
Bachelor-Thesis:
Eiffel HTTP Server

Florian Besser, Scott West, Bertrand Meyer

Chair of Software Engineering, ETH Zurich, Switzerland

Bachelor Thesis under Prof. Bertrand, ETH Zürich Florian T. Besser

Index

Abstract 4

Summary 4
Real-world robustness 4
HTTP Compliance 4
Multi-threaded Throughput 4

Introduction 5

Goals 6
HTTP Compliance 6
Server Code / Execution 6
Extensions / Entities 6

Related Work 7
Apache 7
LightHTTPd 7
IIS 7

Theory 8
Data Transfer over Network 8
Threads 8

Detailed Description 8
Architecture 9
Implementation 10
Behavior 13

Developers Guide 16
Adding new features with options
in the configuration files 17
Adding new handler 18
Adding new header 18
Adding new error code 19

Users Guide 20
Preparations 20
Where to find and download
eServer 20
How to build the solution 20

Eiffel HTTP Server Page 2/25

Bachelor Thesis under Prof. Bertrand, ETH Zürich Florian T. Besser

Windows Guide 21
Path Settings 21
Correct Read/Write access 21

Conclusion 22
Behavior 22
Architecture 22
Implementation 23
SCOOP 23
Evaluation with respect to time
and space 24

Future work 25
Extensions 25
Library performance improvement 25
More configuration possibilities 25

References 25

Eiffel HTTP Server Page 3/25

Bachelor Thesis under Prof. Bertrand, ETH Zürich Florian T. Besser

Eiffel HTTP Server

Abstract

The HTTP specification is one which is utilized by all web-browsers and
servers alike.
More than this, it is a well-known and reviewed specification. This project will
deal with the construction of a real-world web-server. The proposed server is
implemented in Eiffel, conforms to an agreed upon portion of the HTTP
specification (RFC 2616), and uses concurrency to handle multiple
connections and facilitate increased throughput.

Summary

The eServer can handle HTTP 1.1 as well as HTTP 1.0 and handles
OPTIONS, GET, HEAD, POST, PUT, DELETE, TRACE and CONNECT
Requests.

Real-world robustness

Our web-server was designed to cope with faulty or even mischievous
clients. The problem of keeping connections open indefinitely and
therefore pushing the server to it's limits has been addressed, as well
as the problem of one particular time-consuming request taking up all of
the servers resources. The server has also been tested with different
browsers for real-world compatibility.

HTTP compliance

All the headers specified in the HTTP protocol are analyzed and used
whenever possible. Requests are searched for request-, entity- and
general headers. Responses are sent with response-, entity- and
general headers. While reading requests and generating responses, as
much information as possible is read in resp. given to the client. This
aims for a sound, robust usage even with future clients.

Multi-threaded throughput

Our threads are used to read from and write to sockets, but do so non-
blocking. This makes for a smaller memory footprint overall, and less
thread switching. The architecture is set up in a way that a reqeust can
be parsed line by line, so there is no waiting until the whole request has
arrived, or until the whole response has been generated before action
can be taken! These features are especially important when for
example streaming movies.

Eiffel HTTP Server Page 4/25

Bachelor Thesis under Prof. Bertrand, ETH Zürich Florian T. Besser

Introduction

Since the nineties web-servers became more and more important, as they are
the very fundamental „brick“ upon which all Internet services are built.
However, this role also means much workload for web-servers, as well as an
ever-demanding base of developers to implement more and more features. So
web-servers have to be fast, durable and extensible as well as scalable.
The main idea of the eServer project is to build a robust and easily extensible
web-server, while also providing good speed and durability.

 Robustness is „inherited“ from the basic Eiffel libraries used, since they
are well known to have few errors and run very stable.

 For ease of extensibility, agents are used. The agent mechanism wraps
operations into objects. So other developers can define such an
operation, which will be executed by the server. A good example of how
powerful agents are: Our server is designed to handle HTTP, but with
the right agent, it could also handle entirely different protocols!

 Eiffel provides a basic Thread library, which is used to gain more
throughput and allows us to make use of multi-core systems. The
library works quite well, it is, however, quite slow when switching
threads. But if that library will be improved in the future, so will our
server.

 Scalability has grown in importance over the last few months: With
more and more Denial of Service (DoS) attacks, it is important to have
a server that does not break down should multiple users access it at
once. For example, if 100 users access a web page at once, the server
should be busy for about 100 times as much as if only one user
accessed the web page. This is often a problem in real-world web-
servers.

So the very fundamental question is: How to build a web-server that satisfies
these requirements? The eServer project aims to answer this question, as well
as lead the way for an actual implementation. The main contributions of this
paper are: (See detailed description)

 Formal specification of eServer behavior / class model
 Architecture explanation
 Implementation explanation (see also code of eServer)
 Guide for extensibility / other guides for developers
 Several guides for real-world deployment of eServers on different

operating systems and for different purposes

Eiffel HTTP Server Page 5/25

Bachelor Thesis under Prof. Bertrand, ETH Zürich Florian T. Besser

Goals

Our main goals can be divided into three categories and were set beforehand.

