
Version Control in EVE
Software Engineering Laboratory

! ! ! By: Emanuele Rudel
 Supervised by: Nadia Polikarpova
 Prof. Dr. Bertrand Meyer

! ! ! Student number:! 08-927-758

Contents
1. Introduction! 3

1.1 Motivation! 3

1.2 Goal! 3

1.3 Outline! 3

2. Subversion Client Library! 3

2.1 Problem Statement! 3

2.2 Architecture! 3

2.2.1 Commands! 3

2.2.2 Client! 5

2.2.3 Parser! 5

3. Repositories Tool! 5

3.1 Architecture! 5

3.2 Future work! 6

4. Groups tool! 7

4.1 Goal! 7

4.2 Architecture! 7

4.2.1 Tool panel! 7

4.2.2 Clusters, classes and libraries tree! 7

4.2.3 Grid items! 8

4.2.4 Contextual menu! 8

4.3 Future work! 8

5. Conclusions ! 9

1. Introduction
1.1 Motivation

The Eiffel Verification Environment (EVE) is a large project that makes extensive
use of Apache Subversion. In the current situation, the developer brings changes to the
code first, and then relies on an external tool to interact with the version control system.
The former step is performed with EiffelStudio or EVE itself, while for the latter step the
command line, operating system extensions, like Tortoise SVN, or third party software
are used. The whole process works flawlessly, but it is not efficient nor seamless since it
requires the user to switch back and forth between different programs.

1.2 Goal
The goal is to integrate a Subversion tool within EVE in such a way that the user

only has to interact with one program, namely the IDE. The benefits from the userʼs
point of view are the increase of efficiency and above all the reduced amount of time
required to learn new tools.

1.3 Outline
In order to provide the tool described above, it is necessary to bridge the gap

between the Subversion client and Eiffel: section two explains in detail how this is
accomplished. The third and fourth sections will cover the development of the actual
tool for EVE from a technical point of view.
The purpose of the attached document Version Control in EVE: User Manual is to show
the user how to use the graphical tool in EVE. A brief tutorial on how to use the
Subversion library is also provided.

2. Subversion Client Library
2.1 Problem Statement

The Subversion client library for Eiffel is not directly related to the project in the
sense that it is not essential to implement the tools illustrated in the next sections,
however it helps separating different concerns and is designed for reusability. It allows
thus other developers to take advantage of Subversion by using this library – as
explained in the aforementioned user manual – and to possibly extend it by adding new
commands.

2.2 Architecture
2.2.1 Commands

Subversion client commands are very similar to each other in how they are
executed: they usually require one input argument (also known as the target) and a
variable number of optional arguments. The output result is returned as plaintext,
regardless of whether the execution was successful or not. Thus, they all share some
common behavior defined in the deferred class SVN_CLIENT_COMMAND. Some
commands may require two arguments (source and target) and again a variable number

of options. The following (intentionally incomplete) class diagram illustrates the relevant
features of an abstract command.

Each concrete command has a unique name and can parse the output result,
although it is not always necessary. The execute feature collects the target and options,
if any, and asynchronously executes the actual Subversion command. All the
commands are non-blocking as they might slow down the whole workflow otherwise. A
client can register to three callbacks of a command that is being executed, namely
on_error_occurred, on_finish_command and on_data_received. The second callback is
called only if the first one isnʼt and vice-versa, i.e. the command has either completed
successfully or not, while the third callback is fired every time a partial result (could be a
line of a long repositoryʼs checkout) is received. Please note that one has to register to
the callbacks before invoking the execute command.

Once the execution terminates, the last result and error are updated and possibly
parsed into a different format. The parsing process takes place in a descendant of the
SVN_PARSER class in order to separate the result from its representation. What we
obtain is the so called visitor pattern, depicted below in a slightly simplified class
diagram.

Developers can thus extend the commands in the library by just adding a
descendant class of SVN_CLIENT_COMMAND and defining the command name. New
parsers, like a XML one for example, can be added without changing a line of code in

{NONE}
*parse_result (a_svn_parser: SVN_PARSER)
*command_name: STRING

set_target (a_target: STRING)
put_option (a_option_name, a_value: STRING)

target: STRING
last_result: STRING
last_error: STRING

execute
make (a_svn_client: SVN_CLIENT)

SVN_CLIENT_COMMAND

SVN_PARSER*

SVN_TEXT_
PARSER

SVN_XML_
PARSER

SVN_CLIENT_
COMMAND*

SVN_CLIENT_ADD
_COMMAND

SVN_CLIENT_LIST
_COMMAND

...

the commands classes: it is only needed to add a descendant of SVN_PARSER and
implement the deferred features declared in it.

