after rule application 39

5.1 Type graph of processors and objects 41
5.2 Type graph of variable, parameter, and result nodes 43
5.3 Type graph of actions . 44
5.4 Type graph of errors . 45
5.5 Miscellaneous types . 46
5.6 Type graph of operations . 47
5.7 Rule queue_Remove_Command_SingleQueued in CPM 49
5.8 Rule queue_Remove_SingleQueued in CPM+OO 50
5.9 Rule cleanup_FinalState_Command_Empty_Call_Stack 50
5.10 Rule cleanup_FinalState_Command 51
5.11 Rule action_Command_separate 52
5.12 Rule action_Command_non-separate 53
5.13 Object template for the PHILOSOPHER class. 54
5.14 Command comparison between CPM and CPM+OO 55

111

5.15 Rule restore_locks_b . 57
5.16 Rule cleanup_Restore_Locks_Query 58
5.17 Rule pass_locks . 59
5.18 Rule IntOp_RetrieveData . 61
5.19 Token movement rules . 63
5.20 Rule action_AssignResult_Ref . 67
5.21 Rule action_Lock . 68
5.22 Rule error_deadlock . 74

6.1 Translation overview . 78

7.1 PHILOSOPHER.live start graph 89
7.2 PHILOSOPHER.make start graph 91
7.3 Deadlock situation with 2 philosophers 96

112

List of Listings

2.1 CONSUMER.consume routine implementation. 5
2.2 Implementation of a philosopher in SCOOP. 6
2.3 Implementation of the eat feature that can result in a deadlock. 7
4.1 APPLICATION class for the dining philosophers. 33
7.1 APPLICATION class. 85
7.2 PHILOSOPHER class. 86
7.3 FORK class. 88
7.4 Savage implementation. escapechar 98
7.5 Cook implementation. 99
7.6 DEALER class. 101
7.7 INGREDIENT_PAIR class. 102
7.8 CLIENT class. 103

113

List of Tables

4.1 Rule priorities . 32

5.1 Control flow rules . 69
5.2 System state rules . 71
5.3 Query and operation rules . 73
5.4 State-space optimisation rules . 73
5.5 Error rules . 74

7.1 Dining philosophers results . 93
7.2 Deadlock detection results . 94
7.3 CPM without token opitimisation results 94
7.4 Dining savages results . 100
7.5 Cigarette smokers problem results 104
7.6 Performance comparison results 106

114

Bibliography

[1] Phillip J. Brooke, Richard F. Paige, and Jeremy L. Jacob. “A CSP model
of Eiffel’s SCOOP”. In: Formal Aspects of Computing 19.4 (2007), pp. 487–
512.

[2] PhillipJ. Brooke, RichardF. Paige, and JeremyL. Jacob. “A CSP model of
Eiffel’s SCOOP”. English. In: Formal Aspects of Computing 19.4 (2007),
pp. 487–512. ISSN: 0934-5043.

[3] Georgiana Caltais and Bertrand Meyer. “Coffman deadlocks in SCOOP”.
In: CoRR abs/1409.7514 (2014).

[4] Allen B. Downey. The little book of semaphores. Accessed April 10, 2015.
URL: http://greenteapress.com/semaphores/.

[5] H. Ehrig, K. Ehrig, U. Prange, and G. Taentzer. Fundamentals of Algebraic
Graph Transformation. Springer, 2006.

[6] A. H. Ghamarian et al. Modelling and Analysis Using GROOVE. Technical
Report TR-CTIT-10-18. Enschede: Centre for Telematics and Information
Technology University of Twente, Apr. 2010.

[7] Grand Central Dispatch (GCD) Reference. https://developer.apple.
com/library/mac/documentation/Performance/Reference/GCD_libd
ispatch_Ref/index.html. Accessed April 10, 2015.

[8] Alexander Heußner, Christopher M. Poskitt, Claudio Corrodi, and Ben-
jamin Morandi. “Towards Practical Graph-Based Verification for an Object-
Oriented Concurrency Model”. In: Proc. Graphs as Models (GaM 2015).
Electronic Proceedings in Theoretical Computer Science. To appear. 2015.

[9] Michael Huth and Mark Ryan. Logic in Computer Science: Modelling and
Reasoning About Systems. Cambridge University Press, 2004.

[10] Bertrand Meyer. Object-oriented Software Construction (2Nd Ed.) Prentice-
Hall, Inc., 1997.

[11] Bertrand Meyer. “Systematic Concurrent Object-oriented Programming”.
In: Commun. ACM 36.9 (Sept. 1993), pp. 56–80.

[12] Bertrand Meyer. Touch of Class: Learning to Program Well with Objects
and Contracts. 1st ed. Springer, 2009.

[13] Benjamin Morandi. “Prototyping a Concurrency Model”. Doctoral disser-
tation. ETH Zürich, 2014.

115

http://greenteapress.com/semaphores/
https://developer.apple.com/library/mac/documentation/Performance/Reference/GCD_libdispatch_Ref/index.html
https://developer.apple.com/library/mac/documentation/Performance/Reference/GCD_libdispatch_Ref/index.html
https://developer.apple.com/library/mac/documentation/Performance/Reference/GCD_libdispatch_Ref/index.html

[14] Benjamin Morandi, Mischael Schill, Sebastian Nanz, and Bertrand Meyer.
“Prototyping a Concurrency Model”. In: 13th International Conference on
Application of Concurrency to System Design, ACSD 2013, Barcelona,
Spain, 8-10 July, 2013. 2013, pp. 170–179.