HTTP Compliance

The HTTP Server complies with a good part of the the rules of HTTP
1.1, which means the Server can handle OPTIONS, GET, HEAD,
POST, PUT, DELETE, TRACE and CONNECT requests, and the
answers to these requests are understood and correctly handled by
major browsers like Firefox, Opera, Chrome, Safari, IE etc.

An additional goal is that the Headers sent with the requests and
answers are also handled according to HTTP 1.1.

Those types of requests the server complies with are supposed to be
error-free in general cases and have a low error rate in special cases.

Server Code / Execution

The Server should be multi-threaded, preferably use SCOOP.

The Server should provide a good speed, meaning it is supposed to
access more than 100 medium-sized static HTML pages per second.
In a real-world environment the Server is supposed to reach 5% of the
throughput-rate of an Apache web-server.

The server is supposed to run stable and smoothly, serving a constant
rate of pages per second.

Extensions / Entities

MIME-Support (required to answer many requests, such as GET)

The configuration options of the server allow a flexible deployment and
are easily extensible.

Configuration files for:

 Logging
 Error reporting
 Handling of persistent connections (keep-alive etc.)
 Resource control (Number of spawned worker threads, and

behavior of the Server under high load)
 MIME types

Eiffel HTTP Server Page 6/25

Bachelor Thesis under Prof. Bertrand, ETH Zürich Florian T. Besser

Related work

There are several other web-servers already operating around the globe, and
with sites like Google and YouTube the market value of good web-servers is
several million dollars at least. So instead of listing every other web-server,
let's have a look at some of the market leaders:

Apache

The Apache HTTP Server Project is an effort to develop and maintain
an open-source HTTP server for modern operating systems including
UNIX and Windows. The goal of this project is to provide a secure,
efficient and extensible server that provides HTTP services in sync with
the current HTTP standards.
Apache httpd has been the most popular web server on the Internet
since April 1996, and celebrated its 15th birthday as a project this
February.
The Apache HTTP Server ("httpd") is a project of The Apache Software
Foundation.

LightHTTPd

Lighttpd powers several popular Web 2.0 sites like YouTube, wikipedia
and meebo. Its high speed Io-infrastructure allows them to scale several
times better with the same hardware than with alternative web-servers.
This fast web server and its development team create a web-server with
the needs of the future web in mind:

 Faster FastCGI
 COMET meets mod_mailbox
 Async IO

Its event-driven architecture is optimized for a large number of parallel
connections (keep-alive) which is important for high performance AJAX
applications.

IIS

Internet Information Services (IIS) for Windows® Server is a flexible,
secure and easy-to-manage Web server for hosting anything on the
Web. From media streaming to web application hosting, IIS’s scalable
and open architecture is ready to handle the most demanding tasks.

Or so they claim. With a market share of about 30% they are obviously
doing something right.

Eiffel HTTP Server Page 7/25

Bachelor Thesis under Prof. Bertrand, ETH Zürich Florian T. Besser

Theory

The eServer uses a few but quite important concepts.

Data Transfer over Network

This might seem as a triviality, but there are a few points which make it
noteworthy. Data transferred over any network can get lost or delayed,
so it is important to deal with these possibilities. Since the underlying
TCP Protocol gives some guarantees (for example that data will always
be available in the order it was sent), there are certain aspects TCP
does not (and probably can't) cover. The two main problems left
unaddressed by TCP are:

 No guarantee about round trip time (RTT), so it is possible that a
connection times out

 Dignified exit is not always possible. So every packet the server
or client tries to send could lead to an error because the
connection has already been closed.

If you are interested about how these problems are actually solved,
please consider the more in-depth explanation of the server code.

Threads

As already stated in the goals section, Threads are used in this project.
Again, this fact alone is nothing new, but there have been some
interesting problems on the implementation side, since the Eiffel base
library is not thread safe. On the theory aspect, however there is not
much news here. If you are interested about how the threads actually
work together, please read the detailed description about server
behavior.

Detailed Description

This section will deliver a detailed explanation of the key aspects within
eServer. If you are interested in the inner working, then go ahead and read it.
For most developers and users it will be more informative to read the guides,
however. These key aspects normally need not to concern developers and
users, but just in case you want to have the same level of knowledge as the
inventors, here you go:

Eiffel HTTP Server Page 8/25

Bachelor Thesis under Prof. Bertrand, ETH Zürich Florian T. Besser

Architecture

The architecture of our project is quite ordinary. There isn't any new
pattern or some special way how the work-flow is handled. Still, let me
give you an overview over the inheritance first:

 APPLICATION inherits from THREAD_CONTROL
 WORKER and CACHER inherit from THREAD
 REQUEST and RESPONSE both inherit from

GENERAL_HEADERS and ENTITY_HEADERS, who in turn inherit
from HEADER_UTILITIES.

 Additionally, MT_LINKED_LIST[G] inherits from LINKED_LIST[G].

