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Abstract

Requirements describe the functionality and qualities a software
product should have. In traditional local software development the
quality of requirements impacts on software quality. Today software
development is increasingly globally distributed. Are the findings re-
garding requirements in traditional local software development also
true in globally distributed environments?

We carried out an empirical study using 68 globally distributed
software development projects and analyzed the impact of require-
ments documents on software quality. Our findings include no sta-
tistically significant differences in software quality between projects
with bad requirements and projects with good requirements docu-
ments. However authorship of requirements documents results in a
statistically significant different amount of contracts being specified.
Programmer-written requirements documents seem to result in more
contracts being specified than requirements engineer-written require-
ments documents. As an extra analysis we compared projects with
regard to national cultures and found no statistically significant dif-
ferences in software quality.
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1 Introduction

1.1 Motivation

Requirements define the functionality and qualities a software product should
have and are a much debated topic in the software engineering research com-
munity. Back in 1976 Bell et al. [7] provokingly asked whether requirements
are really a problem. Their empirical study showed requirements are indeed
a problem. The requirements examined in the study were incorrect, ambigu-
ous, inconsistent or missing. Lutz [35] identified misunderstanding of require-
ments as the main source of safety-related functional faults in software of two
NASA spacecrafts. Another study by Basili et al. [5] identified incorrect or
misinterpreted functional specifications or requirements as the cause of 48
percent of the faults in medium-scale software projects. Thus, requirements
have an impact in software development. The previously mentioned examples
originate from the 1970s and 1980s and therefore relate to traditional local
software development. Today software development is increasingly globally
distributed [38, 33]. This raises a question: Are the previously mentioned
findings also true in globally distributed software development?

We present the findings of our empirical study which examined the impact
of requirements in globally distributed software development. The focus of
our study is on highlighting the impact of requirements on software quality.
Our data sample consists of 68 software development projects carried out
in a globally distributed environment. The data sample originates from a
university course [46, 47, 44] taught on multiple continents. As part of that
university course students have to complete a globally distributed software
development project which includes writing a requirements document and
implementing the previously specified requirements. We assessed both the
quality of the requirements and software products to determine the impact
of requirements on software quality.

The data samples show evidence that the quality of requirements doc-
uments does not influence software quality but the authorship of require-
ments documents does. In particular, software products emerging from
programmer-written requirements documents have a higher percentage of
contracts than software products originating from requirements engineer-
written requirements documents. As an extra analysis we compared projects
with regard to national cultures and found no statistically significant differ-
ences in software quality.
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1.2 Background

Globalization forces software development organizations to lower their cost
to remain competitive [38, 33]. The consequence was the rise of globally
distributed software development where the development of software partially
or completely takes place in countries with low labor costs and high expertise
such as India. These days collaborators do not necessarily sit next door but
in another country or even on another continent.

The global distribution introduces new challenges [34, 38, 33] including
communication, time zone difference, language and cultures. Separation by
distance prevents spontaneous communication and sitting together to resolve
merge conflicts [22] in a shared code base or to debug [21] source code. In gen-
eral distance and be it only even 30 meters results in less frequent communica-
tion [2]. The time zone difference between collaborators reduces the amount
of time to synchronously communicate which decreases the pace of informa-
tion exchange [20]. Different native languages of the parties involved in glob-
ally distributed software development further increases the communication
overhead [43]. Cultural differences occur in two manifestations: Difference in
organizational culture namely how organizations develop software and differ-
ences in national culture such as language, values and norms [13]. Hall [31]
classifies (national) culture into low-context cultures and high-context cul-
tures. Communication between individuals of high-context cultures heavily
relies on their shared cultural background in the sense that values and norms
give the exchanged communication a meaning. Individuals of low-context
cultures do not refer to their cultural background when communicating with
each other and thus are very unmistakable.

The methods used in traditional local software development do not take
into account these challenges found in globally distributed software devel-
opment. For this reason it is necessary to verify the applicability of find-
ings related to traditional local software development with regard to globally
distributed software development. The software engineering research com-
munity continuously fills the knowledge gap (e.g. [57, 8, 14, 23, 48, 45])
introduced by the rise of globally distributed software development. We con-
tribute our unprecedented empirical study about the impact of requirements
in globally distributed software development.

1.3 Overview

The remaining sections have the following topics. Section 2 explains the re-
search questions along with the hypotheses which our empirical study shall
answer. Section 3 discusses the methodology used to perform the empiri-
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cal study. Section 4 introduces the quantitative analyses used to determine
the impact of requirements and presents the quantitative results. Section 5
highlights related work. Section 6 summarizes the findings of the empirical
study and identifies future work. Appendix A provides additional quantita-
tive results. Appendix B contains all normality tests used in the quantitative
analysis.
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2 Research questions and hypotheses

2.1 Research questions

In order to learn more about the impact of requirements on software quality
we defined the following three research questions which relate to different
aspects of the potential impact of requirements on software quality.

RQ.1 What is the impact of bad and good requirements documents on the
average coupling ratio, the median coupling ratio, the information hid-
ing ratio, the percentage of routines with preconditions, the percentage
of routines with postconditions, the percentage of classes with class
invariants, the average percentage of contracts, the number of Eiffel
Inspector warnings per 1000 lines of code (LOC), the number of Eiffel
Inspector suggestions per 1000 LOC and the average number of Eiffel
Inspector rule violations per 1000 LOC?

RQ.2 What is the impact of programmer-written and requirements engineer-
written requirements documents on the average coupling ratio, the me-
dian coupling ratio, the information hiding ratio, the percentage of
routines with preconditions, the percentage of routines with postcondi-
tions, the percentage of classes with class invariants, the average per-
centage of contracts, the number of Eiffel Inspector warnings per 1000
LOC, the number of Eiffel Inspector suggestions per 1000 LOC and the
average number of Eiffel Inspector rule violations per 1000 LOC?

RQ.3 What is the impact of high- and mixed-context culture groups on the
average coupling ratio, the median coupling ratio, the information hid-
ing ratio, the percentage of routines with preconditions, the percentage
of routines with postconditions, the percentage of classes with class
invariants, the average percentage of contracts, the number of Eiffel
Inspector warnings per 1000 LOC, the number of Eiffel Inspector sug-
gestions per 1000 LOC and the average number of Eiffel Inspector rule
violations per 1000 LOC?

The third research question RQ.3 is not concerned with the impact of re-
quirements on software quality. Given the availability of both graded require-
ments documents and software products we decided to run a quantitative
analysis looking into the impact of culture on software quality as well. Sub-
section 4.5 explains why we compare projects with high- and mixed-context
culture groups instead of projects with high- and low-context culture groups.
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2.2 Hypotheses

Since each research question includes multiple subordinate questions we split
the research questions into multiple hypotheses. To answer the research
questions we deploy statistical tests which require the formulation of the
hypotheses as null-hypotheses. A null-hypothesis assumes no statistically
significant difference between the different observations. If a statistical test
does not support the null-hypothesis, then it supports the alternative hy-
pothesis. In our empirical study the alternative hypothesis is that there is a
statistically significant difference.

Hypotheses H.1 to H.10 refer to the first research question RQ.1 which
looks into the impact of requirements quality on software quality.

H.1 There is no difference in the average coupling ratio between projects
with bad and good requirements documents.

H.2 There is no difference in the median coupling ratio between projects
with bad and good requirements documents.

H.3 There is no difference in the information hiding ratio between projects
with bad and good requirements documents.

H.4 There is no difference in the percentage of routines with preconditions
between projects with bad and good requirements documents.

H.5 There is no difference in the percentage of routines with postconditions
between projects with bad and good requirements documents.

H.6 There is no difference in the percentage of classes with class invariants
between projects with bad and good requirements documents.

H.7 There is no difference in the average percentage of contracts between
projects with bad and good requirements documents.

H.8 There is no difference in the number of Eiffel Inspector warnings per
1000 LOC between projects with bad and good requirements docu-
ments.

H.9 There is no difference in the number of Eiffel Inspector suggestions per
1000 LOC between projects with bad and good requirements docu-
ments.

H.10 There is no difference in the average number of Eiffel Inspector rule
violations per 1000 LOC between projects with bad and good require-
ments documents.
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Hypotheses H.11 to H.20 refer to the second research question RQ.2 which
looks into the impact of requirements authorship on software quality.

H.11 There is no difference in the average coupling ratio between projects
with programmer- and requirements engineer-written requirements doc-
uments.

H.12 There is no difference in the median coupling ratio between projects
with programmer- and requirements engineer-written requirements doc-
uments.

H.13 There is no difference in the information hiding ratio between projects
with programmer- and requirements engineer-written requirements doc-
uments.

H.14 There is no difference in the percentage of routines with preconditions
between projects with programmer- and requirements engineer-written
requirements documents.

H.15 There is no difference in the percentage of routines with postconditions
between projects with programmer- and requirements engineer-written
requirements documents.

H.16 There is no difference in the percentage of classes with class invariants
between projects with programmer- and requirements engineer-written
requirements documents.

H.17 There is no difference in the average percentage of contracts between
projects with programmer- and requirements engineer-written require-
ments documents.

H.18 There is no difference in the number of Eiffel Inspector warnings
per 1000 LOC between projects with programmer- and requirements
engineer-written requirements documents.

H.19 There is no difference in the number of Eiffel Inspector suggestions
per 1000 LOC between projects with programmer- and requirements
engineer-written requirements documents.

H.20 There is no difference in the average number of Eiffel Inspector rule
violations per 1000 LOC between projects with programmer- and re-
quirements engineer-written requirements documents.

Hypotheses H.21 to H.30 refer to the third research question RQ.3 which
looks into the the impact of culture on software quality.
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H.21 There is no difference in the average coupling ratio between groups
with only high- and mixed-context culture teams.

H.22 There is no difference in the median coupling ratio between groups
with only high- and mixed-context culture teams.

H.23 There is no difference in the information hiding ratio between groups
with only high- and mixed-context culture teams.

H.24 There is no difference in the percentage of routines with preconditions
between groups with only high- and mixed-context culture teams.

H.25 There is no difference in the percentage of routines with postconditions
between groups with only high- and mixed-context culture teams.

H.26 There is no difference in the percentage of classes with class invariants
between groups with only high- and mixed-context culture teams.

H.27 There is no difference in the average percentage of contracts between
groups with only high- and mixed-context culture teams.

H.28 There is no difference in the number of Eiffel Inspector warnings per
1000 LOC between groups with only high- and mixed-context culture
teams.

H.29 There is no difference in the number of Eiffel Inspector suggestions per
1000 LOC between groups with only high- and mixed-context culture
teams.

H.30 There is no difference in the average number of Eiffel Inspector rule
violations per 1000 LOC between groups with only high- and mixed-
context culture teams.
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3 Research methodology

3.1 Introduction

Our empirical study shall answer the three previously defined research ques-
tions along with the 30 hypotheses capturing the impact on individual soft-
ware qualities. In such a study the research methodology plays an import
role.

Our first step was to collect all data necessary to perform the study. This
includes information about the project setup, the people involved and the
deliverables, namely the requirements documents and the software products.
The next step was to clean the data in order to only look into projects with
comparable settings. The third step was the most time consuming because
we had to assess the quality of both the requirements documents and the
software products. Afterwards, the quantitative analysis through statistical
tests provided results which answer the three research questions.

The remainder of this chapter describes the research methodology in more
detail and motivates the decisions we made.

3.2 Origin of data

The requirements documents and software products used in the empirical
study originate from a university course named Distributed and Outsourced
Software Engineering (DOSE ). Members of the Chair of Software Engineer-
ing at the Swiss Federal Institute of Technology Zurich educate the enrolled
students theoretically and practically in distributed and outsourced software
engineering. The practical education takes place through a globally dis-
tributed software development project where the participating students work
together with students from other universities all over the world that joined
DOSE.

The globally distributed software development project the students par-
ticipate in spans 13 weeks and includes several non-movable deadlines. The
project follows a structured process defined by the teaching staff in advance.
Among other tasks the process includes writing a requirements document
for a given project description as well as implementing the requirements to
create a software product. Each software product consists of various subcom-
ponents. Table 1 summarizes for every edition of DOSE the topic as well as
the individual subcomponents.

Throughout the years the subcomponents were almost always the same.
Logic keeps track of the software product’s state, GUI is the graphical user
interface the human user interacts with, Net takes care of the communi-
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Year Topic Subc. 1 Subc. 2 Subc. 3
2009 Card games Logic GUI & Net
2010 Language learning tool Logic GUI Store
2011 Card & board games Logic GUI & Net AI

2012 Card & board games Logic GUI & Net
AI

2013 Card & board games Logic GUI & Net AI
2014 Project-management tool Back end Front end

Table 1: Topics and subcomponents of projects per year.

cation through networks, Store is responsible for storing data persistently
on the hard drive, AI provides means to play the card and board games
against computer opponents relying on artificial intelligence, back end is the
server-part of the project-management tool while front end is the part of the
project-management application the human user manipulates. The students
implement the subcomponents in Eiffel. An exception is the front end in
2014 which the students had to implement using web technologies.

At least two students from the same university work together in a team
and every team is responsible for one subcomponent. Groups consist of at
least two teams and produce the overall software product formed by the
individual subcomponents. Thus every group work on their own project. We
use groups and projects interchangeably.

Between 2009 and 2012 the process expected every team to write the re-
quirements document for their assigned subcomponent and to implement the
requirements defined in their own requirements document. In the 2013 and
2014 editions of DOSE the process changed and was slightly different. Groups
still consist of teams but teams had roles. One team of a group had the role
of the requirements engineers who write the requirements document for the
whole software product and thus all subcomponents. The remaining teams in
the group had the role of the programmers who implement the requirements
defined by the requirements engineers for their assigned subcomponent.

3.3 Collecting and choosing data

The students had to use versioning systems to share their work with the
other students and to submit their deliverables to the teaching staff. Wikis
stored the administrative information such as the composition of teams, the
composition of groups and the mapping of teams to subcomponents.

First we retrieved all data available from these two previously mentioned
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Year Groups
Selected groups Excluded groups
# % # %

2009 8 8 100 0 0
2010 11 9 81.82 2 18.18
2011 12 10 83.33 2 16.67
2012 21 21 100 0 0
2013 12 12 100 0 0
2014 8 8 100 0 0
All 72 68 94.44 4 5.56

Table 2: The number (#) and percentage (%) of selected and excluded
groups per year. In 2010 the author participated in a group. We excluded
this group to avoid any bias. The other exclusions relate to unstable groups.

sources and then collected the information regarding the participating uni-
versities, teams and groups along with team sizes, group sizes and mappings
of teams to subcomponents. Every group which participated in DOSE re-
ceived a unique identifier in the form of a natural number denoting the global
group number. Then we collected the available requirements documents and
software products.

The previously compiled information made us aware of the problems some
groups suffered. As a result we defined the criterion both requirements docu-
ments and software products had to fulfill for the participation in the study.
The criterion is that the deliverables have to originate from stable groups. A
group is stable if and only if the individual teams of the group worked together
for the full duration of the project and submitted all required deliverables
namely requirements documents and software products. More insights into
the number and percentage of selected and excluded groups per year gives
Table 2. In 2010 we excluded two groups. The first group did not provide
an implementation for the Store subcomponent. The second group had the
author as a member. Another two excluded groups originate from the 2011
edition of DOSE. One group dissolved and the other group did not submit
a software product. From 72 available projects we excluded four projects
for the previously mentioned reasons. This leaves us with 68 projects usable
for our empirical study. We decided to include in our empirical study only
the back end of the projects done in 2014 because the front end uses web
technologies which are not comparable to subcomponents written in Eiffel.

Having now selected the projects used for the study we are able to report
the characteristics of our data sample with regard to the participating uni-
versities, the number of groups, the number of teams, the number of teams

10



per group, the number of students per team and the time zone difference
between teams involved in our study. Table 3 lists the universities which
participated in DOSE. Most universities originate from Europe (11 universi-
ties), followed by Asia (4 universities), South America (2 universities), Africa
(1 university) and Australia (1 university). Detailed information about the
number of groups, number of teams and the number of students gives Ta-
ble 4. Over the years the number of groups oscillates around ten with the
exception of 2012 whereas the number of teams and students is subject to
large changes. Table 5 reports the detailed numbers related to the group
size and shows that groups usually consist of two or three teams. Table 6
summarizes the detailed numbers related to the team size and shows that
most frequently two to four students form a team. For the 2011 edition of
DOSE Table 5 shows there are two groups with two teams although Table
1 indicates three subcomponents per projects for the 2011 edition of DOSE.
Our investigation revealed that one group split GUI & Net between the two
teams and in another group a team implemented both Logic and AI. It was
not possible to recover the reasons for these decisions but both groups com-
ply with our definition of stable groups. This is why we selected them as well
for our study.

Previous tables listed the participating universities per year and the de-
tails of the groups’ and the teams’ compositions. Table 7 summarizes per
year the affiliation of students to universities. The numbers in parentheses
indicate the number of teams originating from the corresponding university.
As can be seen in Table 7 we report the number of students affiliated with
the Swiss Federal Institute of Technology Zurich and University of Zurich in
the same row since students from University of Zurich join teams from the
Swiss Federal Institute of Technology Zurich. Major suppliers of participants
are the universities regularly participating in DOSE. These include National
University of Rio Cuarto, Polytechnic University of Milan, Swiss Federal In-
stitute of Technology Zurich and University of Zurich, Pontifical Catholic
University of Rio Grande do Sul, Lobachevsky State University of Nizhny
Novgorod, University of Debrecen and Technical University of Madrid. Both
IT University of Copenhagen and University of Crete supply a large number
of students one time only.

One of the challenges in globally distributed software development is the
difference in time zones. To measure the geographical distribution we classi-
fied groups into three classes according to the maximum time zone difference
between teams of a group: Small, medium and large. A small time zone
difference is one where the maximum time zone differences between teams
of a group is less than or equal to three hours. A medium time zone dif-
ference is one where the maximum time zone differences between teams of
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Year #Groups #Teams #Students
2009 8 16 52
2010 9 27 86
2011 10 28 89
2012 21 50 146
2013 12 48 171
2014 8 24 70
All 68 193 614

Table 4: Number of groups, number of teams and number of students
participating in the different editions of DOSE. The numbers for 2014 include
the teams and students working on the front end as well.

Year #Groups
#Groups with

2 teams 3 teams 4 teams
2009 8 8
2010 9 9
2011 10 2 8
2012 21 13 8
2013 12 12
2014 8 8
All 68 23 33 12

Table 5: The number of groups and the group sizes participating in the
different editions of DOSE. The numbers for 2014 include the teams working
on the front end as well.

