

Implementing an IRC Server Using an Object-

Oriented Programming Model for Concurrency

Bachelor Thesis

Fabian Gremper

ETH Zürich

fgremper@student.ethz.ch

May 17, 2011 – September 25, 2011

Supervised by:

Scott West

Prof. Dr. Betrand Meyer

2

Table of Contents

1 Introduction .. 3

1.1 Related Work.. 3

1.2 Outline.. 4

2 SCOOP ... 5

3 Implementation... 6

3.1 IRC protocol ... 6

3.1.1 Structure ... 6

3.1.2 Messages .. 6

3.2 General Design... 7

3.3 SCOOP Related Aspects .. 9

3.3.1 Separate objects.. 9

3.3.2 Execution Order ... 11

3.3.3 Separate calls.. 12

3.4 Provided Functionality ... 12

3.4.1 Commands.. 12

3.5 Milestones .. 13

3.5.1 SCOOP Concurrency ... 14

3.5.2 Echo Server .. 14

3.5.3 Echo-to-all Server .. 14

3.5.4 Interaction with mIRC.. 14

3.5.5 “Complete” Functionality .. 15

4 User and Developers Guide.. 16

4.1 User Guide.. 16

4.2 Developers Guide... 16

4.2.1 Missing Functionality... 16

5 Conclusion.. 18

6 References .. 19

3

1 Introduction
The Internet Relay Chat (IRC) is a form of real-time Internet text messaging. It

was one of the most popular chat protocols in the early stages of the Internet.

Most of the popular IRC servers (also called IRC daemon) were therefore not

written with object-oriented principles in mind.

This bachelor thesis focuses on writing a new IRC server application from

scratch, using SCOOP as a programming model for concurrency. The application

is written in Eiffel and provides a working subset of the functionality documented

in the IRC protocol specification in RFC1459.

The following functionality is provided:

 The server follows the RFC1459 protocol and works with common IRC

clients.

 The server allows many users to connect simultaneously and interact with

each other directly or using channels.

 Channels support channel modes +ismnt and allow setting topics.

 Users can gain voice and operator privileges in channels.

 Users with operator privileges can alter the privileges of users in a

channel and kick users from a channel.

 Users can retrieve information about the available channels and other

users on the server.

 The server pings its clients periodically in order to identify timed out

clients.

The application has been developed and tested with EiffelStudio 6.8 and mIRC

7.19 on Windows XP (32-bit).

1.1 Related Work

Florian Besser has written a bachelor thesis about using SCOOP to implement an

HTTP server. However, at the time of writing his thesis isn’t available to me.

4

1.2 Outline

A quick introduction to SCOOP can be found in Chapter 2.

Chapter 3 deals with the implementation of the IRC server. The structure and

classes of the application are presented and SCOOP related aspects of the

implementation are highlighted. The development process is evaluated with

respect to major milestones of the project.

A small user and developers guide is presented in Chapter 4. Unimplemented

functionality of the IRC specification is listed and can be included in future work.

Chapter 5 contains a summary of my experience with SCOOP.

5

2 SCOOP
SCOOP (Simple Concurrent Object-Oriented Programming) [2] is a model and

practical framework for building concurrent applications. It comes as a

refinement of the Eiffel [1] programming language and is integrated into the

latest version of EiffelStudio.

In the context of SCOOP, every object is handled by a processor. A processor is

an abstract notion of an autonomous thread that is capable of the sequential

execution of one or more objects.

SCOOP also introduces the notion of separateness. Declaring a type with the

keyword separate results in the object being allocated to a new processor. This is

called a separate type.

01 my_type: separate SOME_TYPE

Calling a routine of a separate type is only possible using a separate call. A

separate call wraps a feature call of a separate type in an enclosing routine.

Execution of this enclosing routine is delayed until the processor handling the

separate argument is available for exclusive access.

01
02

03
04
05

06
07

08
09

 calling_routine
 do

 enclosing_routine (my_separate_attribute)
 end

 enclosing_routine (a_arg: separate SOME_TYPE)
 do

 a_arg.some_feature
 end

The calling routine continues its execution and does not wait for the execution of

the enclosing routine to finish.