For completeness, let me also document all the patterns and ideas
used.
The very first idea is as old as it is simple. Since we had a configuration
that was supposed to be globally available, we passed the configuration
reference to nearly every other object, therefore creating something like
global variables. Eiffel connoisseurs will protest, that this is not really a
neat way, and they are right. But it is fast and comprehensible, as well
as easy to access for developers. In the future, someone might code a
configuration the same way EiffelStudio uses it: You inherit from a
specific class and configurations becomes magically available!
Next is a Producer/Consumer model for incoming connections. Class
APPLICATION listens for them, and inserts a corresponding object in
MT_LINKED_LIST, which is depleted by all the WORKER threads. The
same process is used again with the agents in MIME, called by
WORKER. After a response is generated, they may decide to cache it,
so they will supply it to a LINKED_LIST for the CACHER thread
(making them Producers in that case). The CACHER thread is the only
consumer of that list, and will take the elements given and put them into
a better organized SPLAY_TREE.
(The idea was to create only a small additional load to the WORKERs
while not having to abandon a fast and scalable storage system like a
SPLAY_TREE.)
As already mentioned, the agents play a central role in our system.
Every file extension might have a different agent that handles it, and the
calling threads have to dynamically evaluate which agent they should
use. Which agent is used for which file extension is defined during the
creation of the MIME object. And the creation of all the MIME objects
happens in the CONFIG.make feature, should you want to look. As of
now, there is only one handler, the standard_handler, so there will be
nothing to see.

Eiffel HTTP Server Page 9/25

Bachelor Thesis under Prof. Bertrand, ETH Zürich Florian T. Besser

Implementation

There are two parts of server implementation, the boot sequence and
the actual service.
Before a server can run, it must of course start. For this cause it will
create a CONFIG object, with the feature make. This feature will try to
open all necessary configuration files, read them out and convert them
into Eiffel objects. Every line in these configuration files must either be
empty (equal to „“), be a comment (start with „#“), contain a known
command that hasn't yet been executed or it will be logged as „not
understood or doubled“.
By making sure the same command doesn't get executed twice we
force soundness of the configuration file. For example, it is impossible
to reference two files for the „404 - Not Found“ error. Originally in
Apache the later-read command simply overwrote the standing
command, which has often led to confusion of apache users. If you
define your own error file you either want it to work correctly or receive
an error – but Apache simply omitted the command.
Any errors logged during this stage will be outputted to stdout, so you
should always see them, even when starting the eServer as a daemon.
After no more configuration files are to be read, the eServer checks for
completeness of the configuration files. Only when all the basic
commands have been set will it execute correctly.
There is an alternative mode that adheres to the Eiffel principle of being
able to start without any commands at all. If even the basic
configuration file is not readable, the server will start with default values
(ex: port 1234).

So in conclusion: Either a sound and complete configuration, or none at
all. Everything in the middle is prohibited to avoid confusion.

Now that the server is set up to receive connections, the main
application will start the WORKER threads as well as the CACHER
thread. All threads share the generated instance of the class CONFIG.
All WORKER threads as well as the main application share an instance
of MT_LINKED_LIST. We will come back to that object later.
The WORKER threads will block until MT_LINKED_LIST.count > 0, and
the CACHER thread will wait until a WORKER advises it to cache a
resource.
But back to APPLICATION:
The feature execute will now loop endlessly while looking for incoming
connections. The call to server_socket.accept is blocking, so no
resources are wasted.
Eventually, a client will establish a connection in hopes of sending a
request. As soon as the TCP handshake is completed the connection
handler (identified by the client socket) is used to create a REQUEST /
RESPONSE tuple, which is stored in the MT_LINKED_LIST. The
APPLICATION will also send a signal to all blocked WORKERs, so that
they may immediately start working. The APPLICATION has now
finished a cycle and will start listening for connections again.

Eiffel HTTP Server Page 10/25

Bachelor Thesis under Prof. Bertrand, ETH Zürich Florian T. Besser

Among the WORKER threads there is now a race who will get the
inserted object. As guaranteed by the Eiffel Thread library at least and
at most one thread will succeed in obtaining said object. All other
threads will look for another object stored (again, with a race) or go
back to sleep until they are awoken again by APPLICATION.
The successful WORKER(s) will now try to work their way through
reading out the client_socket as well as preparing a very basic
RESPONSE object.
Let's look at this very important step in a bit more detail. As a first step,
we must read out the client_socket and fully populate the REQUEST
object.
In a request, the first line is very special. It contains the three most
important informations of a request. Namely the method (GET, POST,
etc.), the resource (/index.html, /Subfolder/xyz.txt) and the protocol
(HTTP/1.1, HTTP/1.0). Many requests could be answered just with this
line, but there are a bunch of headers that can influence the outcome of
the request.
On every line after the first there is exactly one header. An empty line
signals the end of all headers. As of now, headers are either recognized
and stored in the REQUEST object, or are reported as faulty and
ignored. At a later stage, the content of these headers will be evaluated.
There is one exception to this rule, though. Should the header
Content-Length be bigger than 0, then the server knows that the client
would like to send an entity with the REQUEST. Exactly as many bytes
as specified by Content-Length will be read in and stored. Just as
before, the content of the entity is not analyzed.
Once the REQUEST object has been completed, the CACHER thread
will be asked whether it has an answer to this request or not. The exact
behavior of the CACHER is documented in the Behavior section just
below this one. Should a RESPONSE be found, the WORKER will
immediately deliver it to the client, purge the REQUEST object, and
insert the REQUEST / RESPONSE tuple into MT_LINKED_LIST again.
It has then completed a cycle and will start listening for new entries in
MT_LINKED_LIST itself.
In the unlucky event that not all of the client's data has been received
(determined by read errors), the connection will simply be stored in the
MT_LINKED_LIST again (but at the very end!). By storing every new
entry at the end we ensure a round-robin model amongst connections.
A client that opens a connection but doesn't send any data will not
impact other concurrent REQUESTs. And until the connection is given
to a WORKER again, the missing data will hopefully have arrived.
Otherwise, repeat the process until the data arrives or a timeout occurs
(default: 3 seconds).
Should the read operation complete without an accurate RESPONSE
from CACHER however, then the difficult part starts.
By looking at the file extension submitted in the resource, the WORKER
will determine the correct MIME agent, which it will call. Should no
MIME type be found, then the WORKER will call the standard_handler.
The agent now has the daunting task of turning the REQUEST into a
RESPONSE, and to deliver that response back to the client.