Year #Teams
#Teams with

2 students 3 students 4 students 5 students
2009 16 12 4
2010 27 2 20 3 2
2011 28 4 16 7 1
2012 50 12 30 8
2013 48 8 14 17 9
2014 24 5 16 3
All 193 31 108 42 12

Table 6: The number of teams and the team sizes participating in the dif-
ferent editions of DOSE. The numbers for 2014 include the students working
on the front end as well.
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a group is greater than three hours but less than or equal to five hours. A
large time zone difference is one where the maximum time zone differences
between teams of a group is more than five hours. We report the groups’ time
zone classifications in Table 8. In general the time zone classifications are
almost even. The largest difference in time zones occurred in 2013 where two
groups with teams from Rio Cuarto (Argentina) and Adelaide (Australia)
had a maximum time zone difference of 13.5 hours. Other large time zone
differences occurred between teams in Rio Cuarto (Argentina) and Daejeon
(South Korea), Hanoi (Vietnam) and Wuhan (China).
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Year #Groups
Time zone classification

#Small #Medium #Large
2009 8 6 2
2010 9 1 1 7
2011 10 5 3 2
2012 21 10 7 4
2013 12 6 6
2014 8 1 3 4
All 68 23 20 25

Table 8: Number of groups classified by the maximum time zone difference
between the teams (small: 0 - 3 hours, medium: 3 - 5 hours, large: greater
than 5 hours).
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3.4 Defining quality of requirements documents

When writing the requirements documents students had to follow IEEE Std
830-1998 [1] which is the IEEE Recommended Practice for Software Require-
ments Specifications. The standard suggests several suitable structures for
requirements documents along with recommendations what each section of
the requirements document should cover. The standard also defines the qual-
ities a good requirements document should have. These qualities [1] are cor-
rectness, unambiguity, completeness, consistency, prioritization, verifiability,
modifiability and traceability.

We graded the requirements documents following a grading scheme devel-
oped by the Chair of Software Engineering to grade requirements documents
written as part of mandatory course work. The grading scheme builds upon
the quality attributes defined by IEEE Std 830-1998 and is subject to fre-
quent refinement. The used grading scheme awards points for the following
qualities which a requirements document should have:

• Completeness of functional requirements (8 points)

• Relevance of functional requirements (8 points)

• Description of a useful system by functional requirements (8 points)

• Existence and quality of GUI mock ups (8 points)

• Level of detail of requirements (8 points)

• Level of abstraction of requirements (8 points)

• Prioritization of requirements (8 points)

• Consistency of requirements document (8 points)

• Verifiability of functional requirements (8 points)

• Specification of verifiable, justified and relevant quality measures for
non-functional requirements (8 points)

• Formatting of requirements document (4 points)

• Readability of requirements document (4 points)

• Scope of glossary (4 points)

• Precision and understandability of language (4 points)
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• Length of document (4 points)

Hereinafter we briefly explain the individual graded qualities. Functional
requirements should be complete in the sense that they describe all cus-
tomer required functionality. Relevant functional requirements describe only
mandatory functionality and ignore optional functionality if not marked as
optional. The grading scheme awards points for describing a useful system de-
spite the potential incompleteness of functional requirements. If the require-
ments describe a graphical user interface, then the grading scheme awards
points for the existence and quality of mock ups visualizing the planned GUI.
Then each requirement should be detailed enough to be self-contained. At
the same time the requirements should be abstract and not describe imple-
mentation details. The priorities of requirements define the order of imple-
mentation and thus also the level of importance within the requirements. The
requirements document should be consistent in the sense that the document
uses terminology in a consistent and understandable way. A verifiable func-
tional requirement allows the judgement if the software product contains the
functionality described by it. Non-functional requirements define the quali-
ties of the software product to be developed and therefore they should relate
to the appropriate quality measures which allow the judgement if the soft-
ware product has the specified quality. The formatting of the requirements
document should facilitate reading by appropriately structuring the docu-
ment and requirements. The requirements document is readable when its
orthography and grammar are correct. A glossary should define the termi-
nology used in the requirements documents and allows readers to read the
document despite their potential lack of used terminology. The language in
the document should be precise and understandable such that it allows the
verification of requirements. The document should have a reasonable scope
but of course it should not contain irrelevant topics.

The total score a requirements document can have is 92 or 100 points.
Requirements document describing the whole project, the subcomponents
GUI or the subcomponent GUI & Net can have a maximum score of 100
points. Otherwise the requirements document can have a maximum score of
92 points.

Awarding points using the grading scheme in a straightforward way re-
sults in inappropriately high total scores. If the requirements of a require-
ments document are very incomplete but the requirements document is of
excellent quality, then the straightforward application of the grading scheme
results in a high total score. In fact the requirements document does not
deserve such a high total score. This is why we scale the maximum number
of points awarded by the qualities with 8 points and 4 points depending on
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Completeness Maximum #Points
(#Points) 8 points qualities 4 points qualities

8
8 47

6
5

6 3
4
3

4 22
1
0 2 1

Table 9: Scaling of maximum number of points for qualities with 8 points
and 4 points depending on number of points given for completeness.

the number of points the requirements document receives for completeness.
Table 9 shows the exact scaling. If for example a requirements document is
not very complete and receives 3 points for completeness, then it can receive
a maximum number of 4 points for the qualities being worth of 8 points
respectively 2 points for qualities being of worth 4 points. This approach
ensures meaningful total scores.

3.5 Defining quality of software

3.5.1 Motivation

The definition of software quality is another much debated topic in the soft-
ware engineering research community. Early contributors to the discussion
were McCall et al. [36] and Boehm et al. [10]. In 1977 McCall et al. [36]
defined quality factors along with criteria to be fulfilled. According to them
there exist 11 quality factors namely correctness, reliability, efficiency, in-
tegrity, usability, maintainability, flexibility, testability, portability, reusabil-
ity and interoperability. There are too many criteria to list but for example
the criteria related to correctness are traceability, consistency and complete-
ness. One year later in 1978 Boehm et al. [10] proposed a software quality
characteristics tree with similar qualities as McCall et al. [36]. Despite their
age Pressmann [52] notes that the software quality factors suggested by Mc-
Call et al. [36] are still valid today.

However, both Boehm et al. [9] and McCall et al. [15] acknowledge the
difficulties in measuring some of their proposed software qualities. For exam-
ple McCall et al. [36] define usability as the “effort required to learn, operate,
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prepare input, and interpret output of a program” but usability is subject to
the perception of individuals [41]. The customer of a software product wants
the product to be portable between different operating environments while
the programmer of the software product desires extensive documentation of
its source code. First is the external view on software quality and the later is
the internal view on software quality [41]. As we have seen external software
quality is difficult to measure [9, 15]. To overcome the difficulties in measur-
ing external software qualities Kitchenham [55] suggests to measure internal
software qualities in order to predict external software qualities. One pop-
ular contribution related to the measurement of (internal) software quality
is the metrics suite by Chidamber et al. [16]. The metrics suite consists of
six metrics namely weighted methods per class, depth of inheritance tree,
number of children, coupling between object classes, response for a class and
lack of cohesion in methods.

We decided to focus our empirical study on internal software quality. To
assess the (internal) quality of the software products we chose the following
static metrics which are easy to understand and easy to compute:

• Average coupling ratio

• Median coupling ratio

• Information hiding ratio

• Percentage of routines with preconditions

• Percentage of routines with postconditions

• Percentage of classes with class invariants

• Average percentage of contracts

• Number of Eiffel Inspector Warnings per 1000 LOC

• Number of Eiffel Inspector Suggestions per 1000 LOC

• Average number of Eiffel Inspector rule violations per 1000 LOC

Hereinafter, we motivate the choice of the previously listed metrics and
explain their meaning.
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3.5.2 Coupling

Coupling refers to the reliance of a class on other classes. A class C is
coupled to class C’ when class C relies on features offered by class C’. The
more class C relies on features offered by class C’, the higher the coupling of
class C is. Due to their reliance on other classes highly coupled classes are
difficult to analyze, maintain, modify, reuse, test and understand [26, 25].
The community agrees that low coupling of classes is highly desirable [26,
42, 25, 41, 52, 51]. We use the definition of Trudel et al. [59] to measure
coupling. Trudel et al. defined the coupling ratio of a class C as the number
of out accesses to the number of in accesses. Out accesses are accesses to
features defined in a class other than C while in accesses are accesses to
features defined inside C. The definition ignores repeated accesses to the
same feature within a routine’s body. The coupling ratio is a positive real
number greater than or equal to zero. We measure both the average and
median coupling ratio of classes per project.

3.5.3 Information hiding

Parnas [50] proposes to design modules in such a way that modules hide
design decisions from other modules. Parnas calls this approach information
hiding. The benefit [50] of hiding design decisions results in the possibility to
revisit design decisions without affecting clients of the module. Information
hiding also reduces the amount of information a client needs to understand
when using a interface[42] since the client just needs to understand how to
use the interface while at the same time the client can ignore the implemen-
tation details. As with coupling the community strongly suggests to apply
information hiding [52, 42, 40, 41, 26]. In Eiffel programmers can apply in-
formation hiding by restricting the export status of features [40]. Aside from
the coupling ratio Trudel et al. [59] gave a definition of the information hid-
ing ratio as well: It is the ratio of non-exported features to exported features.
A feature is exported if and only if its export status is not constrained [40].
The information hiding ratio is a positive real number greater than or equal
to zero. Note that above definition of the information hiding ratio refers to
projects and not classes.

3.5.4 Contracts

The Eiffel programming language allows programmers to specify contracts,
that is preconditions, postconditions and class invariants. For Meyer [40]
contracts are “a key element of software development in Eiffel” and play
an important role in Design by contract [39, 41]. Design by contract is a
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collection of methodological principles to develop reliable software by seeing
contracts as business contracts between contracting parties. Each contracting
party has rights and obligations. With regard to software it means that the
caller and supplier of a routine enter into a contract. If the caller fulfills
the routines’ preconditions, then the supplier guarantees the fulfillment of
the postconditions. The benefit of writing contracts, that is preconditions,
postconditions and invariants, is manifold. Contracts serve not only as formal
specifications [42] but also document interfaces [42, 40], help with testing
[40] and ease debugging [42, 40]. With contracts playing an important role
in Eiffel we decided to use the percentage of routines with preconditions, the
percentage of routines with postconditions, the percentage of classes with
class invariants and the average percentage of contracts as metrics. The
average percentage of contracts is the average of the three other metrics.
Since these are all percentages the values lie between zero and 100 and are
real numbers.

3.5.5 Eiffel Inspector

Continuous exposure to source code shapes a programmer’s intuition of prob-
lematic implementation patterns. A typical example of such a problematic
implementation pattern is the comparison of a Boolean variable to a Boolean
constant (i.e. is_empty = True). Fowler et al. [24] call these problematic
implementation patterns “bad smells”. Among other examples they list du-
plicate code, long features and large classes as bad smells. Problematic im-
plementation patterns entail a number of problems [24]: They reduce the
quality of the software’s design, complicate the understanding of source code
and slow down development.

Eiffel Inspector [60] is a rule-based static code analysis tool which finds
such problematic implementation patterns in Eiffel source code. Rules define
the problematic implementation patterns and the Eiffel Inspector checks the
source code against the rules. Once the Eiffel Inspector is able to match
source code against a rule, that is an occurrence of such a problematic im-
plementation pattern, it reports a rule violation indicating the source code
which violates the rule. Every rule has a severity level. The current collec-
tion of rules comprises two levels of severity: Warnings and suggestions. We
use the number of Eiffel Inspector warnings per 1000 LOC, the number of
Eiffel Inspector suggestions per 1000 LOC and the average number of Eiffel
Inspector rule violations per 1000 LOC. The average number of Eiffel In-
spector rule violations per 1000 LOC is the average of the other two metrics.
The values from these three metrics are positive real numbers greater than
or equal to zero.
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3.5.6 Relationship to globally distributed software development

Our justification of the metrics’ choice relies on fundamental software engi-
neering principles. But do these metrics relate to globally distributed soft-
ware development? Yes, they do!

Battin et al. [6] report their issues in a globally distributed software
development project and how they dealed with these issues. The project
included teams located in China, United States of America, Japan, India,
Singapore and Australia. Their key principles to cope with the complexity
of the projects’ software architecture were low coupling and well-defined in-
terfaces [6]. Our metrics related to coupling include the average coupling
ratio and the median coupling ratio. Our metrics related to well-defined
interfaces are the information hiding ratio, the percentage of routines with
preconditions, the percentage of routines with postconditions, the percent-
age of classes with class invariants and the average percentage of contracts.
The information hiding ratio states how well-defined interfaces are and the
metrics related to contracts do the same as well since contracts are a helpful
tool to document interfaces [42, 40].

Thus our choosen metrics do not only rely on fundamental principles of
software engineering but also play an important role in globally distributed
software development.

3.6 Determining quality of requirements documents

Since every human judgement is subject to a certain bias we had to take
precautions to reduce the possibility for bias. The previously mentioned
global group number is a unique identifier for every group and thus also
project. We permuted the global group numbers and stored the mapping
in a document unavailable to the author. The next steps were to print
all requirements documents, to write the permuted global group numbers
onto the title page of every single requirements document and to remove all
occurrences related to year, country, city, university, group numbers, team
names and student names in the requirements documents to make sure these
do not influence the grading of the requirements documents. The author
was never part of any of these anonymization activities. We then graded the
documents from 2009 to 2012 per subcomponent using multiple iterations.
Then we graded the documents from 2013 followed by the ones fro 2014. This
approach prevented the author from establishing any connection between
documents.

Table 10 summarizes the number of requirements documents and gives
the statistics for the number of pages. Table 11 summarizes the number of
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Year #Docs.
#Pages

Min Median Mean Max Total SD
2009 16 22 47 41.25 55 330 12.89
2010 27 44 68 70.11 105 631 21.38
2011 28 31 43.5 52 128 520 27.76
2012 50 22 36 39.29 76 825 15.08
2013 12 12 28 34 75 408 20.15
2014 8 16 22 26.38 41 211 9.96
Total 141 12 39 43.01 128 2925 21.99

Table 10: Number of requirements documents and number of pages de-
scribed through the minimum number of pages (Min), the median number
of pages, the mean number of pages, the maximum number of pages (Max),
the total number of pages and the standard deviation of the number of pages
(SD) for every edition of DOSE.

requirements documents and gives the statistics for the number of require-
ments. We graded a total number of 141 requirements documents with a
total number of 2925 pages containing 4769 requirements. The number of
requirements documents per year is coupled to the number of teams (2009
- 2012) respectively the number of groups (2013 & 2014). This explains the
varying number of requirements documents per year. The topics used explain
the differences in the number of requirements and pages per year.

3.7 Determining quality of software quality

Determining the quality of the software products was the next step in our
grading activities. We used EiffelStudio 15.01.9.6535 to calculate the static
metrics. Due to the ongoing refinement of the Eiffel programming language
as well as Eiffel core libraries such as EiffelBase and Gobo Eiffel Project
it was not possible to compile the software products without making any
adjustments to the source code. Typical compiler errors of the unedited
source code of projects include among others outdated paths in project files,
missing calls to specific creation procedures, missing renamings of inherited
features which resulted in multiple features of the same name being defined
in a class, missing select clauses due to the diamond problem introduced by
multiple inheritance, typing problems due to missing string conversions and
usage of unsupported characters in source code. Simple and straightforward
changes in the source code solved the failing compilation processes. Since
every group produced their own software product we measure software quality
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Year #Docs.
#Reqs.

Min Median Mean Max Total SD
2009 16 36 77.5 74.5 115 596 25.76
2010 27 84 101 104.89 144 944 19.61
2011 28 51 72.5 92 246 920 56.47
2012 50 16 66 65.57 121 1377 28.88
2013 12 20 49.5 63.75 145 765 42.03
2014 8 8 18 20.88 36 167 9.31
Total 141 8 69 70.13 246 4769 40.39

Table 11: Number of requirements documents and number of requirements
described through the minimum number of requirements (Min), the median
number of requirements, the mean number of requirements, the maximum
number of requirements (Max), the total number of requirements and the
standard deviation of the number of requirements (SD) for every edition of
DOSE.

per group.
Three tools measure the metrics which we have chosen. We implemented

a tool to measure the coupling ratio. The tool examines abstract syntax
trees of classes using the visitor pattern [25] to count the out and in accesses.
The other two tools are part of EiffelStudio. The integrated metric tool
allowed us to compute the information hiding ratio, the percentage of routines
with preconditions, the percentage of routines with postconditions and the
percentage of classes with class invariants. The metric tool ignored source
code not written by the students. An earlier subsection introduces the Eiffel
Inspector which also is part of EiffelStudio. Using the Eiffel Inspector we
were able to compute the number of Eiffel Inspector warnings per 1000 LOC
and the number of Eiffel Inspector suggestions per 1000 LOC. We activated
all predefined Eiffel Inspector rules. The metrics calculated with the metric
tool and the Eiffel Inspector allow us to compute both the average percentage
of contracts and the average number of Eiffel Inspector rule violations per
1000 LOC.

We continue with the discussion of the source code statistics. Table 12
summarizes the number of software products and gives the statistics for the
number of LOC. Table 13 summarizes the number of software products and
gives the statistics for the number of classes.

As before with the number of requirements documents per year the num-
ber of projects correlates with the number of groups per year. Our study
includes 68 projects consisting of a total number of 3161 classes contain-
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Year #Prod.
#LOC

Min Median Mean Max Total SD
2009 8 4545 6393.5 6566.38 8386 52531 1317.16
2010 9 8733 14514 13259.67 15909 119337 2458.12
2011 10 2342 9428.5 11197.4 20465 111974 5882.87
2012 21 1969 5578 6011.05 14692 126232 3070.5
2013 12 6119 10803.5 11421.17 20112 137054 4017.07
2014 8 1050 3332 3648.38 7236 29187 1972.57
All 68 1050 7644.5 8475.22 20465 576315 4719.88

Table 12: Number of software products and number of lines of code (LOC)
described through the minimum number of LOC (Min), the median number
of LOC, the mean number of LOC, the maximum number of LOC (Max),
the total number of LOC and the standard deviation of the number of LOC
(SD) for every edition of DOSE.