2.2.2 Client
The main purpose of the SVN_CLIENT class is to group all the commands in one

place so that the user can easily access them. Likewise, for each command available in
the client thereʼs a corresponding list of supported options defined by the cmd_list
feature, where cmd is to be replaced with the actual Subversion command. This class
also defines the directory in which the commands should be executed (working path)
and allows the user to select different parsers.

2.2.3 Parser
The parser included in the first version of the library only processes the simple

plaintext output by the Subversion command line client, i.e. does not parse commands
that use the verbose option or similar. Moreover, some commands also support the
XML output option and hence an appropriate parser could be developed in the future.

3. Repositories Tool
The Repositories tool allows the user to inspect and to checkout repositories (or a

part of them).

3.1 Architecture
The repositories are modeled with tree structures which are mapped to their

respective graphical tree items. Each tree item of the model holds the name of its
corresponding repository item and a list of sub items, if it is a folder. Thereʼs one root
item for every repository that holds the repository URL and is responsible for listing its
content. At the time of writing, only the checkout Subversion command is available to
the Repositories tool, although it is discussed in the subsection Future Work how more
commands can be added.

As illustrated in the figure below, the repository model is entirely managed by the
EB_REPOSITORIES class. The graphical representation of the repositories is handled
by the EB_REPOSITORIES_TREE class, which is always consistent with the model
thanks to a publisher-subscriber pattern that notifies the modelʼs changes to the view
calling the features on_item_added, on_item_removed and on_update.

The EB_REPOSITORIES_MANAGER class is a façade to access and manipulate
repositories from the tool panel: it is not strictly necessary, but it helps separating the
model from the viewʼs actions (i.e. adding or removing a repository).

The Repositories tool also stores and reloads the repositories that the user added
when closing and opening the project, respectively. The persistency of the data is taken
care of in the REPOSITORIES_STORAGE class, while the storing and loading process
take place in the features store_repositories and load_repositories of the
EB_WINDOW_MANAGER class.

EB_REPOSITORIES_
ITEM*

EB_REPOSITORIES_
FOLDER

EB_REPOSITORIES_
FILE

EB_REPOSITORIES_
ROOT

EB_REPOSITORIES_
ITEM_LIST

[EB_REPOSITORIES
_ITEM]*

EB_REPOSITORIES

3.2 Future work
The Repositories tool gives the user the opportunity to inspect and checkout

multiple repositories, although it doesnʼt let the user to directly operate on these
repositories. Operations like merging, branching, importing and copying files and folders
are often performed directly on the repository and not on the working copy, thus it would
be handy to have these features integrated in EVE. The tool panel displays a set of
repositories using a tree representation. EB_REPOSITORIES_TREE is the tree widget
that displays its children, i.e. instances of EB_REPOSITORIES_TREE_ITEM.

The EB_REPOSITORIES_TREE_ITEM class displays a file or a folder in the
repository and is responsible for drawing the contextual menu and executing the actions
associated to the menu items. In order to be able to apply a new Subversion command
to an item, we need to add a menu item in the contextual menu. There are two steps to
follow:
1. Implement the command that you want to perform on the repositoryʼs selected item

(in the private implementation clause of the class);
2. In the context_menu_handler feature, add a new menu item to the contextual menu

and associate it to the action implemented in the previous step.

EB_REPOSITORIES_
OBSERVER*

EB_REPOSITORIES_
TREE

EB_REPOSITORIES_
TREE_ITEM

4. Groups tool
4.1 Goal

The classic Groups tool gives a tree representation of all clusters, classes and
libraries of the project. Now that we have a Subversion client library written in Eiffel, we
have the possibility to add information about the current status of the working copy (if
the project is under version control). We also want the user to have the possibility to
perform common tasks such as committing, updating, adding or removing files in a fast
and unobtrusive way, straight from the Groups tool.