Eiffel HTTP Server Page 11/25

Bachelor Thesis under Prof. Bertrand, ETH Zürich Florian T. Besser

To be able to do this, it must check the contents of the REQUEST
object, and handle to the behavior specified below.
Once the RESPONSE object has been properly populated with
headers, it is time to send the results to the client. Again, there are two
possibilities here. If the referenced file is small enough, it will be read in
as a RESPONSE entity, and then the whole RESPONSE is sent to the
client using the redefined RESPONSE.out feature.
In most cases however, the server should not cache the entire file. Just
imagine how quickly our server would die when it would start caching
100MB movies. In that event, the RESPONSE.out feature is used
without defining an entity, therefore sending all the headers to the client,
but not yet the entity. The server will then open the referenced file, and
transmit it in blocks, effectively streaming it to the client. With this
design decision the eServer can wholly cache small requests without
having to check back to disc as well as stream big movies with a very
low RAM footprint!
After the answer has been sent to the client, there is just two things to
take care of: First is the generated RESPONSE, should it be cached or
thrown away?
In case the handler decides to cache, it must set all the necessary
headers for caching (was done beforehand), and then insert the TUPLE
of REQUEST and RESPONSE objects into a LINKED_LIST owned by
the CACHER thread. The CACHER thread will later pick up on that
TUPLE and will store it in a better ordered and faster accessible
SPLAY_TREE.
Once the question about caching has been answered, the agent exits
and now the WORKER thread is in control again. The WORKER thread
now has to decide the second question: Whether to close the
connection or reuse it. If the connection is reused, it will be inserted at
the end of the MT_LINKED_LIST mentioned above. (Since there is no
input expected on that connection for the next second or so. Usually the
client has to make up his mind what to request next, which takes time.)
Otherwise the connection is closed and not used any further.
After that decision the WORKER thread has completed it's cycle and
will start listening for entries in MT_LINKED_LIST again...

Eiffel HTTP Server Page 12/25

Bachelor Thesis under Prof. Bertrand, ETH Zürich Florian T. Besser

Behavior

As said above, the MIME agent as well as the CACHER thread
behaves according to these rules when converting a REQUEST object
into a RESPONSE object. This aspect is technically easy, but it decides
whether our server delivers the correct response or just some gibberish.
I would compare it to the heart muscle. Not insanely complicated, but
still very important.

Let's go through the MIME agent first, since in order to get something
from CACHER you need at least one cached REQUEST / RESPONSE
pair. All rules that are listed here can be found in
MIME.standard_handler, should need be.
A word on error handling: Should any operation within the agent fail, it
will not send any more data to the client and immediately exit. In fact,
every write operation can throw an error. Just keep this in mind, since I
won't mention it on every write action.
Now for the rules in chronological order:

 Test if Protocol isn't set or isn't HTTP <= version 1.1
◦ Set 505 HTTP version not supported error

 Test for Void method or resource or bad resource
◦ Set 400 Bad Syntax error

 Test for method being OPTIONS
◦ Set 204 No Content in all cases (different Log entries)

 Test for method being GET, POST or HEAD
◦ Set 403 Forbidden if accessing directory or non-readable file
◦ Set 404 File Not Found if file does not exist
◦ Set 200 OK for GET or POST, 204 No Content for HEAD

otherwise
 Test for method being PUT, DELETE, TRACE, CONNECT

◦ Set 501 Not Implemented error
◦ (CONNECT is reserved by HTTP/1.1 and not used anyway,

PUT and DELETE are actually implemented but are too
dangerous to be actually called!)

 Test for method NOT being OPTIONS and resource being *
◦ Set 403 Forbidden error

 Test for resource being too long
◦ Set 414 Request-URI Too Long error

 Test for method being POST without Content-Length header
◦ Set 411 Length Required error

 Test for method being POST with Content-Length header being
too big
◦ Set 413 Request-Entity Too Large error

 Check for Accept-* headers being satisfiable
◦ Set 406 Not Acceptable error
◦ Note: Should the MIME type not specify a language for

example, the test for Accept-Language will always pass.

Eiffel HTTP Server Page 13/25

Bachelor Thesis under Prof. Bertrand, ETH Zürich Florian T. Besser

 Test if If-Modified-Since header evaluates to True
◦ Set 304 Not Modified

 Check the other If-* headers, if a condition fails
◦ Set 412 Precondition Failed error
◦ Exception: If If-None-Match fails while the method is GET or

HEAD, set 304 Not Modified
 Test for Content-Encoding on entity

◦ Set 415 Unsupported Media Type error if Content-Encoding
is unknown

 Check if Range header isn't satisfiable
◦ Set 416 Requested Range Not Satisfiable error

 Test for Expect header
◦ Set 417 Expectation Failed error in any case, we don't

support this header yet.