Year #Prod.
#Classes

Min Median Mean Max Total SD
2009 8 21 39.5 43.62 79 349 17.49
2010 9 39 59 64.78 105 583 18.69
2011 10 16 41 52.5 121 525 33.37
2012 21 18 30 37.71 88 792 18.75
2013 12 40 61.5 63.33 96 760 15.77
2014 8 10 13 19 42 152 12.51
All 68 10 43.5 46.49 121 3161 24.53

Table 13: Number of software products and number of classes described
through the minimum number of classes (Min), the median number of classes,
the mean number of classes, the maximum number of classes (Max), the total
number of classes and the standard deviation of the number of classes (SD)
for every edition of DOSE.
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ing a total number of 576315 lines of code. Regarding both the number of
lines of code and classes we observe variations between both the individual
years and within years. The project setting, namely topics and number of
subcomponents, influences these metrics.

3.8 Summary

Our study uses data gathered from a globally taught university course where
students carried out a globally distributed software development project.
These projects included writing a requirements document based on IEEE
Std 830-1998 and implementing the requirements to create a software product
using the Eiffel programming language. We collected these two deliverables
and graded both. For the requirements document we anonymized the require-
ments document to prevent any bias originating from the knowledge of year
and universities involved and then graded the anonymized requirements doc-
uments following a grading scheme influenced by IEEE Std 830-1998. The
usage of straightforward source code modifications to the students’ source
code allowed us to use tools to calculate the quality metrics we have defined
earlier.

Then we reported basic statistics about the people, requirements doc-
uments and implementations involved in our study. Table 14 summarizes
previously presented numbers. The study comprises of students being affili-
ated with 19 different universities. The 614 students worked on 68 projects
in 68 groups consisting of 193 teams. Teams from two, three or four loca-
tions worked together. The 614 students wrote 2925 pages of requirements
documents containing 4769 requirements whose implementations result in
3161 classes consisting of 576315 LOC. The scope of all our data makes us
confident to be able to answer our research questions.
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4 Quantitative analysis and quantitative re-

sults

4.1 Introduction

Now with the research methodology being described we can move on to
answer the reason questions RQ.1, RQ.2 and RQ.3 through the quantitative
analysis of the hypotheses H.1 to H.30. First the focus is on the description
of the quantitative analysis and then in the remainder of this section we
present and discuss for each research question the quantitative results.

4.2 Quantitative analysis

All of our previously defined research questions RQ.1, RQ.2 and RQ.3 com-
pare one individual characteristic of the projects which has two manifesta-
tions. Research question RQ.1 compares software quality of projects with
bad requirements documents to those projects with good requirements docu-
ments. The second research question RQ.2 looks into the differences in soft-
ware quality between projects with programmer-written requirements docu-
ments and projects with requirements engineer-written requirements docu-
ments. The last research question RQ.3 compares software quality of projects
with groups consisting of only high-context culture teams to projects with
groups consisting of mixed-context culture teams.

The appropriate quantitative analysis [3] for these three research ques-
tions are two particular statistical tests: The Mann-Whitney U-test and the
t-test. Hereinafter we summarize the basic properties [3] of these tests. The
Mann-Whitney U-test or simply U-test is a non-parametric statistical test
to compare the difference between two data samples for statistical signifi-
cance. Non-parametric statistical tests do not impose any restriction on the
distribution of the data sample whereas parametric statistical tests do. The
t-test is a parametric statistical test and requires the data sample to follow
a normal distribution and have same variance. Despite the limited applica-
bility the t-test is more powerful than the U-test and even tolerates outliers
in a data sample following a normal distribution. Welch’s t-test in contrast
to the t-test does not assume same variance of the data samples. In our
quantitative analysis we use both the U-test and Welch’s t-test to find sta-
tistically significant differences. For the sake of simplicity and readability we
call Welch’s t-test simply t-test throughout the remainder of this document.

Given the limited applicability of the t-test we run normality tests before
the quantitative analysis to find the metrics which follow a normal distri-
bution. Appendix B contains all results of the normality tests. In order
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# Min Q1 Median Mean Q3 Max
68 9 35.75 50 48.51 59 85

Table 15: Summary of scores of requirements documents using the number
of documents (#), minimum (Min), first quartile (Q1), median, mean, third
quartile (Q3) and maximum (Max) score.

to test the metrics for normality we compare the density function with the
plotted normal distribution having the same mean and standard deviation as
the data sample, inspect the corresponding quantile-quantile plot (Q-Q plot)
and run a Shapiro-Wilk normality test. In the tables summarizing the results
of the statistical tests a dagger (†) marks normally distributed metrics.

As previously described we use statistical tests to find statistically signif-
icant differences in software quality. In our study we use a significance level
α of α = 0.05. A statistical test rejects the hypothesis if the test approves
the hypothesis with a probability p < α. In this case the statistical test finds
a statistically significant difference. We mark statistically significant results
with an asterisk (∗).

For the quantitative analysis we used R 2.13.1 and RStudio 0.98.1087.

4.3 Quantitative results for RQ.1

The first research question looks into the impact of the quality of require-
ments on software quality.

RQ.1 What is the impact of bad and good requirements documents on the
average coupling ratio, the median coupling ratio, the information hid-
ing ratio, the percentage of routines with preconditions, the percentage
of routines with postconditions, the percentage of classes with invari-
ants, the average percentage of contracts, the number of Eiffel Inspector
warnings per 1000 LOC, the number of Eiffel Inspector suggestions per
1000 LOC and the average number of Eiffel Inspector rule violations
per 1000 LOC?

The research question requires the classification of the requirements doc-
uments as either bad or good. As previously described in section 3.2 for
each project between 2009 and 2012 one requirements document exists per
subcomponent. In these cases we combined the individual scores of the re-
quirements documents into a single score by averaging the individual scores.

Taking into account the number of projects, the distribution of the aver-
age scores (Figure 1) and the proximity of the median and mean score (Table
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Figure 1: Histogram of all scores of requirements documents.

15) we decided to use the score 50 as a threshold to split the projects in two,
namely projects with bad requirements documents and projects with good
requirements documents. Doing so classifies 34 projects as projects with bad
requirements documents and another 34 projects as projects with good re-
quirements documents (Table 16). The visualization of all metrics using box
plots in Figure 2, 3 and 4 does not suggest any difference in software quality
between projects with bad requirements documents and projects with good
requirements documents.

The results of the quantitative analysis (Table 16) support the conclu-
sion drawn from the box plots (Figure 2, 3 and 4). There does not seem to
be a statistically significant difference in software quality between projects
with bad requirements documents and projects with good requirements doc-
uments.

There are some threats to validity which have the potential to reduce the
credibility of the results. We discuss these threats in the remainder of this
subsection. For the sake of readability we include further figures and tables
in Appendix A.

One threat to validity is the change of the setting in 2013. Before 2013
every team wrote the requirements document for their assigned subcompo-
nent. From 2013 on dedicated requirements engineer wrote the requirements
document for all subcomponents. Using again a score of 50 as a threshold to
split the projects we ran the exactly same quantitative analysis for projects
belonging to the old setting before 2013 and for projects belonging to the
new setting from 2013 on. The box plots (Figure 11, 12 and 13 in Appendix
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Figure 2: Box plots of metrics related to ratios (H.1 to H.3) for research
question RQ.1 using the average score 50 as a threshold to split the projects
into projects with bad requirements documents and projects with good re-
quirements documents.
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search question RQ.1 using the average score 50 as a threshold to split the
projects into projects with bad requirements documents and projects with
good requirements documents.
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A.1.1) visualizing the quality metrics in the old setting suggest no difference.
Again the quantitative results (Table 20 in Appendix A.1.1) support this
observation. Figure 14, 15 and 16 in Appendix A.1.2 showing the box plots
indicate average number of Eiffel Inspector rule violations per 1000 LOC
(H.10) might differ in the new setting. But the quantitative results (Table
21 in Appendix A.1.2) do not indicate a statistically significant difference.
Thus the different settings do not influence the quantitative results our main
analysis.

The choice of the threshold based on the histogram, mean and median is
another threat to validity. Is a document with a score just a little above the
threshold really a good document compared to a bad one with a score just
a little below the threshold? We ran the previously discussed three analyses
again and removed approximately 20 percent of the documents around the
chosen threshold such that approximately 40 percent of the projects have
bad requirements documents and approximately 40 percent of the projects
have good requirements documents. For convenience we call this analysis the
40-20-40 analysis. Doing so results in projects with requirements documents
having a score less than 48 being projects with bad requirements documents
and projects with requirements documents having a score of greater than 54
being projects with good requirements documents.

The first 40-20-40 analysis is again one using all projects. Now the box
plots in Figure 17, 18 and 19 in Appendix A.1.3 indicate a difference in the
average coupling ratio (H.1). However the quantitative results in Table 22
in Appendix A.1.3 do not show a statistically significant differences for any
metric. The results do not at all show a statistically significant difference.
The result of the t-test for the median coupling ratio (H.2) is statistically
significant but misleading. The box plot of the median coupling ratio (Figure
17b) does not suggest a difference and the median coupling ratio (H.2) does
not follow a normal distribution (Figure 78 in Appendix B.1.4).

We cannot report any statistically significant differences for the projects
done in the old setting (2009 - 2012) because there is none given visualization
of the metrics (Figure 20, 21 and 22 in Appendix A.1.4) and the quantitative
results (Table 23 in Appendix A.1.4).

The visualization (Figure 23, 24 and 25 in Appendix A.1.5) of the metrics
in the new setting (2013 and 2014) reveal striking differences. In particular
the average coupling ratio (H.1) (Figure 23a), median coupling ratio (H.1)
(Figure 23b), number of Eiffel Inspector suggestions per 1000 LOC (H.9)
(Figure 25b) and the average number of Eiffel Inspector rule violations per
1000 LOC (H.10) (Figure 25c) are very different. The quantitative results
(Table 24 in Appendix A.1.5) report only one statistically significant differ-
ence. It is related to the average number of Eiffel Inspector rule violations
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per 1000 LOC (H.10) which follows a normal distribution (Figure 106 in
Appendix B.1.6). It is important to mention the distribution since it is the
t-test which indicates a statistically significant difference. The p-value re-
sulting from the analysis of the average coupling ratio (H.1) is exactly the
significance level. In fact the p-value rounded to 5 digits is 0.04993. Thus,
there is a barely statistically significant difference in the average coupling
ratio which follows a normal distribution (Figure 77 in Appendix B.1.6).

Another threat to validity is the influence of time zone differences. We
classified projects into three classes according to the maximum time zone dif-
ference between teams of a group: Small, medium and large. A small time
zone difference is one where the maximum time zone differences between
teams of a group is less than or equal to three hours. A medium time zone
difference is one where the maximum time zone differences between teams of
a group is greater than three hours but less than or equal to five hours. A
large time zone difference is one where the maximum time zone differences
between teams of a group is more than five hours. Then we quantitatively
analyzed the impact of the time zone classification on software quality using
the Kruskal-Wallis test and analysis of variance (ANOVA) [53]. We ran the
quantitative analysis for all projects (Figure 26, 27 and 28 and Table 25 in
Appendix A.1.6), the projects between 2009 and 2012 ((Figure 29, 30 and
31 and Table 26 in Appendix A.1.7)) and the projects from 2013 and 2014
(Figure 32, 33 and 34 and Table 27 in Appendix A.1.8). The quantitative
results show no statistically significant difference in software quality between
the different time zone classifications.

The quantitative results of the quantitative analysis show evidence that the
quality of requirements documents does not influence software quality.

4.4 Quantitative results for RQ.2

The second research question looks into the impact of programmer- and
requirements engineer-written requirements documents on software quality.

RQ.2 What is the impact of programmer-written and requirements engineer-
written requirements documents on the average coupling ratio, the me-
dian coupling ratio, the information hiding ratio, the percentage of
routines with preconditions, the percentage of routines with postcondi-
tions, the percentage of classes with invariants, the average percentage
of contracts, the number of Eiffel Inspector warnings per 1000 LOC, the
number of Eiffel Inspector suggestions per 1000 LOC and the average
number of Eiffel Inspector rule violations per 1000 LOC?
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Between 2008 and 2012 every team had to write their own requirements
document for their assigned subcomponent whereas teams consisting of only
requirements engineers wrote the requirements documents for the projects
in 2013 and 2014. Thus, we split the projects in projects with programmer-
written requirements documents and projects with requirements engineer-
written requirements documents. There exist 48 projects with programmer-
written requirements documents and 20 projects with requirements engineer-
written requirements documents (Table 17). The box plots visualizing the
metrics (Figure 5, 6 and 7) show a salient difference in the percentage of rou-
tines with preconditions (H.14) (Figure 6a), the percentage of routines with
postconditions (H.14) (Figure 6b), the percentage of classes with class invari-
ants (H.16) (Figure 6c) and average percentage of contracts (H.17) (Figure
6d) being specified. When programmer write the requirements themselves
they seem to specify more contracts.

Indeed, the U-test agrees that these differences are statistically signifi-
cant (Table 17). The U-test also reports a statistically significant difference
in the median coupling ratio (H.12). The result suggests that writing the re-
quirements and implementing them leads to a smaller median coupling ratio
(H.12).

The very different topic in the 2014 edition of DOSE is a threat to validity.
As before we ran the same quantitative analysis another two times. The first
time we compare the software quality between projects with programmer-
written requirements documents and projects with requirements engineer-
written requirements documents from the 2013 edition. In 2013 the topic
was card & board games and thus comparable to the topics between 2009
and 2012. Then we compare the software quality between projects with
programmer-written requirements documents and projects with requirements
engineer-written requirements documents from the 2014 edition. The topic
in 2014 was a project-management tool which the students had to program
using Eiffel for the back end and web technologies for the front end.

With regard to the 2013 edition the visual analysis of the metrics’ box
plots (Figure 35, 36 and 37 in Appendix A.2.1) seems to confirm the results
of the main analysis related to contracts (H.14 to H.17) (Figure 36) but the
median coupling ratio (H.12) (Figure 35b) seems not to differ. The U-test
supports this interpretation regarding the percentage of routines with pre-
condtions (H.14), the percentage of routines with postconditions (H.15) and
the average percentage of contracts (H.17) being specified. In contrast to the
main analysis there is no statistically significant difference in the percent-
age of classes with class invariants (H.16) and in the median coupling ratio
(H.12). None of all metrics follows a normal distribution which makes the
(statistically significant) results of the t-test difficult to interpret.
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Figure 5: Box plots of metrics related to ratios (H.11 to H.13) for research
question RQ.2.
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Figure 6: Box plots of metrics related to contracts (H.14 to H.17) for
research question RQ.2.
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Figure 7: Box plots of metrics related to Eiffel Inspector (H.18 to H.20) for
research question RQ.2.
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The second visual analysis (Figure 38, 39 and 40 in Appendix A.2.2) re-
veals an obvious difference in the average coupling ratio (H.11), median cou-
pling ratio (H.12) and the four metrics related to contracts (H.14 to H.17).
The U-test agrees (Table 29 in Appendix A.2.2) but also reports a statisti-
cally significant difference for the number of Eiffel Inspector suggestions per
1000 LOC (H.19). The only metric following a normal distribution is the
median coupling ratio (H.12) and the t-test finds a statistically significant
differences as well. It seems that the statistically significant difference in
the median coupling ratio (H.12) and the percentage of classes with class
invariants (H.16) of the main analysis including all projects is due to the
very different topic in the 2014 edition of DOSE.

The quantitative results of the quantitative analysis show evidence that
programmer-written requirements documents result in more preconditions
and postconditions being specified than requirements engineer-written re-
quirements documents. This complies with the finding that projects with
programmer-written requirements have a higher average percentage of con-
tracts. The conclusion regarding the percentage of classes with class invari-
ants is difficult to make. There seems to be a trend that programmer-written
requirements documents result in more class invariants being specified.

4.5 Quantitative results for RQ.3

The third research question looks into the impact of high- and mixed-context
culture groups on software quality. First we had to classify every team as
either having a low- or high-context culture. Copeland et al. [17] classified
cultures as either low- or high-context cultures. Due to the unavailability
of a copy of their book [17] we had to use a secondary source [4] to access
their classification. This allowed us to classify the teams from Switzerland,
Denmark and Australia as teams with low-context cultures. All other teams
are teams with high-context cultures. The next step was to classify groups
based on the cultures of the teams. We classified groups with both low- and
high-context cultures as mixed culture groups. The classification of groups
made us realize that not a single group with teams having only low-context
cultures exists. This is why we had to formulate research RQ.3 using only
high-context cultures and mixed-context cultures. The wording of research
question RQ.3 is as follows.

RQ.3 What is the impact of high- and mixed-context culture groups on the
average coupling ratio, the median coupling ratio, the information hid-
ing ratio, the percentage of routines with preconditions, the percentage
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of routines with postconditions, the percentage of classes with invari-
ants, the average percentage of contracts, the number of Eiffel Inspector
warnings per 1000 LOC, the number of Eiffel Inspector suggestions per
1000 LOC and the average number of Eiffel Inspector rule violations
per 1000 LOC?

Splitting the data sample in two results in 31 projects with high-context
culture groups and 37 projects with mixed-context culture groups (Table
18). The visualizations of the metrics using box plots (Figure 8, 9 and 10)
suggests the absence of differences between projects with high- and mixed-
context culture groups.

The visual inspection complies with the quantitative results of the U-test
(Table 18) which report no statistically significant differences.

Another two times we run the same analysis again for each setting of the
projects to reduce any threat to validity.

First we look into the projects done between 2009 and 2012. The box
plots of the metrics (Figure 41, 42 and 43 in Appendix A.3.1) seem to indicate
a difference in both the average coupling ratio (H.21) and mean coupling
ratio (H.22) as well as the percentage of classes with class invariants (H.26).
The quantitative results (Table 30) of the U-test support the observation
of the difference in the average coupling ratio (H.21) but the U-test does
not support the observation of the difference in the median coupling ratio
(H.22) and the percentage of classes with class invariants (H.26). The t-
test reports a statistically significant difference for both the average coupling
ratio (H.21) and the average number of Eiffel Inspector rule violations per
1000 LOC (H.30) but these metrics do not follow a normal distribution which
makes the results hard to interpret.