4.2 Architecture
4.2.1 Tool panel

The creation of the tool panel in both the Groups and Repositories tools follows
exactly the steps described in the Tool Integration Development 1 tutorial and is
therefore not covered in this document.

4.2.2 Clusters, classes and libraries tree
Unlike the original Groups tool, the new one is implemented using a tree enabled

grid (EV_GRID) rather than an EV_TREE: this migration is required since the latter
class does not allow to customize the look of one item. The following picture shows the
difference between a row item in the original Groups tool and a row item in the Groups
tool that supports version control.

 APPLICATION

EB_CLASSES_TREE_ITEM

pixmap text

 APPLICATION

EB_GROUPS_GRID_ITEM

pixmap text svn status pixmap

1 http://dev.eiffel.com/Tool_Integration_Development

http://dev.eiffel.com/Tool_Integration_Development
http://dev.eiffel.com/Tool_Integration_Development

The grid class EB_GROUPS_GRID takes care of building and refreshing the tree
widget that displays clusters, classes and libraries items, as well as building and
drawing the contextual menu for the different grid items.

4.2.3 Grid items
There are four different grid items which are listed and described below:
1. EB_GROUPS_GRID_HEADER_ITEM: the header item is used to group clusters,

libraries, assemblies and overrides. This means that in the grid there is a
maximum of four header items displayed; empty header items, i.e. with no
subitems, are not displayed;

2. EB_GROUPS_GRID_CLASS_ITEM: the class item represents a class in the
cluster tree. Information about the status in the working copy, if available, are
displayed;

3. EB_GROUPS_GRID_FOLDER_ITEM: the folder item represents a cluster in the
cluster tree, including thus all its sub-clusters and classes. It is actually the folder
item that recursively creates the tree hierarchy of the clusters group, while the
grid only creates the clusterʼs root.

4. EB_GROUPS_GRID_TARGET_ITEM: a target item.
The Subversion commands are only enabled for classes and folders in the main
clusterʼs item, while libraries and overrides items are not supported.

4.2.4 Contextual menu
The contextual menu of the new Groups tool displays the same options as the old

tool (although some of them are not working for the new tool yet) and it additionally
offers, at the time of writing, three Subversion client commands:

1. Add: the selected item is put under version control in the working copy;
2. Commit: send the changes of the selected item from the working copy to the

repository. A log message can be provided (it is empty by default);
3. Update: bring the changes of the selected item from the repository into the

working copy.
If the selected item is a folder, the Subversion command is applied recursively to all

their sub-items, exactly as it happens using the command line client. In the next
subsection it is explained the necessary process for adding new Subversion commands
to the contextual menu.

4.3 Future work
Due to time constraints, only three Subversion commands have been implemented;

however, it is very straightforward to add new commands. The steps to follow may vary
from two to three, depending on whether optional input arguments are required:

1. In the EB_GROUPS_GRID class, extend the Subversion contextual menu by
adding a new menu item in the extend_working_copy_menu feature;

2. If the command requires the user to pass additional parameters, the developer
may choose his or her own way to deal with the problem. The solution adopted
for the commit command, for example, consists in displaying a small dialog that

allows the user to type a log message. The Subversion dialogs are all organized
in one sub-cluster2;

3. Implement the action that applies the Subversion command to the item. You can
refer to the already implemented actions in the Subversion context menu
commands clause in the EB_GROUPS_GRID class, together with the
path_from_pebble feature, that returns the actual name of the selected item and
its working path.

Because of the implementation based on a EV_GRID widget, the new Groups tool
doesnʼt have the functionality to restore the expanded and collapsed states of the
groups and clusters yet. This causes the tree to collapse all the groups as soon as it is
refreshed.

The actions like creating a new cluster or class and locating them in the project filesʼ
tree have not been developed for the new panel as they were not in the scope of the
project. The intention is however to completely replace, in a near future, the old Groups
tool and simplify even more the user interface of EVE.

5. Conclusions
The tool we developed lays the foundations for a new way of working with EVE and

Subversion: users donʼt need to install new third party software, instead they have an
integrated instrument built right into the IDE. More importantly, there is no training
required in order to learn how to use the tool: all the Subversion commands available
are one click away from the Groups tool, with which the user is already familiar with.

This work is to be still considered under development and it is not yet ready for
customers use.

2 $EIFFEL_SRC/interface/new_graphical/dialogs/subversion_dialogs/