Good. Now we have determined the correct response code. If the
response code is 2xx, set the required RESPONSE headers. These
headers are only used for caching (explained further down) or for the
client itself. The behavior of the eServer isn't influenced in any other
way by them! (So I won't list them here, it would be a straight
copy&paste from the code file. The header „vary“ are also the one used
for caching, should you have a special interest in that area.)
If the response code is however different from 2xx, the error-file is set
using the CONFIG reference. That is also why we only have to set the
error codes, and not the error messages themselves.
Now follows the actual response to the client as well as the caching. But
this is explained in the implementation section above this section.

Now for the second important part of behavior: The CACHER.
Let me state some general facts about caching in HTTP/1.1 first. You
might have come across several lines saying that the REQUEST /
RESPONSE pair is cached. Should the RESPONSE alone not be
enough? No. The caching process is quite something to behold, since it
allows a server to cache even dynamic files.
This behavior is best explained by starting with the data Structure:

SPLAY_TREE[
STRING ,

LINKED_LIST[
TUPLE[

REQUEST,RESPONSE
]

]
]

Yep, and that's all necessary!

Eiffel HTTP Server Page 14/25

Bachelor Thesis under Prof. Bertrand, ETH Zürich Florian T. Besser

Let's look at STRING first. That STRING is like a key. You insert a key
into search and you will get the associated LINKED_LIST back. You
may have guessed it: That key is the request resource! So if you
request index.html, you will get a whole list of possible answers from
the cache. Good news is though, that not all of these list items qualify
as RESPONSEs. To determine if a RESPONSE can be sent, you must
check three things:

 Does the client want cached RESPONSEs at all?
◦ Note: This is checked in the WORKER class by looking at the

REQUEST.cache_control header.
 Is the RESPONSE not expired? Do this by looking at the

RESPONSE.expires header.
 Is this particular RESPONSE feasible? The RESPONSE will

have a vary header field, which is itself a list of REQUEST
header fields. Now check both REQUESTs (the cached one and
the one fresh from the client) if ALL those fields in the vary
header are exactly the same. Should this evaluate to True, give
back the RESPONSE, otherwise keep searching through the list.

Should no feasible RESPONSE be cached, then the WORKER must
continue to evaluate the REQUEST. (See handling above)

Eiffel HTTP Server Page 15/25

Bachelor Thesis under Prof. Bertrand, ETH Zürich Florian T. Besser

Developers Guide

Hello, future developer!
First, please consider the normal installation procedure as described in the
users guide. Once you have your eServer set up and the code loaded in
EiffelStudio, we shall begin with this short tutorial.

Let me give you a short overview where the most important parts of the
eServer are:

 Reading Config: CONFIG class, feature make called by APPLICATION
 Starting and observing Threads: APPLICATION

◦ Threads include both WORKER and CACHER threads.
 Accepting / Storing new connections: APPLICATION (See feature

receive in APPLICATION and Feature insert in MT_LINKED_LIST)
 Storage for these connections is MT_LINKED_LIST
 WORKER is responsible for depleting that storage. (Feature

item_and_remove in MT_LINKED_LIST and receive in WORKER)
 Should the connection already have timed out the WORKER will drop it

now. (See feature timed_out.) For the purpose of reading from a
connection, WORKER stores all info in an object of type REQUEST.
(Feature read_message in WORKER, call to different features in
REQUEST)

 The WORKER then submits this REQUEST object to the CACHER
Thread, which might have a cached resource already available.
(Feature search in CACHER)

 If there was no response available in the cache:
◦ An agent, defined in MIME is then called with this REQUEST object

as well as a RESPONSE object as arguments. This agent will
generate the appropriate RESPONSE object, as well as giving the
final response to the client. (For example see standard_handler)

◦ Which agent is called depends upon the file extension. To specify
which agent should be mapped to which file extension, see the
make feature of MIME. (Later we will extend our system by more
agents.)

◦ If the agent deems his response to be cache-able, it will submit it to
the CACHER thread, who will then store it and wait for future
requests. (Feature insert)

◦ After WORKER has called the agent, it will either reuse the current
connection by storing it in MT_LINKED_LIST, or close it. It will then
wait for the next connection. (See feature close)

 Otherwise, the found response is delivered to the client unaltered,
directly by WORKER.
◦ After WORKER has sent the response, it will either reuse the

current connection by storing it in MT_LINKED_LIST, or close it. It
will then wait for the next connection. (See feature close)

After the more theoretical introduction, let me give you some concrete
examples for extending and altering the eServer:

Eiffel HTTP Server Page 16/25

Bachelor Thesis under Prof. Bertrand, ETH Zürich Florian T. Besser

Adding new features with options in the configuration files

 The time might come when the current configuration files are not good
enough anymore, and need to be extended. There is a general rule
here: Whatever needs coding or appeals to a professional user base
goes into code files. Whatever needs to be changeable by users
without Eiffel compilers goes into text files.

