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1 Project Description

1.1 Overview

SCOOP, a concurrency extension to the Eiffel language, was first conceived by
Bertrand Meyer in the early nineties. There were many changes to SCOOP, and
it finally became a part of EiffelStudio in 2011. There are still some problems
when it comes to handling exceptions with SCOOP, though.
Exceptions are events requiring special processing, which often change the nor-
mal flow of how programs are executed. They generally are thrown if a feature
encountered an error, and has to return unexpectedly. When an exception is
thrown and not handled by the current feature, it is then passed onto the caller.
In concurrent settings, such as SCOOP, this can be problematic, since a caller
that receives the thrown exception might not be in any position to handle it.
The next logical step to improve SCOOP was then to develop a model for han-
dling such situations, see [1]. The aim of this thesis is to implement that model,
evaluate it thoroughly and report the findings.
To achieve this, some of the foundation of how the Eiffel compiler transforms
SCOOP programs into C code has to be changed.

1.2 Intended Results

A complete exception mechanism for the SCOOP programming model accord-
ing to the specifications will be developed.
An evaluation will then highlight the usability, expressiveness and performance
of the implementation. This will be done using several small SCOOP applica-
tions, which will also be developed.
Improvements upon the original implementation will be constructed based on
the evaluation.
(Optional) At the end, an implementation of the ”Duel” mechanism, described
in [3], page 999+, will be attempted.

1.3 Criteria for Success

Complete all objectives listed under work packages, see Section 3.1.

2 Background Material

2.1 Reading List

[1] describes the way the exception mechanism should perform, as well as some
explanations why it should do so.
[2] describes the operational semantics of SCOOP.
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3 Project Management

3.1 Components of the Solution

The solution consists of the following parts:

1. Implementation: The behavior specified in [1] will be implemented in the
EVE environment. Programs written and compiled using EVE should
then be able to handle exceptions as defined.

2. Evaluation programs: Several basic SCOOP programs relying on excep-
tions will be written. These programs serve to verify and evaluate the
usability of the proposed mechanism.

3. Evaluation: The evaluation will focus on usability, expressiveness and
performance of the implementation.

4. Improvements: The mechanism will be improved with respect to the find-
ings of the evaluation. The system described in [1] might allow some
improvements which make it more usable, more expressive or just plain
faster.

5. Documentation:

• A user guide on how to use the new functionality will be written.
The user guide will include examples as well as explanations for best
practises. It will enable a developer with basic knowledge of SCOOP
to gain insights on how exceptions work.

• The developer guide will contain precise information on the code
and will allow future developers to easily change and improve the
codebase. It will include explanations on how the system is designed
and how a typical excecution might look. It will also include some
reasoning as to why design decisions were made the way they were
made, to give future developers the ability to understand and later
improve the code, and not just change it.

6. (Optional) The ”Duel” mechanism: The mechanism as described in [3],
page 999+, will be implemented.

3.2 Project Steps / Milestones

These are the project milestones:

1. Reading parts of the codebase of EVE / SCOOP to get an overview of the
system. After this step it should be possible to predict what code will be
executed when presented with an example program.

2. Create basic test programs. Basic programs make use of SCOOP and
throw exceptions, but do not use advanced features of the Eiffel language,
such as once routines. They also do not rely on the yet to be implemented
SCOOP ”safe mode”.
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3. Implement basic system as specified in [1]. This should produce a system
that can handle the basic programs created in milestone 2. Programs not
relying on exceptions should still work just as they did before the change.

4. Extend system to handle advanced language components, such as once
routines, the SCOOP ”safe mode”, exceptions from failed correctness con-
ditions and separate callbacks. Write advanced programs, which possibly
use all language features Eiffel offers to test the system. The system should
be able to handle complex programs after this milestone.

5. Evaluate system, with respect to the programs written before, for usability
and expressiveness. After evaluation, benchmark programs created for
milestones 2 and 4 to gauge efficiency of the implementation.

6. Improve system based on the evaluation, then go back to step 5. Af-
ter each improvement, the programs written for milestones 2 and 4 are
executed again, to make sure no bugs were introduced. Clean up code
where necessary, so that it is easily readable and maintainable for future
developers.

7. (Optional) Research and implement the ”Duel” mechanism described in
[3], page 999+.

8. Write thesis and finish documentation. Write both the user guide as well
as the developer guide.

3.3 Schedule

Milestone
1 2 Weeks
2 2 Weeks
3 3 Weeks
4 5 Weeks
5 1 Week
6 1 Week
7 2 Weeks
8 3 Weeks

Total ≈ 23 Weeks
(Assume 3 Repetitions of Tasks 5 & 6)

3.4 Method of Work

• Bi-weekly meetings

• EVE for the implementation

• LATEX for the documentation and thesis

• Iterative development

• Version control system provided by the EVE research group



3.5 Deadline 5

3.5 Deadline

16. September 2013
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