6

3 Implementation
In this chapter we will look at the implementation of the IRC server.

3.1 IRC protocol

3.1.1 Structure

This section gives you a quick overview of how the IRC protocol works.

In a basic scenario there is one IRC server and many IRC clients that connect to

it. Every client has a nickname which other clients use to refer to it. Clients can

interact with each other directly or using channels.

Channels are the basic means of communicating to a group of users in an

established IRC session. A channel has a channel name that is prefixed with “#”

and a keeps list of users that are currently in the channel. Channels have can have

a topic and several modes set. Users can join a channel using the JOIN command.

A channel is created implicitly on JOIN if it does not exist, and deleted after the

last user leaves.

3.1.2 Messages

The communication between IRC server and client is implemented using plain-

text single-line messages. The format of the message is described in ‘pseudo’

BNF (Backus–Naur Form) in RFC1945 [3]:

<message> ::= [':' <prefix> <SPACE>] <command> <params> <crlf>
<prefix> ::= <servername> | <nick> ['!' <user>] ['@' <host>]
<command> ::= <letter> { <letter> } | <number> <number> <number>

<SPACE> ::= ' ' { ' ' }
<params> ::= <SPACE> [':' <trailing> | <middle> <params>]

<middle> ::= <Any *non-empty* sequence of octets not including SPACE
 or NUL or CR or LF, the first of which may not be ':'>

<trailing> ::= <Any, possibly *empty*, sequence of octets not including
 NUL or CR or LF>

<crlf> ::= CR LF

The prefix indicates the origin of the message. This can be the server or another

client. Prefixes are only included in server-to-client messages.

7

The command is either plain-text (such as JOIN) or a 3-digit number (e.g. 331,

which represents RPL_NOTOPIC).

Parameters may not contain NUL, CR (carriage return), LF (line feed), space or

be empty. The trailing parameter can be empty or contain spaces.

Example commands:

JOIN #bar User wants to join channel #bar.

:foo JOIN #bar User foo has joined channel #bar.

:foo TOPIC #bar :What’s up? User foo has changed the topic of

channel #bar to “What’s up?”

3.2 General Design

The APPLICATION opens up a listening socket on port 6667. Connecting clients

will be accepted and a new socket is returned for every client. An object of class

IRC_USER will be created for every client and handle further communication

with the associated socket. Incoming messages from the client will be parsed and

effective commands will be handled by a global object of class CONTEXT.

The following is an overview of all classes:

 APPLICATION – Creates objects CONTEXT and TIMEOUT_CHECK.

Listens for connections on port 6667 and creates an IRC_USER object

that handles the resulting socket for every client.

 CONTEXT – Keeps track of all users and channels. Responsible for

manipulation of user and channel data and sending out messages and

command responses to clients.

 IRC_CHANNEL – Represents an IRC channel. Stores data such as the

channel name, creation time, topic, channel modes and the users in the

channel and their privileges (op, voice).

8

 IRC_USER – Represents an IRC client. IRC_USER objects read

incoming data on the associated socket and parse the messages.

Commands that affect multiple clients are passed to the CONTEXT and

handled there.

 NETWORK_STREAM_SOCKET_HACK – This is a simple modification of

NETWORK_STREAM_SOCKET that allows recreation of a socket using

the internal file descriptor.

 TIMEOUT_CHECK – Periodically calls the CONTEXT to “ping” all

connected users in order to find and remove timed-out clients.

Let’s see an example of how and where commands are processed. In the

following scenario, user foo is already connected and registered with the server

and wants to join channel #bar.

 Action Class

 1) The IRC client sends the following message:

 JOIN #bar

 2) Read the message from the socket. IRC_USER

 3) Parse the message. IRC_USER

 4) Invoke join_channel of the CONTEXT object

using a separate call.

 IRC_USER

 5) Look up the IRC_CHANNEL object by name

from the corresponding HASH_TABLE. If it does

not exist, create a new IRC_CHANNEL and add

it to the hash table.