 As an example, we will try to add virtual server support to eServer. This
is a feature that will of course require some code changes, but it is
essential that also normal users can access it via configuration files.
This example will just show the configuration part, and not the actual
implementation.

 First, since this is a new feature, create a new configuration file. I have
already done this, the file is called hosts.conf, you should find it in
/var/eServer/Config Files/.

 The syntax this file is written in is similar to the one used by apache, so
that users should feel familiar. You may keep up this practice or
abandon it, that's your choice.

 Now that the file is in place, it needs to be loaded. You can load
additional configuration files by adding the following line to
/var/eServer/Config Files/ehttp.conf:
Include /var/eServer/Config Files/hosts.conf
(Change the path so that it fits the newly created file!)

 You are now set on the non-Eiffel side. Now come the code changes.
Open EiffelStudio and navigate to the CONFIG class.

 If your changes (as in this example) require information to be stored for
further use, create new fields in this class. (Here we use the new field
virtual_host: LINKED_LIST[STRING].) A CONFIG object can be
referenced from nearly anywhere in the code-base, so do not worry
about how to get that info to the right spot later on.

 Once you have defined the necessary fields, you need to change the
make feature to actually read in the info. I apologize for the spaghetti
code, but this portion of the eServer is hardly the most important. Look
for the line
If config_string.as_lower.starts_with ("serverroot")
There will be many elseif clauses below that line, and you must add
your own to this list. Example:

 elseif config_string.as_lower.starts_with ("<virtualhost") then
log_message ("New VH!")
--Add VirtualHost to some sort of list

elseif ...
 Good! Now you can reference a list of virtual hosts from nearly any part

of the code-base by writing config.virtual_hosts.

Eiffel HTTP Server Page 17/25

Bachelor Thesis under Prof. Bertrand, ETH Zürich Florian T. Besser

Adding a new handler

 For example for .php files:
 Open MIME.e
 Add the following feature to MIME.e, possibly in the „internal“ feature

group:
 php_handler (req: REQUEST; res: RESPONSE)

do
--System calls go here
--Something like:
--system ("/etc/php5/php -f "
config.base_path + req.resource)

end
 Change the feature make:
 make (e: STRING; l: CONFIG)

do
extension := e
config := l
if e.is_equal ("php") then

set_handler (agent php_handler)
else

set_handler (agent standard_handler)
end

end
 You are good to go. Change the php_handler to your liking.
 Note: The system call shown in the comment above will actually work,

but beware that headers and client information etc. will not be given to
the PHP executable! So for example backup scripts work fine, but a
script that should mirror back the user's IP address won't!

Adding a new header

 If you would like to use more headers than defined in HTTP/1.1, you
can of course add these. For this example we use the Header xyz

 For Request / General / Entity Headers, open REQUEST.e,
GENERAL_HEADERS.e or ENTITY_HEADERS.e respectively.
◦ Add the field xyz: TYPE_OF_XYZ to the class
◦ Add the features get_xyz: STRING and

set_xyz (x: TYPE_OF_XYZ) to the class
◦ Change the feature get_header_ in REQUEST.e so that if handles

the new header xyz
 For Response Headers, do the first two steps and then don't change

get_header_, but change the feature out in RESPONSE.e, so that it
handles xyz just as any other header.

 You have now defined a new Header. However, it does not yet „do“
anything (it is read in and printed out, though!).

Eiffel HTTP Server Page 18/25

Bachelor Thesis under Prof. Bertrand, ETH Zürich Florian T. Besser

 You must now change the handler for the appropriate files in MIME.e.
Say you would like to extend the php_handler which we have added
above. You could now write:

 If req.xyz.is_equal (some_reference_object) Then
--Code your changes her

end
 If your new header should be supported by all extensions, you should

change standard_handler, also in MIME.e
 If you would like to check your new header field first, and then decide

which other handler to call, you can do that, too! Simply set up a
„dummy“ handler for the appropriate file ending, which then calls any
other handler with the arguments it received itself.

Adding new error codes

 As already mentioned in HTTP/1.1, there could be more error
messages or general status codes in the future. It is quite easy to
extend the eServer for this purpose. (For this example we use the error
code 123)

 Warning: Only Error codes between 100 and 999 are supported!
 First, let's do the non-Eiffel part. Add the line

ErrorDocument 123 /path/to/error/files.html
in file
/var/eServer/Config Files/ehttp.conf

 Now create/edit the errorfile you just referenced, so that it contains a
meaningful HTML message.

 You need only add one line in the Eiffel files. Add the line
errormessages.enter ("Your Error Summary", 123)
to the file CONFIG.e (in the feature make, together with all the other
error definitions.)

 Good. In theory you now have created your own error message. In
practice however, this error never happens. So you should add some
code to the handlers found in MIME.e. For example:

 If req.some_header.is_equal ("some value") Then
res.set_code (123)

end
 The rest will happen automatically.

Eiffel HTTP Server Page 19/25

Bachelor Thesis under Prof. Bertrand, ETH Zürich Florian T. Besser

Users Guide

Welcome future user. If you have happened to scroll over the developers
guide, you might think you are on hell's doorstep. If you happen to be a
student which already had the „pleasure“ with Eiffel for the first time, you might
be tempted to just throw your laptop away. But fear not! As long as your
EiffelStudio does not quit unexpectedly, everything should go just fine!