[15] P. Nienaltowski. “Practical framework for contract-based concurrent object-
oriented programming”. Doctoral dissertation. ETH Zürich, 2007.

[16] Jonathan S. Ostroff, Faraz Ahmadi Torshizi, Hai Feng Huang, and Bernd
Schoeller. “Beyond contracts for concurrency”. In: Formal Aspects of Com-
puting 21.4 (2009), pp. 319–346.

[17] Christopher M. Poskitt. “Verification of Graph Programs”. PhD thesis.
University of York, 2013.

[18] A. Rensink. “Isomorphism Checking in GROOVE”. In: Graph-Based Tools
(GraBaTs), Natal, Brazil. Vol. 1. Electronic Communications of the EASST.
European Association of Software Science and Technology, Sept. 2007.

[19] A. Rensink. “The GROOVE Simulator: A Tool for State Space Genera-
tion”. In: Applications of Graph Transformations with Industrial Relevance
(AGTIVE). Vol. 3062. LNCS. Berlin: Springer Verlag, 2004, pp. 479–485.

[20] Arend Rensink, Ivoka Boneva, Harmen Kastenberg, and Tom Staijen. User
Manaual for the GROOVE Tool Set. Accessed April 10, 2015. Nov. 12,
2012. URL: http://groove.cs.utwente.nl/wp- content/uploads/
usermanual1.pdf.

[21] Thesis Project Repository. https://bitbucket.org/ccorrodi/masters-
thesis-public. Accessed April 10, 2015.

[22] Julian Tschannen, Carlo A. Furia, Martin Nordio, and Bertrand Meyer.
“Usable Verification of Object-Oriented Programs by Combining Static and
Dynamic Techniques”. In: Software Engineering and Formal Methods - 9th
International Conference, SEFM 2011, Montevideo, Uruguay, November
14-18, 2011. Proceedings. 2011, pp. 382–398.

[23] Scott West, Sebastian Nanz, and Bertrand Meyer. “A Modular Scheme for
Deadlock Prevention in an Object-Oriented Programming Model”. English.
In: Formal Methods and Software Engineering. Ed. by JinSong Dong and
Huibiao Zhu. Vol. 6447. Lecture Notes in Computer Science. Springer
Berlin Heidelberg, 2010, pp. 597–612. ISBN: 978-3-642-16900-7.

[24] Scott West, Sebastian Nanz, and Bertrand Meyer. “Efficient and Reasonable
Object-oriented Concurrency”. In: Proceedings of the 20th ACM SIGPLAN
Symposium on Principles and Practice of Parallel Programming. PPoPP
2015. San Francisco, CA, USA: ACM, 2015, pp. 273–274.

[25] Eduardo Zambon and Arend Rensink. “Solving the N-Queens Problem
with GROOVE - Towards a Compendium of Best Practices”. In: ECEASST
67 (2014).

116

http://groove.cs.utwente.nl/wp-content/uploads/usermanual1.pdf
http://groove.cs.utwente.nl/wp-content/uploads/usermanual1.pdf
https://bitbucket.org/ccorrodi/masters-thesis-public
https://bitbucket.org/ccorrodi/masters-thesis-public

	Introduction
	Motivation
	Research Hypothesis and Contributions
	Thesis Overview
	Published Work

	SCOOP: An Object-Oriented Concurrency Model
	The SCOOP Model
	A Running Example
	Related Work

	Graph Transformation Systems & GROOVE
	The Algebraic Approach
	GROOVE
	Graph Production Systems
	Type Graphs
	Graph Representation
	Rule Priorities
	Verification by Model Checking

	Related Work

	Towards a Concurrency Model for SCOOP
	CoreSCOOP
	CPM
	Control Flow
	System State
	Queries and Other Operations
	Rule Priorities

	Dining Philosophers
	Start Graph
	Rule Applications

	CPM+OO: An Extension for Objects
	Type Graph Overview
	Processors, Frames, and Objects
	Variables, Parameters, and Results
	Actions
	Operations
	Errors
	Others

	Modelled SCOOP Features
	Local and non-separate Calls
	Dynamic Object Creation and Variable Names
	Generic Operators
	Lock Passing
	Distinguishing Preconditions and Wait Conditions

	State-Space Optimisations
	Rules
	Control Flow
	System State
	Queries and Other Operations
	Optimisations
	Errors
	Configuration

	Testing
	Future Work

	Translation
	Overview
	Translating Programs
	Supported SCOOP Features
	Output
	Testing
	Future Work
	Inheritance
	Expanded Types
	Miscellaneous

	Case Studies & Evaluation
	Setup
	Case Studies
	Dining Philosophers
	Dining Savages
	Cigarette Smokers Problem

	Comparison with CPM
	Scalability and Future Work

	Conclusion
	Contributions
	Future Work

	Glossary
	List of Figures
	List of Listings
	List of Tables
	Bibliography