 CONTEXT

 6) If the user is already in the list of users of the

IRC_CHANNEL or the channel is invite only,

return an error.

 CONTEXT

 7) Add the user to the list of users on the

IRC_CHANNEL.

 CONTEXT

 8) Notify all users on the channel about the joining

user by sending the following message to the

respective sockets:

 :foo JOIN #bar

 CONTEXT

9

3.3 SCOOP Related Aspects

This section deals with SCOOP related aspects of the implementation.

3.3.1 Separate objects

Dealing with separate objects has been one of the greatest challenges I had to

overcome dealing with SCOOP.

Assume you want to listen for incoming connections and then create a new

separate object for every connection to handle each socket individually.

The basic listening socket setup looks like this:

01
02
03

04
05

06
07
08

09

 local

 in: NETWORK_STREAM_SOCKET
 do

 -- create listening socket
 create in.make_server_by_port (6667)

 in.listen (5)

 -- block and accept socket

 in.accept

You can now access the newly accepted socket through in.accepted. Let’s assume

we have another class SOCKETHANDLER which looks like this:

01
02

03
04

05
06
07

08
09

10
11
12

13
14

15
16

create

 make

feature

 socket: separate NETWORK_STREAM_SOCKET

 make (s: SOCKET)
 do

 socket := s
 end

 run
 do

 -- code involving the socket

 -- (possibly infinite reading loop)
 end

10

After accepting a socket in the main class, we first create an object of class

SOCKETHANDLER and pass the accepted socket to it. Then we call the method

run using a separate call.

Now the following problem occurs: the run routine cannot use the socket and

execution of run is delayed forever, because the socket belongs the processor of

APPLICATION, which is currently executing and not available for exclusive

access. If we were to pass the socket to the run routine instead of the make

routine, the main APPLICATION would wait until the execution of run finishes.

We could avoid this problem if the NETWORK_STREAM_SOCKET was non-

separate in our SOCKETHANDLER class.

The solution: Instead of passing the socket itself, it is possible to pass an

INTEGER_32 representing the internal file descriptor of the socket to the

SOCKETHANDLER. We can then recreate the socket as a non-separate object in

the SOCKETHANDLER using this integer.

The NETWORK_STREAM_SOCKET class does not provide a public creation

routine that takes an internal file descriptor. However, a private routine

create_from_descriptor does exactly what we’re looking for. As you can see in

section 3.2, NETWORK_STREAM_SOCKET_HACK is a simple class that inherits

NETWORK_STREAM_SOCKET and makes the functionality to recreate a socket

using the internal file descriptor publicly available.

Before my supervisor pointed me to this elegant solution, I was experimenting

with another idea. Instead of listening for connections in the main

APPLICATION, the listening is done in the SOCKETHANDLER. Initially, one

separate SOCKETHANDLER object is created and it is listening for incoming

connections. As soon as a client connects, it stops listening and deals with the

socket instead. The APPLICATION is notified that the SOCKETHANDLER is no

longer listening. This is done via a separate object that can be accessed by both

APPLICATION and SOCKETHANDLER objects. A new SOCKETHANDLER

object is now created and starts listening for incoming connections.

In a running state there are always n SOCKETHANDLER objects handling their

respective sockets and one SOCKETHANDLER listening for new connections,

where n is a number greater or equal to zero.

11

This solution also resulted in the sockets being non-separate in the

SOCKETHANDLER and therefore the aforementioned problems can be avoided.

However, apart from being far less elegant, this would also result in a very short

period of time in which no listening socket exists after a client connects.

You can consider the class IRC_USER in the actual implementation to be an

improved version of SOCKETHANDLER in this example.

Another difficulty was dealing with separate strings. Passing strings to a separate

processor will turn them into separate strings, which are pretty much unusable,

since the Eiffel libraries do not support separate types (yet).

The following simple routine recreates non-separate strings from separate strings

by copying them character by character:

01
02
03

04
05

06
07
08

09
10

11
12
13

14

 make_local_string (s: separate STRING): STRING
 local

 i: INTEGER
 do
 create Result.make_empty

 from

 i := 1
 until

 i > s.count
 loop

 Result.extend (s.item (i))

 i := i + 1
 end

 end

This auxiliary routine is used countless times throughout the entire project.