Preparations

Make sure you have EiffelStudio installed and that it runs okay. Make
sure you use the most recent version!

Where to find and download eServer

As of now, it can be obtained through the SCOOP project svn. I simply
assume that you have access and can check out the source code, or
this tutorial will turn into a book. Should you be unable to check out the
source code, try asking for help. Figuring out this kind of stuff takes
ages! Just register an Origo account and read through the tutorials, or
ask on some related forums.

How to build the solution

Alright, you have the source code, and it's time to import it into
EiffelStudio. Use the „Add Project“ button and navigate to the folder
where you checked out the source code. You should look for a
eserver.ecf file. There are some other testing utilities coming with the
eServer project, just ignore these for now.
Once the project is loaded, try to compile it. If your EiffelStudio is set up
correctly this should work, but produce a few warnings. These warnings
are nothing to worry about.
Congratulations! You have just built your very first version of eServer.
That wasn't so bad, right?
Please nod now, the hard stuff hasn't started yet ;(

Should you be on Windows. Now would be a good change to read the
Windows guide! Your program might compile fine, but it won't run
without the changes detailed in the windows guide!

Also make sure your port 80 is free, or change the port in the
configuration files!

Alright, while the windows users applied the windows guide and the
UNIX users boasted about the supremacy of their OS, we can now get
to actually running the eServer. Just click the „Run“ button in
EiffelStudio. If everything was correctly set up, you should get many
lines of data to your stdout.

Eiffel HTTP Server Page 20/25

Bachelor Thesis under Prof. Bertrand, ETH Zürich Florian T. Besser

This could be called the „boot sequence“ of eServer, it reads in all the
configuration files and tries to store the info given within these files.
Again, there will be some warnings and maybe „not understood“
messages. Look at those closely. Most of the time, they are harmless,
but they can screw up your eServer behavior if left unchecked.

Now finalize the code and you are fully operational.

Windows Guide

The eServer was originally developed for Linux., so there are a few changes
necessary before Windows users may use the solution.

Path settings

Since the paths to files are different in Windows, you need to manually
set the paths to the correct file. First, open the file CONFIG.e with any
standard text editor, and look for the line
create main_config.make ("/var/eServer/Config Files/ehttp.conf")
Now change the path to your ehttp.conf file, for example
create main_config.make ("C:\Eiffel\eServer\Config Files\ehttp.conf")
Once you have done that, access your ehttp.conf file, it might contain
more paths to other config files. Change those paths to match the
correct files.
The configuration files referenced by ehttp.conf might have paths to
different files in them! Make sure you do not only go through ehttp.conf,
but go through all other files referenced!

Correct Read/Write access

This should not be required by default, as you'll probably have enough
rights, but who knows in what direction Windows will evolve.
You should probably run as an administrator, since you'll have the least
problems when doing so.
Make sure you yourself can access and change all the files specified in
the configuration files. If that works, you should be good to go.
In case you are concerned about security, and would like to run the
eServer as a normal user: Switch to Linux. I recommend Ubuntu for
beginners.

Eiffel HTTP Server Page 21/25

Bachelor Thesis under Prof. Bertrand, ETH Zürich Florian T. Besser

Conclusion

Over the course of this project, many things changed and needed to be re-
evaluated. But here is the final conclusion about what worked and what didn't:

Behavior

The correctness of the eServer was always a very important aspect (not
too surprising, isn't it?). And as it turns out, we even exceeded our initial
goals. Not only can we handle the 8 main requests types, but we also
understand the headers that come with them.
The correct behavior was manually verified and the stability of the
server was automatically tested (see testing projects).
A good example for expected behavior is our compatibility with Firefox.
Once we deliver a file to Firefox, it will remember our headers and upon
the next request not ask for the file itself, but rather whether it was
updated. So instead of resending the whole file, we can just send a 304
not modified response and be done with it! Firefox will of course not
display the error message but instead the cached file to the user.

Architecture

The idea of a threaded architecture worked out pretty well. For
examples about how effective the current architecture makes developer
changes, please read the developer guide.
The idea of switching threads twice per request initially came without
much thought, and has proven to sometimes hamper performance. But
unfortunately I don't see a solution for the time being. There are a few
ideas like letting each WORKER having it's own cache (eliminating the
CACHER thread, but bloating up RAM consumption) or letting the
WORKERs search the cache directly, without a thread for CACHER
(works fine on small load, but becomes slower when all the threads
have to wait for each other).
There is one bigger problem however. Since we need access to the
configuration option nearly at all points in the code-base, we had to
share such an object. Since there are only readers and no writers that
isn't a problem in the current state.
The problem becomes obvious when converting using SCOOP. Please
read the summary about SCOOP for more information about this
problem, though.

Eiffel HTTP Server Page 22/25

Bachelor Thesis under Prof. Bertrand, ETH Zürich Florian T. Besser

Implementation

At the beginning, implementation seemed pretty straight forward. But
then came the bugs and other problems. In the end, the problems could
be solved pretty convincing, with only minor penalties to speed, <and no
penalties to functionality.
The problems and solutions are described in the detailed explanation,
but let me list the actual impacts these workarounds had here:

 Since the base library isn't thread-safe we lost some precious
milliseconds because we had to design our own thread-safe
LINKED_LIST implementation, called MT_LINKED_LIST.