The remaining analysis researches the projects done in the new setting in
2013 and 2014. The metrics’ visualization (Figure 44, 45 and 46 in Appendix
A.3.2) show some striking differences. The most notable differences are re-
lated to the metrics average coupling ratio (H.21), median coupling ratio
(H.22), the information hiding ratio (H.23) and the percentage of classe with
class invariants (H.26). The results of the quantitative analysis (Table 31
in Appendix A.3.2) show that the U-test finds statistically significant differ-
ences in the average coupling ration (H.21), the median coupling ratio (H.22)
and the percentage of classes with class invariants (H.26). This complies with
the results of the t-test but only the average coupling ratio (H.21) and the
median coupling ratio (H.22) follow a normal distribution. The result of
the t-test with respect to the information hiding ratio (H.23) is exactly the
significance level. The p-value rounded to five digits is 0.05035. The informa-
tion hiding ratio (H.23) is not normally distributed but the normality tests
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research question RQ.3.
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(Figure 159 in Appendix B.3.3) show few outliers from normality. Since the
t-test is robust against outliers it shows some evidence that the information
hiding ratio (H.23) might be statistically significant different.

The quantitative results show evidence that the composition of groups with
teams consisting of only high-context cultures or mixed-context cultures does
not influence software quality. However the quantitative results regarding
the average coupling ratio are not consistent but contradict each other. This
shows the need for further analyses.

4.6 Correlations

Apart from the previous analyses we also researched correlations between
the chosen metrics. To analyze the correlations between the metrics we use
Kendall’s τ rank correlation coefficient. The computation of the correlation
coefficient did not reveal surprising correlations between metrics. Table 19
reports the significant correlations (τ ≥ 0.4 and p < 0.01 or τ ≤ −0.4 and
p < 0.01) revealed by Kendall’s τ rank correlation coefficient. Some of the
found correlations are not unexpected. The average and median coupling
ratio are closely related to each other. Other significant correlations relate
to both the average percentage of contracts and the average number of Eiffel
Inspector rule violations are defined using other metrics. This explains the
correlations between the percentage of routines with preconditions and the
average percentage of contracts, the percentage of routines with postcondi-
tions and the average percentage of contracts, the percentage of classes with
class invariants and the average percentage of contracts, the number of Eiffel
Inspector warnings per 1000 LOC and the average number of Eiffel Inspec-
tor rule violations per 1000 LOC as well as the number of Eiffel Inspector
suggestions per 1000 LOC and the average number of Eiffel Inspector rule
violations per 1000 LOC.

The only really interesting but not surprising significant correlation is the
one between the percentage of routines with preconditions and the percentage
of routines with postconditions. Thus whenever a feature has preconditions,
it is likely to have postconditions or vice versa.
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Pair of metrics τ
Average coupling ratio / Median coupling ratio 0.462
Preconditions (%) / Postconditions (%) 0.591
Preconditions (%) / Contracts (%) 0.675
Postconditions (%) / Contracts (%) 0.667
Invariants (%) / Contracts (%) 0.633
#Warnings / #Rule violations 0.411
#Suggestions / #Rule violations 0.828

Table 19: Significant correlations between pair of metrics using Kendall’s
τ correlation coefficient. All reported pairs of metrics have a correlation
coefficient τ ≥ 0.4 or τ ≤ −0.4 with significance p� 0.001.
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5 Related work

5.1 Empirical studies on software quality

Both Spinellis [57] and Bird et al. [8] looked into software quality of operating
systems developed in a globally distributed environment.

FreeBSD [37] is an open-source operating system which Spinellis [57] used
to research the impact of global development on productivity, quality and co-
operation between developers. His findings include that global distribution
does neither affect productivity nor quality (source code and faults) nor de-
veloper cooperation. Regarding latter it however seems the mentoring of new
contributors is sometimes easier to establish between close by contributors.

Bird et al. [8] used faults found after the release of the operating system
Windows Vista to learn more about the differences in quality between glob-
ally distributed and traditional local software development. The differences
found are minor.

Another study [14] is concerned with the impact of process maturity and
global distribution on software quality in terms of faults. Cataldo et al.
[14] provided evidence for the impact. Increasing the maturity results in
better software quality. However increasing distribution reduces the benefits
of improving process maturity.

5.2 Empirical studies relying on DOSE

DOSE is a rich resource for empirical studies related to globally distributed
software development. Our study used requirements documents and software
products. Other empirical studies relying on DOSE looked into awareness
and merge conflicts [23], usage of contracts [48] as well as effects of distribu-
tion and time zone differences [45].

With regard to shared code bases Estler et al. [23] examined awareness
and merge conflicts. Their study shows that the absence of awareness, that
is the knowledge of other programmers changing possibly relevant source
code, decreases the programmer’s performance more than merge conflicts.
This insight is important because their study also shows that the absence of
awareness occurs more frequently than merge conflicts.

Nordio et al. [48] describe the failure of the students in the 2007 edition
of DOSE to create a working software product. Investigations revealed that
the primary reason relates to specification issues. The organizers enforced
the usage of contracts in the following edition and the quality of contracts
correlated with success to deploy the created software product.

The data originating from the 2009 and 2010 editions of DOSE allowed
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Nordio et al. [45] to look into the effects of distribution and time zone dif-
ferences. Distribution, that is the number of locations per projects, does not
influence the amount of time spent for communication. Though the study of
projects with two and three locations showed a not statistically significant
trend for higher communication in projects with two locations. The sta-
tistical analysis of the amount of time spent for communication showed no
significant difference between groups with zero to three hours, five to seven
hours and more than nine hours time zone difference. The data shows a
trend that groups with zero to three hours time zone difference spend more
time communicating with each other. The study also shows that students of
a group being only zero to three hours apart reply e-mails faster than those
students of a group being nine hours away from each other.

5.3 Teaching DOSE

The rise of globally distributed software development requires universities
to adjust their efforts in teaching. Additional topics [32] related to globally
distributed software development should complement the ones of traditional
local software development [27]. Though teaching [18, 19] globally distributed
software development practically is difficult. Nordio et al. describe the chal-
lenges [46, 47] the lecturers of DOSE faced when organizing the course. Such
a challenge is to ensure that problems occurring within a team do not spread
to the other teams in a group. This is a crucial aspect since teams in a
group rely on each other. Another contribution by Nordio et al. [44] presents
the efforts undertaken to coach the students for the to them unknown global
setting of the course and project. The preparation takes place in the form of
a contest where the students from a group have to successfully collaborate
and communicate to solve an assignment in as little time as possible.

Similar courses as DOSE exist and lecturers of these courses reported their
findings and the challenges faced as well [29, 30, 56, 12, 54, 11, 49, 28, 58].
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6 Conclusion

The motivation for our study was the well-known impact [7, 35, 5] of require-
ments in traditional local software development and the lack of knowledge
with regard to globally distributed software development.

We used 68 software development projects done in a globally distributed
environment to carry out the empirical study. The goal of the study was
to answer three questions. 1. Does the quality of requirements documents
influence software quality? 2. Does the authorship of requirements docu-
ments influence software quality? 3. Do multiple cultures in groups influence
software quality?

We assessed both the quality of requirements documents and software
to deploy statistical tests as part of the quantitative analysis. The quan-
titative results show evidence that neither the quality of requirements nor
the culture influence software quality. However, the quantitative analysis
suggests that authorship does. Software emerging from programmer-written
requirements have more contracts namely preconditions, postconditions and
class invariants than software originating from requirements engineer-written
requirements.

This raises new questions with regard to previous research. Both Lutz
[35] and Basili et al. [5] identified misunderstanding of requirements as a
primary source of software faults. Do programmers write less contracts due
to misunderstanding the requirements written by requirements engineers?
Future work includes studying both requirements and contracts to explain
the difference in the amount of contracts being specified based on authorship
of requirements.

Our goal was to investigate the impact of requirements in globally dis-
tributed software development. The results of the empirical study are very
interesting and raise new questions. This shows the need for further research
to better understand the impact of requirements in globally distributed soft-
ware development.
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A Additional quantitative results

A.1 Research question RQ.1

A.1.1 Main analysis (2009 - 2012)

Figure 11 to 13 show the box plots for metrics of the projects done between
2009 and 2012 which the main analysis uses for research question RQ.1. Table
20 shows the results of the corresponding quantitative analysis.
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Figure 11: Box plots of metrics related to ratios (H.1 to H.3) for re-
search question RQ.1 using the average score 50 as a threshold to split the
projects from 2009 to 2012 into projects with bad requirements documents
and projects with good requirements documents.
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Figure 12: Box plots of metrics related to contracts (H.4 to H.7) for re-
search question RQ.1 using the average score 50 as a threshold to split the
projects from 2009 to 2012 into projects with bad requirements documents
and projects with good requirements documents.
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Figure 13: Box plots of metrics related to Eiffel Inspector (H.8 to H.10) for
research question RQ.1 using the average score 50 as a threshold to split the
projects from 2009 to 2012 into projects with bad requirements documents
and projects with good requirements documents.
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A.1.2 Main analysis (2013 - 2014)

Figure 14 to 13 show the box plots for metrics of the projects done in 2013
and 2014 which the main analysis uses for research question RQ.1. Table 21
shows the results of the corresponding quantitative analysis.
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Figure 14: Box plots of metrics related to ratios (H.1 to H.3) for research
question RQ.1 using the average score 50 as a threshold to split the projects
done in 2013 and 2014 into projects with bad requirements documents and
projects with good requirements documents.

60



Bad Good

0
5

10
15

20

Preconditions

Quality of requirements documents

P
er

ce
nt

ag
e 

of
 r

ou
tin

es

(a) Percentage of routines with pre-
conditions (H.4)

Bad Good

0
2

4
6

8
10

Postconditions

Quality of requirements documents

P
er

ce
nt

ag
e 

of
 r

ou
tin

es

(b) Percentage of routines with post-
conditions (H.5)

Bad Good

0
5

10
15

Class invariants

Quality of requirements documents

P
er

ce
nt

ag
e 

of
 c

la
ss

es

(c) Percentage of classes with class
invariants (H.6)

Bad Good

0
2

4
6

8
10

12
14

Contracts

Quality of requirements documents

A
ve

ra
ge

 p
er

ce
nt

ag
e

(d) Average percentage of contracts
(H.7)

Figure 15: Box plots of metrics related to contracts (H.4 to H.7) for research
question RQ.1 using the average score 50 as a threshold to split the projects
done in 2013 and 2014 into projects with bad requirements documents and
projects with good requirements documents.
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Figure 16: Box plots of metrics related to Eiffel Inspector (H.8 to H.10)
for research question RQ.1 using the average score 50 as a threshold to split
the projects done in 2013 and 2014 into projects with bad requirements
documents and projects with good requirements documents.
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A.1.3 40-20-40 analysis (2009 - 2014)

Figure 17 to 19 show the box plots for metrics of all projects which the 40-
20-40 analysis uses for research question RQ.1. Table 22 shows the results of
the corresponding quantitative analysis.
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Figure 17: Box plots of metrics related to ratios (H.1 to H.3) for research
question RQ.1 using the average score 50 as a threshold to split the projects
from into projects with bad requirements documents and projects with good
requirements documents.
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Figure 18: Box plots of metrics related to contracts (H.4 to H.7) for research
question RQ.1 using the average score 50 as a threshold to split the projects
from into projects with bad requirements documents and projects with good
requirements documents.
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Figure 19: Box plots of metrics related to Eiffel Inspector (H.8 to H.10) for
research question RQ.1 using the average score 50 as a threshold to split the
projects from into projects with bad requirements documents and projects
with good requirements documents.
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A.1.4 40-20-40 analysis (2009 - 2012)

Figure 20 to 22 show the box plots for metrics of the projects done between
2009 and 2012 which the 40-20-40 analysis uses for research question RQ.1.
Table 23 shows the results of the corresponding quantitative analysis.
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Figure 20: Box plots of metrics related to ratios (H.1 to H.3) for re-
search question RQ.1 using the average score 50 as a threshold to split the
projects from 2009 to 2012 into projects with bad requirements documents
and projects with good requirements documents.
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Figure 21: Box plots of metrics related to contracts (H.4 to H.7) for re-
search question RQ.1 using the average score 50 as a threshold to split the
projects from 2009 to 2012 into projects with bad requirements documents
and projects with good requirements documents.
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Figure 22: Box plots of metrics related to Eiffel Inspector (H.8 to H.10) for
research question RQ.1 using the average score 50 as a threshold to split the
projects from 2009 to 2012 into projects with bad requirements documents
and projects with good requirements documents.
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A.1.5 40-20-40 analysis (2013 - 2014)

Figure 23 to 25 show the box plots for metrics of the projects done in 2013
and 2014 which the 40-20-40 analysis uses for research question RQ.1. Table
24 shows the results of the corresponding quantitative analysis.
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Figure 23: Box plots of metrics related to ratios (H.1 to H.3) for research
question RQ.1 using the average score 50 as a threshold to split the projects
done in 2013 and 2014 into projects with bad requirements documents and
projects with good requirements documents.
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Figure 24: Box plots of metrics related to contracts (H.4 to H.7) for research
question RQ.1 using the average score 50 as a threshold to split the projects
done in 2013 and 2014 into projects with bad requirements documents and
projects with good requirements documents.
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Figure 25: Box plots of metrics related to Eiffel Inspector (H.8 to H.10)
for research question RQ.1 using the average score 50 as a threshold to split
the projects done in 2013 and 2014 into projects with bad requirements
documents and projects with good requirements documents.
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A.1.6 Time zone classification analysis (2009 - 2014)

Figure 26 to 28 show the box plots visualizing metrics of all projects which
the time zone classification analysis uses. Table 25 shows the results of the
corresponding quantitative analysis.
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Figure 26: Box plots of metrics related to ratios for time zone difference
analysis.
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Figure 27: Box plots of metrics related to contracts for time zone difference
analysis.
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Figure 28: Box plots of metrics related to Eiffel Inspector for time zone
difference analysis.
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A.1.7 Time zone classification analysis (2009 - 2012)

Figure 29 to 31 show the box plots visualizing metrics of projects from 2009
to 2012 which the time zone classification analysis uses. Table 26 shows the
results of the corresponding quantitative analysis.
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Figure 29: Box plots of metrics related to ratios for time zone difference
analysis.
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Figure 30: Box plots of metrics related to contracts for time zone difference
analysis.
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A.1.8 Time zone classification analysis (2013 - 2014)

Figure 32 to 34 show the box plots visualizing metrics of projects done in
2013 and 2014 which the time zone classification analysis uses. Table 27
shows the results of the corresponding quantitative analysis.
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Figure 32: Box plots of metrics related to ratios for time zone difference
analysis.
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Figure 33: Box plots of metrics related to contracts for time zone difference
analysis.
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Figure 34: Box plots of metrics related to Eiffel Inspector for time zone
difference analysis.
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A.2 Research question RQ.2

A.2.1 Main analysis (2009 - 2012 vs. 2013)

Figure 35 to 37 show the box plots for metrics comparing the projects done
between 2009 and 2012 and the projects done in 2013 which the main analysis
uses for research question RQ.2. Table 28 shows the results of the correspond-
ing quantitative analysis.
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Figure 35: Box plots of metrics related to ratios (H.11 to H.13) for research
question RQ.2.
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Figure 36: Box plots of metrics related to contracts (H.14 to H.17) for
research question RQ.2.
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Figure 37: Box plots of metrics related to Eiffel Inspector (H.18 to H.20)
for research question RQ.2.
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A.2.2 Main analysis (2009 - 2012 vs. 2014)

Figure 38 to 40 show the box plots for metrics comparing the projects done
between 2009 and 2012 and the projects done in 2014 which the main analysis
uses for research question RQ.2. Table 29 shows the results of the correspond-
ing quantitative analysis.

99



Programmer Req. Eng.

1
2

3
4

5

Average coupling

Author of requirements documents

R
at

io

(a) Average coupling ratio (H.11)

Programmer Req. Eng.

0
1

2
3

4
5

6

Median coupling

Author of requirements documents

R
at

io

(b) Median coupling ratio (H.12)

Programmer Req. Eng.

0.
5

1.
0

1.
5

2.
0

Information hiding

Author of requirements documents

R
at

io

(c) Information hiding ratio (H.13)

Figure 38: Box plots of metrics related to ratios (H.11 to H.13) for research
question RQ.2.
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Figure 39: Box plots of metrics related to contracts (H.14 to H.17) for
research question RQ.2.

101



Programmer Req. Eng.

20
30

40
50

60

Eiffel Inspector warnings

Author of requirements documents

#W
ar

ni
ng

s 
/ 1

 K
LO

C

(a) Number of Eiffel Inspector warn-
ings per 1000 LOC (H.18)

Programmer Req. Eng.

20
40

60
80

10
0

12
0

14
0

Eiffel Inspector suggestions

Author of requirements documents

#S
ug

ge
st

io
ns

 / 
1 

K
LO

C

(b) Number of Eiffel Inspector sug-
gestions per 1000 LOC (H.19)

Programmer Req. Eng.

30
40

50
60

70
80

90
10

0

Eiffel Inspector rule violations

Author of requirements documents

A
ve

ra
ge

 #
ru

le
 v

io
la

tio
ns

 / 
1 

K
LO

C

(c) Average number of Eiffel Inspec-
tor rule violations per 1000 LOC
(H.20)

Figure 40: Box plots of metrics related to Eiffel Inspector (H.18 to H.20)
for research question RQ.2.
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A.3 Research question RQ.3

A.3.1 Main analysis (2009 - 2012)

Figure 41 to 43 show the box plots for metrics of the projects done between
2009 and 2012 which the main analysis uses for research question RQ.3. Table
30 shows the results of the corresponding quantitative analysis.
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Figure 41: Box plots of metrics related to ratios (H.21 to H.23) for research
question RQ.3.
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Figure 42: Box plots of metrics related to contracts (H.24 to H.27) for
research question RQ.3.
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Figure 43: Box plots of metrics related to Eiffel Inspector (H.28 to H.30)
for research question RQ.3.
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A.3.2 Main analysis (2013 - 2014)

Figure 41 to 43 show the box plots for metrics of the projects done between
2009 and 2012 which the main analysis uses for research question RQ.3. Table
31 shows the results of the corresponding quantitative analysis.
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Figure 44: Box plots of metrics related to ratios (H.21 to H.23) for research
question RQ.3.
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Figure 45: Box plots of metrics related to contracts (H.24 to H.27) for
research question RQ.3.
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Figure 46: Box plots of metrics related to Eiffel Inspector (H.28 to H.30)
for research question RQ.3.
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B Normality tests

B.1 Research question RQ.1

B.1.1 Main analysis (2009 - 2014)

Figure 47 to 56 show the normality tests performed for the main analyis of
research question RQ.1 using all projects.
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Figure 47: Normality tests for average coupling ratio of projects with bad
requirements documents and projects with good requirements documents.

115



Bad

Median coupling ratio

D
en

si
ty

0 1 2 3 4 5 6 7

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Normal dist.
Density func.