3.3.2 Execution Order

In a concurrent system, problems such as race conditions can arise when different

processors, processes or threads share resources.

In this implementation, shared information such as user and channel data is all

handled by a single object of class CONTEXT. Requests to access or change this

data is also handled by the same object. Because separate calls wait until the

processor of an object is available for exclusive access, the routines of the

CONTEXT object pose an atomic operation in respect to the data that is

12

manipulated. This guarantees that no unwanted behaviour, such as race

conditions, can occur. The order of execution of the calls to the CONTEXT object

by IRC_USER objects is merely scheduled by SCOOP.

3.3.3 Separate calls

Because most of the IRC commands parsed by the IRC_USER class are

eventually routed to the CONTEXT object, there have to be a lot of enclosing

routines (see Chapter 2) in the IRC_USER class that merely contain a one line

call to an object with identical parameters.

An example is:

01

02

03
04

 context_kick_from_channel (c: separate CONTEXT;

 fd: INTEGER_32; ch: STRING; n: STRING; s: STRING)
 do

 c.kick_from_channel (fd, ch, n, s)
 end

Writing these enclosing routines (and updating them when you change

parameters) is relatively time-consuming and really interrupt the flow of

programming. Since in this case you only need to wait for the processor of one

object, SCOOP should not require an enclosing routine or introduce a shorter

syntax to achieve the same functionality.

3.4 Provided Functionality

A general overview of the functionality can be found in Chapter 1. The following

section gives you a good overview of the functionality by listing the supported

commands of the IRC server.

3.4.1 Commands

Here is a list of commands supported by this implementation:

 NICK <nickname>

Set or change your nickname.

13

 USER <username> <hostname> <servername> <realname>

Set additional user information.

 JOIN <channel>

Join a channel.

 PART <channel>

Leave a channel.

 KICK <channel> <nickname> <reason>

Kick a user from a channel.

 MODE <channel> {[-|+]i|s|m|n|t|o|p} [<user>{<space><user>}]

Set channel modes or change privileges of users in a channel.

 TOPIC <channel> [<topic>]

Set or unset the channel topic.

 NAMES <channel>

Request a list of users in a channel.

 LIST

Request a list of all channels.

 PRIVMSG <nickname> <message>

Message a user.

 WHOIS <nickname>

Request user information.

3.5 Milestones

I developed the application step-by-step and tested my code thoroughly after

every modification.

The development process can be described best by breaking it down into the

following stages:

14

3.5.1 SCOOP Concurrency

The first thing I did was trying to get SCOOP functionality working and play

around with it a bit in order to get a feel of how it works.

SCOOP is built in into EiffelStudio 6.8, but it has to be enabled first: Go to

Project → Project Settings → Advanced → Concurrency and set it to SCOOP.

3.5.2 Echo Server

My first real goal was a server that several clients can connect to simultaneously

(e.g. with telnet). The server will repeat every line of text it receives back to the

client. My idea was to create separate objects to deal with each socket

individually and concurrently. It took quite some time to figure out a good way to

do this – section 3.1.1 focuses on this aspect.

3.5.3 Echo-to-all Server

The next step was to modify my echo server and broadcast any line of text it

receives to all connected clients. However, up until this point, every IRC_USER

was self-contained and did not know of the existence of other IRC users.

I introduced a global CONTEXT object which keeps a list of all connected users

and is referenced in every IRC_USER. When an IRC_USER wants to broadcast

a message, it invokes the CONTEXT object which then messages every user.

3.5.4 Interaction with mIRC

One of the major changes from the last milestone is the necessity for parsing

messages. The parsing itself takes place inside the IRC_USER. Also, in order to

address individual clients, the CONTEXT object needs to be able to associate

nicknames with sockets; I use a HASH_TABLE for this.