 Curiously, file-level commands seems to be thread-safe, so both
writing to our log-file and reading from files on disk never needed
any improvement.

 SOCKET.read_line (see detailed explanation) wasn't fixed. This
makes for the ugly SOCKET.read_line_until (1000000), which is
slightly slower.

 SOCKET.put_string isn't working correctly. The expectation was,
that the data written to the socket would actually be transmitted
to the client. Should the socket be closed however, the data was
simply discarded. A call to SOCKET.cleanup should block as
long as data is still unsent!

 The solution was to switch to sending PACKETs instead of
STRINGs, which is considerably more work. (And also slower!)

 The additional problem of having to convert STRINGs to
C_STRINGs for the generation of PACKETs didn't speed up the
process either.

SCOOP

SCOOP is kind of a mash-up between architecture and implementation.
Since it is also a quite unique technique, I decided it deserved it's own
explanation.
I was originally trained on the formal, theoretical explanation of SCOOP,
before there was an implementation. In the meantime, an
implementation was drafted and is also working fairly well in itself. This
created the first and most basic problem when programming with
SCOOP. The theoretical approach assumed a SCOOP-safe base
library, and the examples mirrored that. However, there were changes
to the syntax in the actual implementation, which threw me off course.
Once I found my way back to decent levels with trial&error, the next
problem unfolded: The base library exactly wasn't SCOOP-safe.

Eiffel HTTP Server Page 23/25

Bachelor Thesis under Prof. Bertrand, ETH Zürich Florian T. Besser

Let me give you an example why SCOOP caused these problems and
how: The CONFIG class.
Every thread used to have a reference to a CONFIG object, but since I
wanted to use SCOOP, this was of course no longer possible just like
that. I had to define config: separate CONFIG. This alone wasn't a
problem, but what about a different processor wanting to change the
CONFIG object? Obviously, this possibility must be considered,
otherwise we would cut down extensibility.
Consider the simple case of a processor having a STRING, and
wanting to attach it to a STRING in config.
According to theory, it could just call
config.the_string.append(my_string).
The original idea was, that the processor assigned to config would now
lock my_string, and use it. But since the call was placed on a separate
object, the argument should also be separate. At first I didn't give it
much thought, and dutifully changed the type of my_string from
STRING to separate STRING. Now the SCOOP problem is solved. But
we are not finished yet, as append is defined by the base library, and
can't handle separate arguments.
As it turned out, the only way to solve this problem was to lock config on
the current processor, then converting config.the_string from type
separate STRING back to STRING, then appending my_string (which
is now done locally, not remotely!) and then setting config.the_string
with the result.
This defies any speed improvements that SCOOP could have brought
with it, and at that point I decided to just leave it rest until a final
implementation is delivered by the people at EiffelSoftware.

Evaluation with respect to time and space

The last changes cost us a bit of speed, bot overall the project did very
well. On uncached requests we beat the Apache standard installation.
For 10'000 requests (all uncached, to files that didn't exist) we needed
7.3 seconds real-time, while Apache needed 9.8 seconds.
However, we used more RAM. This could be some overhead from
Eiffel, that will not matter in bigger deployments, or a real problem with
the eServer. The 10 MB the eServer used for 10k requests seemed so
little though, that further evaluation was not deemed necessary.
For 1 GB of RAM you could cache a million requests, that should be
enough, overhead or not ;)

I would specially like to point out our goal at the beginning: Reach 5%
throughput of an Apache web-server, and access 100 static HTML
pages per second. As of now we reach about 134% throughput of
apache, and about 1020 requests per second (uncached). With these
figures we definitely exceeded all expectations in this area!

Eiffel HTTP Server Page 24/25

Bachelor Thesis under Prof. Bertrand, ETH Zürich Florian T. Besser

Future Work

We might have laid an important base for other projects, but the eServer is far
from the capabilities of an apache web-server, for example.

Extensions

As of now, there are many other programming languages that are
favored amongst web developers. Unfortunately, the eServer does not
yet understand these languages. Future extensions for languages like
PHP are eagerly awaited.

Library performance improvement

I don't like the idea of blaming bad performance on your underlying
libraries, so consider this more of a note. Should the performance
magically improve, then even the eServer will run faster. Let's just hope
that it will ;)

More configuration possibilities

One aspect I really look forward to is the extensibility also on the config
files. With our extensible system we have the perfect base to listen to
our users and implement their wishes. We neither have to deal with
obscure C files directly nor do we have to lower our throughput for
additional modifications to be loaded.

References

Hypertext Transfer Protocol – HTTP/1.1 (RFC 2616)
Found at: http://www.w3.org/Protocols/rfc2616/rfc2616.html

Nienaltowski P.: Practical framework for contract-based concurrent
object-oriented programming
Found at: http://se.ethz.ch/people/nienaltowski/papers/thesis.pdf

Eiffel HTTP Server Page 25/25

http://www.w3.org/Protocols/rfc2616/rfc2616.html
http://se.ethz.ch/people/nienaltowski/papers/thesis.pdf