(a) Histogram for bad requirements
documents.

Good

Median coupling ratio

D
en

si
ty

0 1 2 3 4 5 6 7
0.

0
0.

2
0.

4
0.

6
0.

8
1.

0

Normal dist.
Density func.

(b) Histogram for good requirements
documents.

−2 −1 0 1 2

0
1

2
3

4
5

6

Normal Q−Q Plot: Bad

Theoretical Quantiles

S
am

pl
e 

Q
ua

nt
ile

s

(c) QQ-Plot for bad requirements
documents.

−2 −1 0 1 2

1
2

3
4

5

Normal Q−Q Plot: Good

Theoretical Quantiles

S
am

pl
e 

Q
ua

nt
ile

s

(d) QQ-Plot for good requirements
documents.

W = 0.6169111,
p = 3.255645e-08

(e) Shapiro-Wilk normality test for
bad requirements documents.

W = 0.7073995,
p = 6.405065e-07

(f) Shapiro-Wilk normality test for
good requirements documents.

Figure 48: Normality tests for median coupling ratio of projects with bad
requirements documents and projects with good requirements documents.
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Figure 49: Normality tests for information hiding ratio of projects with bad
requirements documents and projects with good requirements documents.

117



Bad

Percentage of routines with preconditions

D
en

si
ty

0 20 40 60 80 100

0.
00

0.
01

0.
02

0.
03

0.
04

Normal dist.
Density func.

(a) Histogram for bad requirements
documents.

Good

Percentage of routines with preconditions

D
en

si
ty

0 20 40 60 80 100
0.

00
0.

01
0.

02
0.

03
0.

04

Normal dist.
Density func.

(b) Histogram for good requirements
documents.

−2 −1 0 1 2

0
10

20
30

40
50

Normal Q−Q Plot: Bad

Theoretical Quantiles

S
am

pl
e 

Q
ua

nt
ile

s
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(d) QQ-Plot for good requirements
documents.

W = 0.9744244,
p = 0.5931857

(e) Shapiro-Wilk normality test for
bad requirements documents.

W = 0.8779952,
p = 0.001264165

(f) Shapiro-Wilk normality test for
good requirements documents.

Figure 50: Normality tests for percentage of routines with preconditions of
projects with bad requirements documents and projects with good require-
ments documents.
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(d) QQ-Plot for good requirements
documents.

W = 0.9370825,
p = 0.05050214

(e) Shapiro-Wilk normality test for
bad requirements documents.

W = 0.7976854,
p = 2.312512e-05

(f) Shapiro-Wilk normality test for
good requirements documents.

Figure 51: Normality tests for percentage of routines with postconditions of
projects with bad requirements documents and projects with good require-
ments documents.
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(d) QQ-Plot for good requirements
documents.

W = 0.8350313,
p = 0.0001318442

(e) Shapiro-Wilk normality test for
bad requirements documents.

W = 0.8226423,
p = 7.250162e-05

(f) Shapiro-Wilk normality test for
good requirements documents.

Figure 52: Normality tests for percentage of classes with class invariants of
projects with bad requirements documents and projects with good require-
ments documents.
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(d) QQ-Plot for good requirements
documents.

W = 0.9323069,
p = 0.03653057

(e) Shapiro-Wilk normality test for
bad requirements documents.

W = 0.8932751,
p = 0.003061569

(f) Shapiro-Wilk normality test for
good requirements documents.

Figure 53: Normality tests for average percentage of contracts of projects
with bad requirements documents and projects with good requirements doc-
uments.
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(d) QQ-Plot for good requirements
documents.

W = 0.9458538,
p = 0.09222797

(e) Shapiro-Wilk normality test for
bad requirements documents.

W = 0.925829,
p = 0.02369048

(f) Shapiro-Wilk normality test for
good requirements documents.

Figure 54: Normality tests for number of Eiffel Inspector warnings per 1000
LOC of projects with bad requirements documents and projects with good
requirements documents.
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(d) QQ-Plot for good requirements
documents.

W = 0.9667239,
p = 0.3772567

(e) Shapiro-Wilk normality test for
bad requirements documents.

W = 0.9629235,
p = 0.2952765

(f) Shapiro-Wilk normality test for
good requirements documents.

Figure 55: Normality tests for number of Eiffel Inspector suggestions per
1000 LOC of projects with bad requirements documents and projects with
good requirements documents.
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(d) QQ-Plot for good requirements
documents.

W = 0.9497274,
p = 0.1205007

(e) Shapiro-Wilk normality test for
bad requirements documents.

W = 0.941903,
p = 0.07025326

(f) Shapiro-Wilk normality test for
good requirements documents.

Figure 56: Normality tests for average number of Eiffel Inspector rule vi-
olations per 1000 LOC of projects with bad requirements documents and
projects with good requirements documents.
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B.1.2 Main analysis (2009 - 2012)

Figure 57 to 66 show the normality tests performed for the main analyis of
research question RQ.1 using the projects from 2009 to 2012.
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(d) QQ-Plot for good requirements
documents.

W = 0.6944883,
p = 6.149601e-06

(e) Shapiro-Wilk normality test for
bad requirements documents.

W = 0.8482277,
p = 0.00252692

(f) Shapiro-Wilk normality test for
good requirements documents.

Figure 57: Normality tests for average coupling ratio of projects with bad
requirements documents and projects with good requirements documents.
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(d) QQ-Plot for good requirements
documents.

W = 0.9527092,
p = 0.2883095

(e) Shapiro-Wilk normality test for
bad requirements documents.

W = 0.9426501,
p = 0.2048001

(f) Shapiro-Wilk normality test for
good requirements documents.

Figure 58: Normality tests for median coupling ratio of projects with bad
requirements documents and projects with good requirements documents.
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(d) QQ-Plot for good requirements
documents.

W = 0.8131783,
p = 0.0003802438

(e) Shapiro-Wilk normality test for
bad requirements documents.

W = 0.5358539,
p = 1.921032e-07

(f) Shapiro-Wilk normality test for
good requirements documents.

Figure 59: Normality tests for information hiding ratio of projects with bad
requirements documents and projects with good requirements documents.
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(d) QQ-Plot for good requirements
documents.

W = 0.9825417,
p = 0.930398

(e) Shapiro-Wilk normality test for
bad requirements documents.

W = 0.9282496,
p = 0.1002483

(f) Shapiro-Wilk normality test for
good requirements documents.

Figure 60: Normality tests for percentage of routines with preconditions of
projects with bad requirements documents and projects with good require-
ments documents.
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(d) QQ-Plot for good requirements
documents.

W = 0.9537694,
p = 0.3043331

(e) Shapiro-Wilk normality test for
bad requirements documents.

W = 0.8413859,
p = 0.001906438

(f) Shapiro-Wilk normality test for
good requirements documents.

Figure 61: Normality tests for percentage of routines with postconditions of
projects with bad requirements documents and projects with good require-
ments documents.
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(d) QQ-Plot for good requirements
documents.

W = 0.8661847,
p = 0.003630437

(e) Shapiro-Wilk normality test for
bad requirements documents.

W = 0.8520365,
p = 0.002962534

(f) Shapiro-Wilk normality test for
good requirements documents.

Figure 62: Normality tests for percentage of classes with class invariants of
projects with bad requirements documents and projects with good require-
ments documents.
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(d) QQ-Plot for good requirements
documents.

W = 0.902657,
p = 0.02096977

(e) Shapiro-Wilk normality test for
bad requirements documents.

W = 0.9069548,
p = 0.03525516

(f) Shapiro-Wilk normality test for
good requirements documents.

Figure 63: Normality tests for average percentage of contracts of projects
with bad requirements documents and projects with good requirements doc-
uments.
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(d) QQ-Plot for good requirements
documents.

W = 0.9088737,
p = 0.02876841

(e) Shapiro-Wilk normality test for
bad requirements documents.

W = 0.8754338,
p = 0.008155464

(f) Shapiro-Wilk normality test for
good requirements documents.

Figure 64: Normality tests for number of Eiffel Inspector warnings per 1000
LOC of projects with bad requirements documents and projects with good
requirements documents.
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(d) QQ-Plot for good requirements
documents.

W = 0.903417,
p = 0.02179064

(e) Shapiro-Wilk normality test for
bad requirements documents.

W = 0.9660516,
p = 0.5954575

(f) Shapiro-Wilk normality test for
good requirements documents.

Figure 65: Normality tests for number of Eiffel Inspector suggestions per
1000 LOC of projects with bad requirements documents and projects with
good requirements documents.
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(d) QQ-Plot for good requirements
documents.

W = 0.8753278,
p = 0.005543235

(e) Shapiro-Wilk normality test for
bad requirements documents.

W = 0.9379924,
p = 0.1627104

(f) Shapiro-Wilk normality test for
good requirements documents.

Figure 66: Normality tests for average number of Eiffel Inspector rule vi-
olations per 1000 LOC of projects with bad requirements documents and
projects with good requirements documents.
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B.1.3 Main analysis (2013 - 2014)

Figure 67 to 76 show the normality tests performed for the main analyis of
research question RQ.1 using the projects from 2013 and 2014.
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(d) QQ-Plot for good requirements
documents.

W = 0.8354418,
p = 0.05137814

(e) Shapiro-Wilk normality test for
bad requirements documents.

W = 0.8862678,
p = 0.1248668

(f) Shapiro-Wilk normality test for
good requirements documents.

Figure 67: Normality tests for average coupling ratio of projects with bad
requirements documents and projects with good requirements documents.
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(c) QQ-Plot for bad requirements
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(d) QQ-Plot for good requirements
documents.

W = 0.6846764,
p = 0.0009397463

(e) Shapiro-Wilk normality test for
bad requirements documents.

W = 0.8551713,
p = 0.04983947

(f) Shapiro-Wilk normality test for
good requirements documents.

Figure 68: Normality tests for median coupling ratio of projects with bad
requirements documents and projects with good requirements documents.
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(c) QQ-Plot for bad requirements
documents.
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(d) QQ-Plot for good requirements
documents.

W = 0.5949602,
p = 8.349409e-05

(e) Shapiro-Wilk normality test for
bad requirements documents.

W = 0.8975609,
p = 0.172559

(f) Shapiro-Wilk normality test for
good requirements documents.

Figure 69: Normality tests for information hiding ratio of projects with bad
requirements documents and projects with good requirements documents.
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(c) QQ-Plot for bad requirements
documents.
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(d) QQ-Plot for good requirements
documents.

W = 0.9223862,
p = 0.4123615

(e) Shapiro-Wilk normality test for
bad requirements documents.

W = 0.6628371,
p = 0.0001567055

(f) Shapiro-Wilk normality test for
good requirements documents.

Figure 70: Normality tests for percentage of routines with preconditions of
projects with bad requirements documents and projects with good require-
ments documents.
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(c) QQ-Plot for bad requirements
documents.
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(d) QQ-Plot for good requirements
documents.

W = 0.828984,
p = 0.04349772

(e) Shapiro-Wilk normality test for
bad requirements documents.

W = 0.5577011,
p = 7.631674e-06

(f) Shapiro-Wilk normality test for
good requirements documents.

Figure 71: Normality tests for percentage of routines with postconditions of
projects with bad requirements documents and projects with good require-
ments documents.
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(c) QQ-Plot for bad requirements
documents.
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(d) QQ-Plot for good requirements
documents.

W = 0.6299493,
p = 0.0002148504

(e) Shapiro-Wilk normality test for
bad requirements documents.

W = 0.8272744,
p = 0.02149736

(f) Shapiro-Wilk normality test for
good requirements documents.

Figure 72: Normality tests for percentage of classes with class invariants of
projects with bad requirements documents and projects with good require-
ments documents.
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(c) QQ-Plot for bad requirements
documents.
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(d) QQ-Plot for good requirements
documents.

W = 0.8573523,
p = 0.08972123

(e) Shapiro-Wilk normality test for
bad requirements documents.

W = 0.6935019,
p = 0.0003859748

(f) Shapiro-Wilk normality test for
good requirements documents.

Figure 73: Normality tests for average percentage of contracts of projects
with bad requirements documents and projects with good requirements doc-
uments.
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(c) QQ-Plot for bad requirements
documents.
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(d) QQ-Plot for good requirements
documents.

W = 0.8187177,
p = 0.03332726

(e) Shapiro-Wilk normality test for
bad requirements documents.

W = 0.9709449,
p = 0.8959037

(f) Shapiro-Wilk normality test for
good requirements documents.

Figure 74: Normality tests for number of Eiffel Inspector warnings per 1000
LOC of projects with bad requirements documents and projects with good
requirements documents.
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(c) QQ-Plot for bad requirements
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(d) QQ-Plot for good requirements
documents.

W = 0.9116609,
p = 0.327673

(e) Shapiro-Wilk normality test for
bad requirements documents.

W = 0.944758,
p = 0.5779335

(f) Shapiro-Wilk normality test for
good requirements documents.

Figure 75: Normality tests for number of Eiffel Inspector suggestions per
1000 LOC of projects with bad requirements documents and projects with
good requirements documents.
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(c) QQ-Plot for bad requirements
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(d) QQ-Plot for good requirements
documents.

W = 0.9151683,
p = 0.3537408

(e) Shapiro-Wilk normality test for
bad requirements documents.

W = 0.9490765,
p = 0.6321742

(f) Shapiro-Wilk normality test for
good requirements documents.

Figure 76: Normality tests for average number of Eiffel Inspector rule vi-
olations per 1000 LOC of projects with bad requirements documents and
projects with good requirements documents.
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B.1.4 40-20-40 analysis (2009 - 2014)

Figure 77 to 86 show the normality tests performed for the 40-20-40 analyis
of research question RQ.1 using all projects.
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(d) QQ-Plot for good requirements
documents.

W = 0.6932295,
p = 2.289206e-06

(e) Shapiro-Wilk normality test for
bad requirements documents.

W = 0.8800431,
p = 0.004814094

(f) Shapiro-Wilk normality test for
good requirements documents.

Figure 77: Normality tests for average coupling ratio of projects with bad
requirements documents and projects with good requirements documents.
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(d) QQ-Plot for good requirements
documents.

W = 0.979809,
p = 0.8458063

(e) Shapiro-Wilk normality test for
bad requirements documents.

W = 0.6959638,
p = 3.408718e-06

(f) Shapiro-Wilk normality test for
good requirements documents.

Figure 78: Normality tests for median coupling ratio of projects with bad
requirements documents and projects with good requirements documents.
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(c) QQ-Plot for bad requirements
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(d) QQ-Plot for good requirements
documents.

W = 0.7702342,
p = 3.329601e-05

(e) Shapiro-Wilk normality test for
bad requirements documents.

W = 0.4711402,
p = 8.679596e-09

(f) Shapiro-Wilk normality test for
good requirements documents.

Figure 79: Normality tests for information hiding ratio of projects with bad
requirements documents and projects with good requirements documents.
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(c) QQ-Plot for bad requirements
documents.

−2 −1 0 1 2

0
20

40
60

80

Normal Q−Q Plot: Good

Theoretical Quantiles

S
am

pl
e 

Q
ua

nt
ile

s

(d) QQ-Plot for good requirements
documents.

W = 0.9615724,
p = 0.3796737

(e) Shapiro-Wilk normality test for
bad requirements documents.

W = 0.8762933,
p = 0.00399925

(f) Shapiro-Wilk normality test for
good requirements documents.

Figure 80: Normality tests for percentage of routines with preconditions of
projects with bad requirements documents and projects with good require-
ments documents.
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(c) QQ-Plot for bad requirements
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(d) QQ-Plot for good requirements
documents.

W = 0.9501077,
p = 0.1993673

(e) Shapiro-Wilk normality test for
bad requirements documents.

W = 0.7707309,
p = 4.436265e-05

(f) Shapiro-Wilk normality test for
good requirements documents.

Figure 81: Normality tests for percentage of routines with postconditions of
projects with bad requirements documents and projects with good require-
ments documents.
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(c) QQ-Plot for bad requirements
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(d) QQ-Plot for good requirements
documents.

W = 0.8499029,
p = 0.000930599

(e) Shapiro-Wilk normality test for
bad requirements documents.

W = 0.7945508,
p = 0.0001102975

(f) Shapiro-Wilk normality test for
good requirements documents.

Figure 82: Normality tests for percentage of classes with class invariants of
projects with bad requirements documents and projects with good require-
ments documents.
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(d) QQ-Plot for good requirements
documents.

W = 0.9359815,
p = 0.0873644

(e) Shapiro-Wilk normality test for
bad requirements documents.

W = 0.9139196,
p = 0.02824557

(f) Shapiro-Wilk normality test for
good requirements documents.

Figure 83: Normality tests for average percentage of contracts of projects
with bad requirements documents and projects with good requirements doc-
uments.
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(c) QQ-Plot for bad requirements
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(d) QQ-Plot for good requirements
documents.

W = 0.9320248,
p = 0.06935181

(e) Shapiro-Wilk normality test for
bad requirements documents.

W = 0.9334631,
p = 0.08406678

(f) Shapiro-Wilk normality test for
good requirements documents.

Figure 84: Normality tests for number of Eiffel Inspector warnings per 1000
LOC of projects with bad requirements documents and projects with good
requirements documents.
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(d) QQ-Plot for good requirements
documents.

W = 0.9457791,
p = 0.1550107

(e) Shapiro-Wilk normality test for
bad requirements documents.

W = 0.9620912,
p = 0.4119213

(f) Shapiro-Wilk normality test for
good requirements documents.

Figure 85: Normality tests for number of Eiffel Inspector suggestions per
1000 LOC of projects with bad requirements documents and projects with
good requirements documents.
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(d) QQ-Plot for good requirements
documents.

W = 0.9305303,
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(e) Shapiro-Wilk normality test for
bad requirements documents.

W = 0.9317421,
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(f) Shapiro-Wilk normality test for
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Figure 86: Normality tests for average number of Eiffel Inspector rule vi-
olations per 1000 LOC of projects with bad requirements documents and
projects with good requirements documents.
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B.1.5 40-20-40 analysis (2009 - 2012)

Figure 87 to 96 show the normality tests performed for the 40-20-40 analyis
of research question RQ.1 using the projects from 2009 to 2012.
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(d) QQ-Plot for good requirements
documents.

W = 0.6981933,
p = 1.856305e-05

(e) Shapiro-Wilk normality test for
bad requirements documents.

W = 0.872579,
p = 0.02415269

(f) Shapiro-Wilk normality test for
good requirements documents.