In order to actually be recognized as an IRC server by mIRC very less is

required. Upon connecting, mIRC sends the commands NICK and USER to the

server. The server replies with 001 (RPL_WELCOME).

15

Now you can interact with other users on the IRC server. I implemented the

command PRIVMSG to let users send messages, assuming they know their

target’s nickname.

3.5.5 “Complete” Functionality

Now it was time to implement the remainder of the functionality listed in section

3.4. This step was very time consuming as it required accurate implementation of

the specification.

16

4 User and Developers Guide

4.1 User Guide

The IRC server can be accessed via Subversion under:

https://svn.origo.ethz.ch/scoop/examples/ircd

Open the project file (ircd3.ecf) in EiffelStudio 6.8 or later and compile and run

the source code.

Running the project creates a local IRC server to which IRC clients can connect

to on port 6667.

There is currently no configuration file. Changes to the IRC server have to be

made directly in the source code.

4.2 Developers Guide

Chapter 3 explains the functions of the classes and the flow of events. Apart from

this, the code is should be self-explanatory. Unfinished parts that were not part of

the requirements and can be improved are highlighted by comments in the code.

Future work can include implementing the missing functionality described in

section 4.2.1 and adding the ability to configure the IRC server using an external

configuration file.

4.2.1 Missing Functionality

The following functionality is part of RFC1459 but has not been implemented

yet:

 Origin prefixes are not ignored in client-to-server messages.

 Nicknames and channel names are not checked for validity (max. length,

valid characters) and are not case-insensitive.

 There is no maximum message length. (should be 512 including CRLF)

 Not all error codes are returned if an error occurs.

 Properly handling disconnecting clients.

 No support for multiple users or channels in a single command. (e.g.

JOIN #foo,#bar)

17

 WHOIS only supports users, not servers. (makes sense, since there is

currently only one server in this implementation)

 MODE has no support for ban masks or setting a channel limit.

 LIST does not support parameters.

 The following commands:

SERVER Connect to server.

OPER Become IRC operator.

SQUIT Server disconnect.

VERISON Request server version.

STATS Request statistics.

LINKS Check for linked servers.

TIME Request time.

CONNECT Connect server to server.

TRACE Find route to server.

ADMIN Find name of server administrator.

INFO Request server information.

WHO Like WHOIS for several matches.

WHOWAS Like WHOIS with history.

KILL Kill a user.

ERROR For the server to report serious errors.

REHASH Re-read config file.

RESTART Restart server.

SUMMON Ask people to join IRC.

USERS Similar to WHO/RUSERS/FINGER. (deprecated)

WALLOPS Send message to all IRC operators.

USERHOST Request userhosts for multiple users.

ISON Requests online status for multiple users.

18

5 Conclusion
In my opinion, the concurrency model of SCOOP is very well suited for

developing an IRC server. It is possible to maintain an object-oriented structure

and still take advantage of multiple, concurrently active execution vehicles.

However, in its current stage of development, SCOOP is not ready yet to be used

by a larger audience. The base library has no support for separate types – it’s not

even possible to print a separate STRING to the console easily. Only basic types,

such as CHARACTER and INTEGER, can be accessed if they are on a separate

processor. Separate objects have to be deconstructed to the level of basic types

and reconstructed from ground up in order to be used. It seems like this can be

avoided for the most part if libraries are extended with support for separate types.

The difficulties described in section 3.3.1 concerning the listening socket are a

general problem. The general scenario is an object factory: The returned newly

created object will always be on the same processor as the factory. This is

undesirable in many cases. Since it is an ‘untouched’ object that has no affiliation

with any processor, SCOOP should provide functionality to assign it to another

processor than the current one.

Using a single object to hold data and offer routines to access and change it

eliminates the problematic of race conditions. I did not have to deal with

atomicity of operations, because all critical data is manipulated from a single

object. This aspect is also discussed in section 3.3.2.

19

6 References
[1] EIFFEL website – http://www.eiffel.com/

[2] SCOOP website – http://www.origo.ethz.ch/

[3] RFC 1459, Internet Relay Chat Protocol –

http://tools.ietf.org/html/rfc1459