Figure 87: Normality tests for average coupling ratio of projects with bad
requirements documents and projects with good requirements documents.
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(d) QQ-Plot for good requirements
documents.

W = 0.9414519,
p = 0.2120383

(e) Shapiro-Wilk normality test for
bad requirements documents.

W = 0.9145178,
p = 0.1192721

(f) Shapiro-Wilk normality test for
good requirements documents.

Figure 88: Normality tests for median coupling ratio of projects with bad
requirements documents and projects with good requirements documents.
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(d) QQ-Plot for good requirements
documents.

W = 0.8031691,
p = 0.0005611021

(e) Shapiro-Wilk normality test for
bad requirements documents.

W = 0.5412031,
p = 2.957667e-06

(f) Shapiro-Wilk normality test for
good requirements documents.

Figure 89: Normality tests for information hiding ratio of projects with bad
requirements documents and projects with good requirements documents.
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(d) QQ-Plot for good requirements
documents.

W = 0.9710249,
p = 0.7346519

(e) Shapiro-Wilk normality test for
bad requirements documents.

W = 0.9530849,
p = 0.5070968

(f) Shapiro-Wilk normality test for
good requirements documents.

Figure 90: Normality tests for percentage of routines with preconditions of
projects with bad requirements documents and projects with good require-
ments documents.
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(d) QQ-Plot for good requirements
documents.

W = 0.9647749,
p = 0.5912975

(e) Shapiro-Wilk normality test for
bad requirements documents.

W = 0.7777443,
p = 0.001020918

(f) Shapiro-Wilk normality test for
good requirements documents.

Figure 91: Normality tests for percentage of routines with postconditions of
projects with bad requirements documents and projects with good require-
ments documents.
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(d) QQ-Plot for good requirements
documents.

W = 0.8528686,
p = 0.003816916

(e) Shapiro-Wilk normality test for
bad requirements documents.

W = 0.8294444,
p = 0.005292713

(f) Shapiro-Wilk normality test for
good requirements documents.

Figure 92: Normality tests for percentage of classes with class invariants of
projects with bad requirements documents and projects with good require-
ments documents.
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(d) QQ-Plot for good requirements
documents.

W = 0.9154783,
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(e) Shapiro-Wilk normality test for
bad requirements documents.

W = 0.9127893,
p = 0.1115068

(f) Shapiro-Wilk normality test for
good requirements documents.

Figure 93: Normality tests for average percentage of contracts of projects
with bad requirements documents and projects with good requirements doc-
uments.

165



Bad

#Eiffel Inspector warnings / 1 KLOC

D
en

si
ty

0 20 40 60 80

0.
00

0.
02

0.
04

0.
06

0.
08

Normal dist.
Density func.

(a) Histogram for bad requirements
documents.

Good

#Eiffel Inspector warnings / 1 KLOC

D
en

si
ty

0 20 40 60 80
0.

00
0.

02
0.

04
0.

06
0.

08

Normal dist.
Density func.

(b) Histogram for good requirements
documents.

−2 −1 0 1 2

20
30

40
50

60

Normal Q−Q Plot: Bad

Theoretical Quantiles

S
am

pl
e 

Q
ua

nt
ile

s

(c) QQ-Plot for bad requirements
documents.

−2 −1 0 1 2

20
25

30
35

40
45

50

Normal Q−Q Plot: Good

Theoretical Quantiles

S
am

pl
e 

Q
ua

nt
ile

s

(d) QQ-Plot for good requirements
documents.
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(e) Shapiro-Wilk normality test for
bad requirements documents.
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(f) Shapiro-Wilk normality test for
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Figure 94: Normality tests for number of Eiffel Inspector warnings per 1000
LOC of projects with bad requirements documents and projects with good
requirements documents.
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(d) QQ-Plot for good requirements
documents.
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(e) Shapiro-Wilk normality test for
bad requirements documents.
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(f) Shapiro-Wilk normality test for
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Figure 95: Normality tests for number of Eiffel Inspector suggestions per
1000 LOC of projects with bad requirements documents and projects with
good requirements documents.
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(d) QQ-Plot for good requirements
documents.

W = 0.8695372,
p = 0.007674386

(e) Shapiro-Wilk normality test for
bad requirements documents.

W = 0.9327271,
p = 0.2416721

(f) Shapiro-Wilk normality test for
good requirements documents.

Figure 96: Normality tests for average number of Eiffel Inspector rule vi-
olations per 1000 LOC of projects with bad requirements documents and
projects with good requirements documents.
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B.1.6 40-20-40 analysis (2013 - 2014)

Figure 97 to 106 show the normality tests performed for the 40-20-40 analyis
of research question RQ.1 using the projects from 2013 and 2014.
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(d) QQ-Plot for good requirements
documents.
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p = 0.1691641

(e) Shapiro-Wilk normality test for
bad requirements documents.

W = 0.9010294,
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(f) Shapiro-Wilk normality test for
good requirements documents.

Figure 97: Normality tests for average coupling ratio of projects with bad
requirements documents and projects with good requirements documents.
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(d) QQ-Plot for good requirements
documents.

W = 0.848112,
p = 0.1519561

(e) Shapiro-Wilk normality test for
bad requirements documents.

W = 0.8532994,
p = 0.06357717

(f) Shapiro-Wilk normality test for
good requirements documents.

Figure 98: Normality tests for median coupling ratio of projects with bad
requirements documents and projects with good requirements documents.
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(d) QQ-Plot for good requirements
documents.

W = 0.8429372,
p = 0.1378506

(e) Shapiro-Wilk normality test for
bad requirements documents.

W = 0.892771,
p = 0.1821696

(f) Shapiro-Wilk normality test for
good requirements documents.

Figure 99: Normality tests for information hiding ratio of projects with bad
requirements documents and projects with good requirements documents.
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(d) QQ-Plot for good requirements
documents.

W = 0.9158237,
p = 0.4758019

(e) Shapiro-Wilk normality test for
bad requirements documents.

W = 0.6712135,
p = 0.0003952468

(f) Shapiro-Wilk normality test for
good requirements documents.

Figure 100: Normality tests for percentage of routines with preconditions
of projects with bad requirements documents and projects with good require-
ments documents.
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(d) QQ-Plot for good requirements
documents.

W = 0.8235169,
p = 0.09463502

(e) Shapiro-Wilk normality test for
bad requirements documents.

W = 0.5784927,
p = 3.067987e-05

(f) Shapiro-Wilk normality test for
good requirements documents.

Figure 101: Normality tests for percentage of routines with postconditions
of projects with bad requirements documents and projects with good require-
ments documents.
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(c) QQ-Plot for bad requirements
documents.
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(d) QQ-Plot for good requirements
documents.

W = 0.7756639,
p = 0.03510825

(e) Shapiro-Wilk normality test for
bad requirements documents.

W = 0.775929,
p = 0.007385413

(f) Shapiro-Wilk normality test for
good requirements documents.

Figure 102: Normality tests for percentage of classes with class invari-
ants of projects with bad requirements documents and projects with good
requirements documents.
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(c) QQ-Plot for bad requirements
documents.
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(d) QQ-Plot for good requirements
documents.

W = 0.8598693,
p = 0.1887182

(e) Shapiro-Wilk normality test for
bad requirements documents.

W = 0.7169622,
p = 0.00141477

(f) Shapiro-Wilk normality test for
good requirements documents.

Figure 103: Normality tests for average percentage of contracts of projects
with bad requirements documents and projects with good requirements doc-
uments.
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(c) QQ-Plot for bad requirements
documents.
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(d) QQ-Plot for good requirements
documents.

W = 0.9125905,
p = 0.4536573

(e) Shapiro-Wilk normality test for
bad requirements documents.

W = 0.9665168,
p = 0.8568068

(f) Shapiro-Wilk normality test for
good requirements documents.

Figure 104: Normality tests for number of Eiffel Inspector warnings per
1000 LOC of projects with bad requirements documents and projects with
good requirements documents.
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(a) Histogram for bad requirements
documents.

Good

#Eiffel Inspector suggestions / 1 KLOC

D
en

si
ty

0 50 100 150 200
0.

00
0.

01
0.

02
0.

03
0.

04
0.

05

Normal dist.
Density func.

(b) Histogram for good requirements
documents.

−1.0 −0.5 0.0 0.5 1.0

80
90

10
0

11
0

12
0

13
0

Normal Q−Q Plot: Bad

Theoretical Quantiles

S
am

pl
e 

Q
ua

nt
ile

s

(c) QQ-Plot for bad requirements
documents.
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(d) QQ-Plot for good requirements
documents.

W = 0.9406178,
p = 0.6641809

(e) Shapiro-Wilk normality test for
bad requirements documents.

W = 0.9399047,
p = 0.5519533

(f) Shapiro-Wilk normality test for
good requirements documents.

Figure 105: Normality tests for number of Eiffel Inspector suggestions per
1000 LOC of projects with bad requirements documents and projects with
good requirements documents.
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(c) QQ-Plot for bad requirements
documents.
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(d) QQ-Plot for good requirements
documents.

W = 0.974293,
p = 0.9199305

(e) Shapiro-Wilk normality test for
bad requirements documents.

W = 0.9363715,
p = 0.5133885

(f) Shapiro-Wilk normality test for
good requirements documents.

Figure 106: Normality tests for average number of Eiffel Inspector rule
violations per 1000 LOC of projects with bad requirements documents and
projects with good requirements documents.
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B.2 Research question RQ.2

B.2.1 Main analysis (2009 - 2012 vs. 2013 - 2014)

Figure 107 to 116 show the normality tests performed for the main analyis of
research question RQ.2 comparing projects from 2009 to 2012 with projects
from 2013 and 2014.
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(c) QQ-Plot for programmer-written
requirements documents.
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(d) QQ-Plot for requirements
engineer-written requirements
documents.

W = 0.7787101,
p = 4.430485e-07

(e) Shapiro-Wilk normality test for
programmer-written requirements
documents.

W = 0.8681896,
p = 0.01092081

(f) Shapiro-Wilk normality test
for requirements engineer-written re-
quirements documents.

Figure 107: Normality tests for average coupling ratio of projects with
programmer-written requirements documents and projects with requirements
engineer-written requirements documents.
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(c) QQ-Plot for programmer-written
requirements documents.
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(d) QQ-Plot for requirements
engineer-written requirements
documents.

W = 0.9764807,
p = 0.4418487

(e) Shapiro-Wilk normality test for
programmer-written requirements
documents.

W = 0.7917488,
p = 0.0006524934

(f) Shapiro-Wilk normality test
for requirements engineer-written re-
quirements documents.

Figure 108: Normality tests for median coupling ratio of projects with
programmer-written requirements documents and projects with requirements
engineer-written requirements documents.
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(a) Histogram for programmer-
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(c) QQ-Plot for programmer-written
requirements documents.
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(d) QQ-Plot for requirements
engineer-written requirements
documents.

W = 0.4700603,
p = 6.293918e-12

(e) Shapiro-Wilk normality test for
programmer-written requirements
documents.

W = 0.6936615,
p = 3.26643e-05

(f) Shapiro-Wilk normality test
for requirements engineer-written re-
quirements documents.

Figure 109: Normality tests for information hiding ratio of projects with
programmer-written requirements documents and projects with requirements
engineer-written requirements documents.
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(a) Histogram for programmer-
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(c) QQ-Plot for programmer-written
requirements documents.
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(d) QQ-Plot for requirements
engineer-written requirements
documents.

W = 0.958913,
p = 0.09124195

(e) Shapiro-Wilk normality test for
programmer-written requirements
documents.

W = 0.6492008,
p = 9.958875e-06

(f) Shapiro-Wilk normality test
for requirements engineer-written re-
quirements documents.

Figure 110: Normality tests for percentage of routines with preconditions
of projects with programmer-written requirements documents and projects
with requirements engineer-written requirements documents.
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(c) QQ-Plot for programmer-written
requirements documents.
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(d) QQ-Plot for requirements
engineer-written requirements
documents.

W = 0.9105844,
p = 0.00140638

(e) Shapiro-Wilk normality test for
programmer-written requirements
documents.

W = 0.5000885,
p = 3.184572e-07

(f) Shapiro-Wilk normality test
for requirements engineer-written re-
quirements documents.

Figure 111: Normality tests for percentage of routines with postconditions
of projects with programmer-written requirements documents and projects
with requirements engineer-written requirements documents.

185



Programmer

Percentage of classes with class invariants

D
en

si
ty

0 20 40 60 80 100

0.
00

0.
05

0.
10

0.
15

Normal dist.
Density func.

(a) Histogram for programmer-
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(c) QQ-Plot for programmer-written
requirements documents.
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(d) QQ-Plot for requirements
engineer-written requirements
documents.

W = 0.8651632,
p = 5.636879e-05

(e) Shapiro-Wilk normality test for
programmer-written requirements
documents.

W = 0.7294054,
p = 9.104553e-05

(f) Shapiro-Wilk normality test
for requirements engineer-written re-
quirements documents.

Figure 112: Normality tests for percentage of classes with class invariants
of projects with programmer-written requirements documents and projects
with requirements engineer-written requirements documents.
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(a) Histogram for programmer-
written requirements documents.
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(c) QQ-Plot for programmer-written
requirements documents.
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(d) QQ-Plot for requirements
engineer-written requirements
documents.

W = 0.9088658,
p = 0.001230903

(e) Shapiro-Wilk normality test for
programmer-written requirements
documents.

W = 0.7250816,
p = 8.013356e-05

(f) Shapiro-Wilk normality test
for requirements engineer-written re-
quirements documents.

Figure 113: Normality tests for average percentage of contracts of projects
with programmer-written requirements documents and projects with require-
ments engineer-written requirements documents.
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(a) Histogram for programmer-
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(c) QQ-Plot for programmer-written
requirements documents.
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(d) QQ-Plot for requirements
engineer-written requirements
documents.

W = 0.9135019,
p = 0.001767548

(e) Shapiro-Wilk normality test for
programmer-written requirements
documents.

W = 0.9543196,
p = 0.437434

(f) Shapiro-Wilk normality test
for requirements engineer-written re-
quirements documents.

Figure 114: Normality tests for number of Eiffel Inspector warnings per
1000 LOC of projects with programmer-written requirements documents and
projects with requirements engineer-written requirements documents.
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(a) Histogram for programmer-
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(c) QQ-Plot for programmer-written
requirements documents.
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(d) QQ-Plot for requirements
engineer-written requirements
documents.

W = 0.9449731,
p = 0.02531208

(e) Shapiro-Wilk normality test for
programmer-written requirements
documents.

W = 0.9846575,
p = 0.979391

(f) Shapiro-Wilk normality test
for requirements engineer-written re-
quirements documents.

Figure 115: Normality tests for number of Eiffel Inspector suggestions per
1000 LOC of projects with programmer-written requirements documents and
projects with requirements engineer-written requirements documents.
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(a) Histogram for programmer-
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(c) QQ-Plot for programmer-written
requirements documents.
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(d) QQ-Plot for requirements
engineer-written requirements
documents.

W = 0.9184665,
p = 0.002625928

(e) Shapiro-Wilk normality test for
programmer-written requirements
documents.

W = 0.9707123,
p = 0.7698443

(f) Shapiro-Wilk normality test
for requirements engineer-written re-
quirements documents.

Figure 116: Normality tests for average number of Eiffel Inspector rule vio-
lations per 1000 LOC of projects with programmer-written requirements doc-
uments and projects with requirements engineer-written requirements docu-
ments.
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B.2.2 Main analysis (2009 - 2012 vs. 2013)

Figure 117 to 126 show the normality tests performed for the main analyis of
research question RQ.2 comparing the projects from 2009 to 2012 with the
projects from 2013.
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(a) Histogram for programmer-
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(c) QQ-Plot for programmer-written
requirements documents.
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(d) QQ-Plot for requirements
engineer-written requirements
documents.

W = 0.7787101,
p = 4.430485e-07

(e) Shapiro-Wilk normality test for
programmer-written requirements
documents.

W = 0.9397359,
p = 0.4946585

(f) Shapiro-Wilk normality test
for requirements engineer-written re-
quirements documents.

Figure 117: Normality tests for average coupling ratio of projects with
programmer-written requirements documents and projects with requirements
engineer-written requirements documents.
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(d) QQ-Plot for requirements
engineer-written requirements
documents.

W = 0.9764807,
p = 0.4418487

(e) Shapiro-Wilk normality test for
programmer-written requirements
documents.

W = 0.953185,
p = 0.6839076

(f) Shapiro-Wilk normality test
for requirements engineer-written re-
quirements documents.

Figure 118: Normality tests for median coupling ratio of projects with
programmer-written requirements documents and projects with requirements
engineer-written requirements documents.
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(d) QQ-Plot for requirements
engineer-written requirements
documents.

W = 0.4700603,
p = 6.293918e-12

(e) Shapiro-Wilk normality test for
programmer-written requirements
documents.

W = 0.8843561,
p = 0.09968543

(f) Shapiro-Wilk normality test
for requirements engineer-written re-
quirements documents.

Figure 119: Normality tests for information hiding ratio of projects with
programmer-written requirements documents and projects with requirements
engineer-written requirements documents.
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(c) QQ-Plot for programmer-written
requirements documents.
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(d) QQ-Plot for requirements
engineer-written requirements
documents.

W = 0.958913,
p = 0.09124195

(e) Shapiro-Wilk normality test for
programmer-written requirements
documents.

W = 0.9336334,
p = 0.4202194

(f) Shapiro-Wilk normality test
for requirements engineer-written re-
quirements documents.

Figure 120: Normality tests for percentage of routines with preconditions
of projects with programmer-written requirements documents and projects
with requirements engineer-written requirements documents.
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(c) QQ-Plot for programmer-written
requirements documents.

−1.5 −0.5 0.0 0.5 1.0 1.5

2
4

6
8

10
12

14
16

Normal Q−Q Plot: Req. Eng.

Theoretical Quantiles

S
am

pl
e 

Q
ua

nt
ile

s

(d) QQ-Plot for requirements
engineer-written requirements
documents.

W = 0.9105844,
p = 0.00140638

(e) Shapiro-Wilk normality test for
programmer-written requirements
documents.

W = 0.8865686,
p = 0.1064361

(f) Shapiro-Wilk normality test
for requirements engineer-written re-
quirements documents.

Figure 121: Normality tests for percentage of routines with postconditions
of projects with programmer-written requirements documents and projects
with requirements engineer-written requirements documents.
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(c) QQ-Plot for programmer-written
requirements documents.
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(d) QQ-Plot for requirements
engineer-written requirements
documents.

W = 0.8651632,
p = 5.636879e-05

(e) Shapiro-Wilk normality test for
programmer-written requirements
documents.

W = 0.8810316,
p = 0.09035545

(f) Shapiro-Wilk normality test
for requirements engineer-written re-
quirements documents.

Figure 122: Normality tests for percentage of classes with class invariants
of projects with programmer-written requirements documents and projects
with requirements engineer-written requirements documents.
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(c) QQ-Plot for programmer-written
requirements documents.
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(d) QQ-Plot for requirements
engineer-written requirements
documents.

W = 0.9088658,
p = 0.001230903

(e) Shapiro-Wilk normality test for
programmer-written requirements
documents.

W = 0.8413115,
p = 0.02872399

(f) Shapiro-Wilk normality test
for requirements engineer-written re-
quirements documents.

Figure 123: Normality tests for average percentage of contracts of projects
with programmer-written requirements documents and projects with require-
ments engineer-written requirements documents.
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(c) QQ-Plot for programmer-written
requirements documents.
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(d) QQ-Plot for requirements
engineer-written requirements
documents.

W = 0.9135019,
p = 0.001767548

(e) Shapiro-Wilk normality test for
programmer-written requirements
documents.

W = 0.9499293,
p = 0.6359519

(f) Shapiro-Wilk normality test
for requirements engineer-written re-
quirements documents.

Figure 124: Normality tests for number of Eiffel Inspector warnings per
1000 LOC of projects with programmer-written requirements documents and
projects with requirements engineer-written requirements documents.
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(a) Histogram for programmer-
written requirements documents.

Req. Eng.

#Eiffel Inspector suggestions / 1 KLOC
D

en
si

ty

0 50 100 150 200

0.
00

0
0.

01
0

0.
02

0
0.

03
0

Normal dist.
Density func.

(b) Histogram for requirements
engineer-written requirements docu-
ments.

−2 −1 0 1 2

40
60

80
10

0
12

0
14

0

Normal Q−Q Plot: Programmer

Theoretical Quantiles

S
am

pl
e 

Q
ua

nt
ile

s

(c) QQ-Plot for programmer-written
requirements documents.
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(d) QQ-Plot for requirements
engineer-written requirements
documents.

W = 0.9449731,
p = 0.02531208

(e) Shapiro-Wilk normality test for
programmer-written requirements
documents.

W = 0.9756132,
p = 0.9598853

(f) Shapiro-Wilk normality test
for requirements engineer-written re-
quirements documents.

Figure 125: Normality tests for number of Eiffel Inspector suggestions per
1000 LOC of projects with programmer-written requirements documents and
projects with requirements engineer-written requirements documents.
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(c) QQ-Plot for programmer-written
requirements documents.
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(d) QQ-Plot for requirements
engineer-written requirements
documents.

W = 0.9184665,
p = 0.002625928

(e) Shapiro-Wilk normality test for
programmer-written requirements
documents.

W = 0.9738655,
p = 0.9467902

(f) Shapiro-Wilk normality test
for requirements engineer-written re-
quirements documents.

Figure 126: Normality tests for average number of Eiffel Inspector rule vio-
lations per 1000 LOC of projects with programmer-written requirements doc-
uments and projects with requirements engineer-written requirements docu-
ments.
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B.2.3 Main analysis (2009 - 2012 vs. 2014)

Figure 127 to 136 show the normality tests performed for the main analyis of
research question RQ.2 comparing the projects from 2009 to 2012 with the
projects from 2014.
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(c) QQ-Plot for programmer-written
requirements documents.
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(d) QQ-Plot for requirements
engineer-written requirements
documents.

W = 0.7787101,
p = 4.430485e-07

(e) Shapiro-Wilk normality test for
programmer-written requirements
documents.

W = 0.8910062,
p = 0.2391208

(f) Shapiro-Wilk normality test
for requirements engineer-written re-
quirements documents.

Figure 127: Normality tests for average coupling ratio of projects with
programmer-written requirements documents and projects with requirements
engineer-written requirements documents.
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(c) QQ-Plot for programmer-written
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(d) QQ-Plot for requirements
engineer-written requirements
documents.

W = 0.9764807,
p = 0.4418487

(e) Shapiro-Wilk normality test for
programmer-written requirements
documents.

W = 0.9008719,
p = 0.2942188

(f) Shapiro-Wilk normality test
for requirements engineer-written re-
quirements documents.

Figure 128: Normality tests for median coupling ratio of projects with
programmer-written requirements documents and projects with requirements
engineer-written requirements documents.
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(c) QQ-Plot for programmer-written
requirements documents.
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(d) QQ-Plot for requirements
engineer-written requirements
documents.

W = 0.4700603,
p = 6.293918e-12

(e) Shapiro-Wilk normality test for
programmer-written requirements
documents.

W = 0.5948687,
p = 0.0001384617

(f) Shapiro-Wilk normality test
for requirements engineer-written re-
quirements documents.

Figure 129: Normality tests for information hiding ratio of projects with
programmer-written requirements documents and projects with requirements
engineer-written requirements documents.
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(a) Histogram for programmer-
written requirements documents.

Req. Eng.

Percentage of routines with preconditions
D

en
si

ty

0 20 40 60 80 100

0.
00

0.
01

0.
02

0.
03

0.
04

0.
05

Normal dist.
Density func.

(b) Histogram for requirements
engineer-written requirements docu-
ments.

−2 −1 0 1 2

0
10

20
30

40
50

Normal Q−Q Plot: Programmer

Theoretical Quantiles

S
am

pl
e 

Q
ua

nt
ile

s

(c) QQ-Plot for programmer-written
requirements documents.
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(d) QQ-Plot for requirements
engineer-written requirements
documents.

W = 0.958913,
p = 0.09124195

(e) Shapiro-Wilk normality test for
programmer-written requirements
documents.

W = 0.6460561,
p = 0.0005450104

(f) Shapiro-Wilk normality test
for requirements engineer-written re-
quirements documents.

Figure 130: Normality tests for percentage of routines with preconditions
of projects with programmer-written requirements documents and projects
with requirements engineer-written requirements documents.
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(c) QQ-Plot for programmer-written
requirements documents.
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(d) QQ-Plot for requirements
engineer-written requirements
documents.

W = 0.9105844,
p = 0.00140638

(e) Shapiro-Wilk normality test for
programmer-written requirements
documents.

W = 0.4667864,
p = 4.096073e-06

(f) Shapiro-Wilk normality test
for requirements engineer-written re-
quirements documents.

Figure 131: Normality tests for percentage of routines with postconditions
of projects with programmer-written requirements documents and projects
with requirements engineer-written requirements documents.
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(c) QQ-Plot for programmer-written
requirements documents.
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(d) QQ-Plot for requirements
engineer-written requirements
documents.

W = 0.8651632,
p = 5.636879e-05

(e) Shapiro-Wilk normality test for
programmer-written requirements
documents.

W = 0.4183984,
p = 1.047225e-06

(f) Shapiro-Wilk normality test
for requirements engineer-written re-
quirements documents.

Figure 132: Normality tests for percentage of classes with class invariants
of projects with programmer-written requirements documents and projects
with requirements engineer-written requirements documents.
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(c) QQ-Plot for programmer-written
requirements documents.
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(d) QQ-Plot for requirements
engineer-written requirements
documents.

W = 0.9088658,
p = 0.001230903

(e) Shapiro-Wilk normality test for
programmer-written requirements
documents.

W = 0.568247,
p = 6.732357e-05

(f) Shapiro-Wilk normality test
for requirements engineer-written re-
quirements documents.

Figure 133: Normality tests for average percentage of contracts of projects
with programmer-written requirements documents and projects with require-
ments engineer-written requirements documents.
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(c) QQ-Plot for programmer-written
requirements documents.
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(d) QQ-Plot for requirements
engineer-written requirements
documents.

W = 0.9135019,
p = 0.001767548

(e) Shapiro-Wilk normality test for
programmer-written requirements
documents.

W = 0.855451,
p = 0.1081279

(f) Shapiro-Wilk normality test
for requirements engineer-written re-
quirements documents.

Figure 134: Normality tests for number of Eiffel Inspector warnings per
1000 LOC of projects with programmer-written requirements documents and
projects with requirements engineer-written requirements documents.
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(c) QQ-Plot for programmer-written
requirements documents.
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(d) QQ-Plot for requirements
engineer-written requirements
documents.

W = 0.9449731,
p = 0.02531208

(e) Shapiro-Wilk normality test for
programmer-written requirements
documents.

W = 0.8798461,
p = 0.1876921

(f) Shapiro-Wilk normality test
for requirements engineer-written re-
quirements documents.

Figure 135: Normality tests for number of Eiffel Inspector suggestions per
1000 LOC of projects with programmer-written requirements documents and
projects with requirements engineer-written requirements documents.
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(c) QQ-Plot for programmer-written
requirements documents.
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(d) QQ-Plot for requirements
engineer-written requirements
documents.

W = 0.9184665,
p = 0.002625928

(e) Shapiro-Wilk normality test for
programmer-written requirements
documents.

W = 0.8856615,
p = 0.2131334

(f) Shapiro-Wilk normality test
for requirements engineer-written re-
quirements documents.

Figure 136: Normality tests for average number of Eiffel Inspector rule vio-
lations per 1000 LOC of projects with programmer-written requirements doc-
uments and projects with requirements engineer-written requirements docu-
ments.

212



B.3 Research question RQ.3

B.3.1 Main analysis (2009 - 2014)

Figure 137 to 146 show the normality tests performed for the main analyis
of research question RQ.3 using all projects.
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(c) QQ-Plot for high-context culture
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(d) QQ-Plot for mixed-context cul-
ture groups.

W = 0.8081011,
p = 7.317087e-05

(e) Shapiro-Wilk normality test for
high-context culture groups.

W = 0.7973817,
p = 1.154935e-05

(f) Shapiro-Wilk normality test for
mixed-context culture groups.

Figure 137: Normality tests for average coupling ratio of projects with only
high-context culture groups and projects with mixed-context culture groups.
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(c) QQ-Plot for high-context culture
groups.

−2 −1 0 1 2

0.
5

1.
0

1.
5

2.
0

Normal Q−Q Plot: Mixed

Theoretical Quantiles

S
am

pl
e 

Q
ua

nt
ile

s

(d) QQ-Plot for mixed-context cul-
ture groups.

W = 0.6911152,
p = 8.616463e-07

(e) Shapiro-Wilk normality test for
high-context culture groups.

W = 0.9404252,
p = 0.04758538

(f) Shapiro-Wilk normality test for
mixed-context culture groups.

Figure 138: Normality tests for median coupling ratio of projects with only
high-context culture groups and projects with mixed-context culture groups.
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(c) QQ-Plot for high-context culture
groups.
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(d) QQ-Plot for mixed-context cul-
ture groups.

W = 0.637516,
p = 1.569022e-07

(e) Shapiro-Wilk normality test for
high-context culture groups.

W = 0.4118016,
p = 5.07042e-11

(f) Shapiro-Wilk normality test for
mixed-context culture groups.

Figure 139: Normality tests for information hiding ratio of projects with
only high-context culture groups and projects with mixed-context culture
groups.
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(c) QQ-Plot for high-context culture
groups.
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(d) QQ-Plot for mixed-context cul-
ture groups.

W = 0.8816508,
p = 0.00258874

(e) Shapiro-Wilk normality test for
high-context culture groups.

W = 0.9429703,
p = 0.05736539

(f) Shapiro-Wilk normality test for
mixed-context culture groups.

Figure 140: Normality tests for percentage of routines with preconditions
of projects with only high-context culture groups and projects with mixed-
context culture groups.
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(c) QQ-Plot for high-context culture
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(d) QQ-Plot for mixed-context cul-
ture groups.

W = 0.8626568,
p = 0.0009540699

(e) Shapiro-Wilk normality test for
high-context culture groups.

W = 0.8405321,
p = 9.53537e-05

(f) Shapiro-Wilk normality test for
mixed-context culture groups.

Figure 141: Normality tests for percentage of routines with postconditions
of projects with only high-context culture groups and projects with mixed-
context culture groups.
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(c) QQ-Plot for high-context culture
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(d) QQ-Plot for mixed-context cul-
ture groups.

W = 0.8537333,
p = 0.0006090788

(e) Shapiro-Wilk normality test for
high-context culture groups.

W = 0.8169213,
p = 2.907226e-05

(f) Shapiro-Wilk normality test for
mixed-context culture groups.

Figure 142: Normality tests for percentage of classes with class invariants
of projects with only high-context culture groups and projects with mixed-
context culture groups.
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(c) QQ-Plot for high-context culture
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(d) QQ-Plot for mixed-context cul-
ture groups.

W = 0.9403896,
p = 0.08459119

(e) Shapiro-Wilk normality test for
high-context culture groups.

W = 0.8927861,
p = 0.00186904

(f) Shapiro-Wilk normality test for
mixed-context culture groups.

Figure 143: Normality tests for average percentage of contracts of projects
with only high-context culture groups and projects with mixed-context cul-
ture groups.
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(c) QQ-Plot for high-context culture
groups.
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(d) QQ-Plot for mixed-context cul-
ture groups.

W = 0.9182023,
p = 0.02115637

(e) Shapiro-Wilk normality test for
high-context culture groups.

W = 0.9772082,
p = 0.6344855

(f) Shapiro-Wilk normality test for
mixed-context culture groups.

Figure 144: Normality tests for number of Eiffel Inspector warnings per
1000 LOC of projects with only high-context culture groups and projects
with mixed-context culture groups.
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(c) QQ-Plot for high-context culture
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(d) QQ-Plot for mixed-context cul-
ture groups.

W = 0.9247784,
p = 0.03167116

(e) Shapiro-Wilk normality test for
high-context culture groups.

W = 0.9880314,
p = 0.9547597

(f) Shapiro-Wilk normality test for
mixed-context culture groups.

Figure 145: Normality tests for number of Eiffel Inspector suggestions per
1000 LOC of projects with only high-context culture groups and projects
with mixed-context culture groups.
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(c) QQ-Plot for high-context culture
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(d) QQ-Plot for mixed-context cul-
ture groups.

W = 0.9049574,
p = 0.009606407

(e) Shapiro-Wilk normality test for
high-context culture groups.

W = 0.9878832,
p = 0.9522527

(f) Shapiro-Wilk normality test for
mixed-context culture groups.

Figure 146: Normality tests for average number of Eiffel Inspector rule
violations per 1000 LOC of projects with only high-context culture groups
and projects with mixed-context culture groups.
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B.3.2 Main analysis (2009 - 2012)

Figure 147 to 156 show the normality tests performed for the main analyis
of research question RQ.3 using the projects from 2009 to 2012.
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(c) QQ-Plot for high-context culture
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(d) QQ-Plot for mixed-context cul-
ture groups.

W = 0.8844678,
p = 0.008555478

(e) Shapiro-Wilk normality test for
high-context culture groups.

W = 0.8048286,
p = 0.0004582308

(f) Shapiro-Wilk normality test for
mixed-context culture groups.

Figure 147: Normality tests for average coupling ratio of projects with only
high-context culture groups and projects with mixed-context culture groups.
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(c) QQ-Plot for high-context culture
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(d) QQ-Plot for mixed-context cul-
ture groups.

W = 0.9593799,
p = 0.4022613

(e) Shapiro-Wilk normality test for
high-context culture groups.

W = 0.9298052,
p = 0.10831

(f) Shapiro-Wilk normality test for
mixed-context culture groups.

Figure 148: Normality tests for median coupling ratio of projects with only
high-context culture groups and projects with mixed-context culture groups.
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(c) QQ-Plot for high-context culture
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(d) QQ-Plot for mixed-context cul-
ture groups.

W = 0.6584753,
p = 2.112356e-06

(e) Shapiro-Wilk normality test for
high-context culture groups.

W = 0.4172333,
p = 1.517451e-08

(f) Shapiro-Wilk normality test for
mixed-context culture groups.

Figure 149: Normality tests for information hiding ratio of projects with
only high-context culture groups and projects with mixed-context culture
groups.
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(c) QQ-Plot for high-context culture
groups.
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(d) QQ-Plot for mixed-context cul-
ture groups.

W = 0.9644528,
p = 0.5100571

(e) Shapiro-Wilk normality test for
high-context culture groups.

W = 0.9252787,
p = 0.08649837

(f) Shapiro-Wilk normality test for
mixed-context culture groups.

Figure 150: Normality tests for percentage of routines with preconditions
of projects with only high-context culture groups and projects with mixed-
context culture groups.
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(c) QQ-Plot for high-context culture
groups.
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(d) QQ-Plot for mixed-context cul-
ture groups.

W = 0.9226232,
p = 0.0588086

(e) Shapiro-Wilk normality test for
high-context culture groups.

W = 0.8425767,
p = 0.002001541

(f) Shapiro-Wilk normality test for
mixed-context culture groups.

Figure 151: Normality tests for percentage of routines with postconditions
of projects with only high-context culture groups and projects with mixed-
context culture groups.
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(c) QQ-Plot for high-context culture
groups.
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(d) QQ-Plot for mixed-context cul-
ture groups.

W = 0.9153825,
p = 0.04025624

(e) Shapiro-Wilk normality test for
high-context culture groups.

W = 0.815909,
p = 0.0006964003

(f) Shapiro-Wilk normality test for
mixed-context culture groups.

Figure 152: Normality tests for percentage of classes with class invariants
of projects with only high-context culture groups and projects with mixed-
context culture groups.
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(c) QQ-Plot for high-context culture
groups.
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(d) QQ-Plot for mixed-context cul-
ture groups.

W = 0.9681826,
p = 0.5994068

(e) Shapiro-Wilk normality test for
high-context culture groups.

W = 0.8194473,
p = 0.0007978983

(f) Shapiro-Wilk normality test for
mixed-context culture groups.

Figure 153: Normality tests for average percentage of contracts of projects
with only high-context culture groups and projects with mixed-context cul-
ture groups.

231



High

#Eiffel Inspector warnings / 1 KLOC

D
en

si
ty

0 20 40 60 80

0.
00

0.
02

0.
04

0.
06

0.
08

Normal dist.
Density func.

(a) Histogram for high-context cul-
ture groups.

Mixed

#Eiffel Inspector warnings / 1 KLOC

D
en

si
ty

0 20 40 60 80
0.

00
0.

02
0.

04
0.

06
0.

08

Normal dist.
Density func.

(b) Histogram for mixed-context cul-
ture groups.

−2 −1 0 1 2

20
30

40
50

60

Normal Q−Q Plot: High

Theoretical Quantiles

S
am

pl
e 

Q
ua

nt
ile

s

(c) QQ-Plot for high-context culture
groups.
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(d) QQ-Plot for mixed-context cul-
ture groups.

W = 0.9143764,
p = 0.03820688

(e) Shapiro-Wilk normality test for
high-context culture groups.

W = 0.9691859,
p = 0.6695199

(f) Shapiro-Wilk normality test for
mixed-context culture groups.

Figure 154: Normality tests for number of Eiffel Inspector warnings per
1000 LOC of projects with only high-context culture groups and projects
with mixed-context culture groups.
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(c) QQ-Plot for high-context culture
groups.
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(d) QQ-Plot for mixed-context cul-
ture groups.

W = 0.9149578,
p = 0.03937759

(e) Shapiro-Wilk normality test for
high-context culture groups.

W = 0.9839119,
p = 0.9608059

(f) Shapiro-Wilk normality test for
mixed-context culture groups.

Figure 155: Normality tests for number of Eiffel Inspector suggestions per
1000 LOC of projects with only high-context culture groups and projects
with mixed-context culture groups.
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(c) QQ-Plot for high-context culture
groups.
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(d) QQ-Plot for mixed-context cul-
ture groups.

W = 0.8945535,
p = 0.01398944

(e) Shapiro-Wilk normality test for
high-context culture groups.

W = 0.9770158,
p = 0.8496011

(f) Shapiro-Wilk normality test for
mixed-context culture groups.

Figure 156: Normality tests for average number of Eiffel Inspector rule
violations per 1000 LOC of projects with only high-context culture groups
and projects with mixed-context culture groups.
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B.3.3 Main analysis (2013 - 2014)

Figure 157 to 166 show the normality tests performed for the main analyis
of research question RQ.3 using the projects from 2013 and 2014.
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(c) QQ-Plot for high-context culture
groups.

−1 0 1

1.
0

1.
5

2.
0

2.
5

3.
0

Normal Q−Q Plot: Mixed

Theoretical Quantiles

S
am

pl
e 

Q
ua

nt
ile

s

(d) QQ-Plot for mixed-context cul-
ture groups.

W = 0.8675465,
p = 0.2165993

(e) Shapiro-Wilk normality test for
high-context culture groups.

W = 0.9393494,
p = 0.4100507

(f) Shapiro-Wilk normality test for
mixed-context culture groups.

Figure 157: Normality tests for average coupling ratio of projects with only
high-context culture groups and projects with mixed-context culture groups.
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(c) QQ-Plot for high-context culture
groups.
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(d) QQ-Plot for mixed-context cul-
ture groups.

W = 0.895738,
p = 0.3493508

(e) Shapiro-Wilk normality test for
high-context culture groups.

W = 0.9501225,
p = 0.562609

(f) Shapiro-Wilk normality test for
mixed-context culture groups.

Figure 158: Normality tests for median coupling ratio of projects with only
high-context culture groups and projects with mixed-context culture groups.
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(c) QQ-Plot for high-context culture
groups.
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(d) QQ-Plot for mixed-context cul-
ture groups.

W = 0.7951096,
p = 0.05308719

(e) Shapiro-Wilk normality test for
high-context culture groups.

W = 0.7042539,
p = 0.0004090505

(f) Shapiro-Wilk normality test for
mixed-context culture groups.

Figure 159: Normality tests for information hiding ratio of projects with
only high-context culture groups and projects with mixed-context culture
groups.
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(c) QQ-Plot for high-context culture
groups.
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(d) QQ-Plot for mixed-context cul-
ture groups.

W = 0.6986431,
p = 0.005981248

(e) Shapiro-Wilk normality test for
high-context culture groups.

W = 0.9480409,
p = 0.5307245

(f) Shapiro-Wilk normality test for
mixed-context culture groups.

Figure 160: Normality tests for percentage of routines with preconditions
of projects with only high-context culture groups and projects with mixed-
context culture groups.
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(c) QQ-Plot for high-context culture
groups.
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(d) QQ-Plot for mixed-context cul-
ture groups.

W = 0.543741,
p = 9.046506e-05

(e) Shapiro-Wilk normality test for
high-context culture groups.

W = 0.9200526,
p = 0.2202782

(f) Shapiro-Wilk normality test for
mixed-context culture groups.

Figure 161: Normality tests for percentage of routines with postconditions
of projects with only high-context culture groups and projects with mixed-
context culture groups.
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(c) QQ-Plot for high-context culture
groups.

−1 0 1

0
5

10
15

20
25

30
35

Normal Q−Q Plot: Mixed

Theoretical Quantiles

S
am

pl
e 

Q
ua

nt
ile

s

(d) QQ-Plot for mixed-context cul-
ture groups.

W = 0.4960943,
p = 2.072914e-05

(e) Shapiro-Wilk normality test for
high-context culture groups.

W = 0.8352436,
p = 0.01408785

(f) Shapiro-Wilk normality test for
mixed-context culture groups.

Figure 162: Normality tests for percentage of classes with class invariants
of projects with only high-context culture groups and projects with mixed-
context culture groups.
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(c) QQ-Plot for high-context culture
groups.
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(d) QQ-Plot for mixed-context cul-
ture groups.

W = 0.6260735,
p = 0.0009352391

(e) Shapiro-Wilk normality test for
high-context culture groups.

W = 0.8980282,
p = 0.1055957

(f) Shapiro-Wilk normality test for
mixed-context culture groups.

Figure 163: Normality tests for average percentage of contracts of projects
with only high-context culture groups and projects with mixed-context cul-
ture groups.
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(c) QQ-Plot for high-context culture
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(d) QQ-Plot for mixed-context cul-
ture groups.

W = 0.70745,
p = 0.007399402

(e) Shapiro-Wilk normality test for
high-context culture groups.

W = 0.9171671,
p = 0.2001578

(f) Shapiro-Wilk normality test for
mixed-context culture groups.

Figure 164: Normality tests for number of Eiffel Inspector warnings per
1000 LOC of projects with only high-context culture groups and projects
with mixed-context culture groups.
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(c) QQ-Plot for high-context culture
groups.
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(d) QQ-Plot for mixed-context cul-
ture groups.

W = 0.8472019,
p = 0.149388

(e) Shapiro-Wilk normality test for
high-context culture groups.

W = 0.954644,
p = 0.6348281

(f) Shapiro-Wilk normality test for
mixed-context culture groups.

Figure 165: Normality tests for number of Eiffel Inspector suggestions per
1000 LOC of projects with only high-context culture groups and projects
with mixed-context culture groups.
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(c) QQ-Plot for high-context culture
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(d) QQ-Plot for mixed-context cul-
ture groups.

W = 0.8819149,
p = 0.2779664

(e) Shapiro-Wilk normality test for
high-context culture groups.

W = 0.976214,
p = 0.9468847

(f) Shapiro-Wilk normality test for
mixed-context culture groups.

Figure 166: Normality tests for average number of Eiffel Inspector rule
violations per 1000 LOC of projects with only high-context culture groups
and projects with mixed-context culture groups.

245



References

[1] IEEE recommended practice for software requirements specifications.
IEEE Std 830-1998, pages 1–40, Oct 1998.

[2] T. J. Allen. Managing the Flow of Technology. MIT Press, Cambridge,
MA, 2nd edition, 1997.

[3] Andrea Arcuri and Lionel Briand. A practical guide for using statistical
tests to assess randomized algorithms in software engineering. In Pro-
ceedings of the 33rd International Conference on Software Engineering,
ICSE ’11, pages 1–10, New York, NY, USA, 2011. ACM.

[4] Deborah J. Barrett. Leadership communication. McGraw-Hill/Irwin,
New York, NY, USA, 2nd edition, 2008.

[5] Victor R. Basili and Barry T. Perricone. Software errors and complex-
ity: An empirical investigation0. Commun. ACM, 27(1):42–52, January
1984.

[6] R.D. Battin, R. Crocker, J. Kreidler, and K. Subramanian. Leveraging
resources in global software development. Software, IEEE, 18(2):70–77,
Mar 2001.

[7] T. E. Bell and T. A. Thayer. Software requirements: Are they really
a problem? In Proceedings of the 2Nd International Conference on
Software Engineering, ICSE ’76, pages 61–68, Los Alamitos, CA, USA,
1976. IEEE Computer Society Press.

[8] Christian Bird, Nachiappan Nagappan, Premkumar Devanbu, Harald
Gall, and Brendan Murphy. Does distributed development affect soft-
ware quality? an empirical case study of windows vista. In Proceedings
of the 31st International Conference on Software Engineering, ICSE ’09,
pages 518–528, Washington, DC, USA, 2009. IEEE Computer Society.

[9] B. W. Boehm, J. R. Brown, and M. Lipow. Quantitative evaluation
of software quality. In Proceedings of the 2Nd International Conference
on Software Engineering, ICSE ’76, pages 592–605, Los Alamitos, CA,
USA, 1976. IEEE Computer Society Press.

[10] B.W. Boehm, J.R. Brown, H. Kaspar, M. Lipow, G.J. MacLeod, and
M.J. Merritt. Characteristics of Software Quality. North-Holland Pub-
lishing Company, 1978.

246



[11] I. Bosnic, I. Cavrak, M. Zagar, R. Land, and I. Crnkovic´. Customers’
role in teaching distributed software development. In Software Engineer-
ing Education and Training (CSEE T), 2010 23rd IEEE Conference on,
pages 73–80, March 2010.

[12] B. Bruegge, Allen H. Dutoit, R. Kobylinski, and G. Teubner. Transat-
lantic project courses in a university environment. In Software Engineer-
ing Conference, 2000. APSEC 2000. Proceedings. Seventh Asia-Pacific,
pages 30–37, 2000.

[13] E. Carmel and R. Agarwal. Tactical approaches for alleviating distance
in global software development. Software, IEEE, 18(2):22–29, Mar 2001.

[14] Marcelo Cataldo and Sangeeth Nambiar. On the relationship between
process maturity and geographic distribution: An empirical analysis
of their impact on software quality. In Proceedings of the the 7th Joint
Meeting of the European Software Engineering Conference and the ACM
SIGSOFT Symposium on The Foundations of Software Engineering, ES-
EC/FSE ’09, pages 101–110, New York, NY, USA, 2009. ACM.

[15] Joseph P. Cavano and James A. McCall. A framework for the measure-
ment of software quality. In Proceedings of the Software Quality Assur-
ance Workshop on Functional and Performance Issues, pages 133–139,
New York, NY, USA, 1978. ACM.

[16] S.R. Chidamber and C.F. Kemerer. A metrics suite for object oriented
design. Software Engineering, IEEE Transactions on, 20(6):476–493,
Jun 1994.

[17] Lennie Copeland and Lewis Griggs. Going International: How to Make
Friends and Deal Effectively in the Global Marketplace. 1986.

[18] I. Crnkovic, I. Bosnic´, and M. Zagar. Ten tips to succeed in global
software engineering education. In Software Engineering (ICSE), 2012
34th International Conference on, pages 1225–1234, June 2012.

[19] Daniela Damian, Allyson Hadwin, and Ban Al-Ani. Instructional design
and assessment strategies for teaching global software development: A
framework. In Proceedings of the 28th International Conference on Soft-
ware Engineering, ICSE ’06, pages 685–690, New York, NY, USA, 2006.
ACM.

[20] J.A. Espinosa, Ning Nan, and E. Carmel. Do gradations of time zone
separation make a difference in performance? a first laboratory study.

247



In Global Software Engineering, 2007. ICGSE 2007. Second IEEE In-
ternational Conference on, pages 12–22, Aug 2007.

[21] H.-Christian Estler, Martin Nordio, Carlo A. Furia, and Bertrand Meyer.
Collaborative debugging. In 8th International Conference on Global
Software Engineering (ICGSE). IEEE, 2013.

[22] H.-Christian Estler, Martin Nordio, Carlo A. Furia, and Bertrand Meyer.
Unifying configuration management with awareness systems and merge
conflict detection. In 22nd Australasian Software Engineering Confer-
ence (ASWEC). IEEE, 2013.

[23] H.-Christian Estler, Martin Nordio, Carlo A. Furia, and Bertrand Meyer.
Awareness and merge conflicts in distributed software development. In
Yuanfang Cai, Jude Fernandez, and Wenyun Zhao, editors, Proceed-
ings of the 9th International Conference on Global Software Engineer-
ing (ICGSE), pages 26–35. IEEE Computer Society, August 2014. Best
paper award.

[24] Martin Fowler. Refactoring: Improving the Design of Existing Code.
Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 1999.

[25] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. De-
sign Patterns: Elements of Reusable Object-oriented Software. Addison-
Wesley Longman Publishing Co., Inc., Boston, MA, USA, 1995.

[26] Carlo Ghezzi, Mehdi Jazayeri, and Dino Mandrioli. Fundamentals of
Software Engineering. Prentice Hall PTR, Upper Saddle River, NJ,
USA, 2nd edition, 2002.

[27] Carlo Ghezzi and Dino Mandrioli. The challenges of software engineer-
ing education. In Proceedings of the 27th International Conference on
Software Engineering, ICSE ’05, pages 637–638, New York, NY, USA,
2005. ACM.

[28] Peter Gloor, Maria Paasivaara, Casper Lassenius, Detlef Schoder, Kai
Fischbach, and Christine Miller. Teaching a global project course: Ex-
periences and lessons learned. In Proceedings of the 2011 Community
Building Workshop on Collaborative Teaching of Globally Distributed
Software Development, CTGDSD ’11, pages 1–5, New York, NY, USA,
2011. ACM.

248



[29] Olly Gotel, Vidya Kulkarni, Long Chrea Neak, Christelle Scharff, and
Sopheap Seng. Introducing global supply chains into software engineer-
ing education. In Proceedings of the 1st International Conference on
Software Engineering Approaches for Offshore and Outsourced Develop-
ment, SEAFOOD’07, pages 44–58, Berlin, Heidelberg, 2007. Springer-
Verlag.

[30] Olly Gotel, Vidya Kulkarni, Christelle Scharff, and Longchrea Neak.
Students as partners and students as mentors: An educational model
for quality assurance in global software development. In Kay Berkling,
Mathai Joseph, Bertrand Meyer, and Martin Nordio, editors, Software
Engineering Approaches for Offshore and Outsourced Development, vol-
ume 16 of Lecture Notes in Business Information Processing, pages 90–
106. Springer Berlin Heidelberg, 2009.

[31] E. T. Hall. Beyond culture. Anchor Press, Garden City, NY, 1976.

[32] M.J. Hawthorne and D.E. Perry. Software engineering education in the
era of outsourcing, distributed development, and open source software:
challenges and opportunities. In Software Engineering, 2005. ICSE
2005. Proceedings. 27th International Conference on, pages 643–644,
May 2005.

[33] J.D. Herbsleb and D. Moitra. Global software development. Software,
IEEE, 18(2):16–20, Mar 2001.

[34] H. Holmstrom, E.O. Conchuir, P.J. Agerfalk, and B. Fitzgerald. Global
software development challenges: A case study on temporal, geograph-
ical and socio-cultural distance. In Global Software Engineering, 2006.
ICGSE ’06. International Conference on, pages 3–11, Oct 2006.

[35] R.R. Lutz. Analyzing software requirements errors in safety-critical,
embedded systems. In Requirements Engineering, 1993., Proceedings of
IEEE International Symposium on, pages 126–133, Jan 1993.

[36] J.A. McCall, P.K. Richards, and G.F. Walters. Factors in Software
Quality. Volume I. Concepts and Definitions of Software Quality. 1977.

[37] Marshall Kirk McKusick and George V. Neville-Neil. The Design and
Implementation of the FreeBSD Operating System. Pearson Education,
2004.

[38] B. Meyer. The unspoken revolution in software engineering. Computer,
39(1):124, 121–123, Jan 2006.

249



[39] Bertrand Meyer. Applying ”design by contract”. Computer, 25(10):40–
51, October 1992.

[40] Bertrand Meyer. Eiffel: The Language. Prentice-Hall, Inc., Upper Sad-
dle River, NJ, USA, 1992.

[41] Bertrand Meyer. Object-oriented Software Construction (2Nd Ed.).
Prentice-Hall, Inc., Upper Saddle River, NJ, USA, 1997.

[42] Bertrand Meyer. Touch of Class: Learning to Program Well with Objects
and Contracts. Springer Publishing Company, Incorporated, 1 edition,
2009.

[43] A. Mockus and J. Herbsleb. Challenges of global software development.
In Software Metrics Symposium, 2001. METRICS 2001. Proceedings.
Seventh International, pages 182–184, 2001.

[44] Martin Nordio, Christian Estler, Bertrand Meyer, Nazareno Aguirre,
Elisabetta Di Nitto, Rafael Prikladnicki, and Anthony Savidis. An ex-
periment on teaching coordination in a globally distributed software
engineering class. In Proceedings, 27th Conference on Software Engi-
neering Education and Training (CSEE&T 2014), 2014.

[45] Martin Nordio, H.-Christian Estler, Bertrand Meyer, Julian Tschannen,
Carlo Ghezzi, and Elisabetta Di Nitto. How do distribution and time
zones affect software development? a case study on communication.
In 6th International Conference on Global Software Engineering. IEEE,
2011.

[46] Martin Nordio, Carlo Ghezzi, Bertrand Meyer, Elisabetta Di Nitto,
Giordano Tamburrelli, Julian Tschannen, Nazareno Aguirre, and Vidya
Kulkarni. Teaching software engineering using globally distributed
projects: the dose course. In Collaborative Teaching of Globally Dis-
tributed Software Development - Community Building Workshop (CT-
GDSD). ACM, 2011.

[47] Martin Nordio, Roman Mitin, and Bertrand Meyer. Advanced hands-on
training for distributed and outsourced software engineering. In ICSE
’10 Proceedings of the 32nd ACM/IEEE International Conference on
Software Engineering - Volume 1, 2010.

[48] Martin Nordio, Roman Mitin, Bertrand Meyer, Carlo Ghezzi, Elisa-
betta Di Nitto, and Giordano Tamburelli. The Role of Contracts in

250



Distributed Development. In O. Gotel, M. Joseph, and B. Meyer, edi-
tors, Software Engineering Advances For Offshore and Outsourced De-
velopment, volume 35 of Lecture Notes in Business and Information
Processing, pages 117–119, 2009.

[49] Rosalie Ocker, Mary Beth Rosson, Dana Kracaw, and S. Roxanne Hiltz.
Training students to work effectively in partially distributed teams.
Trans. Comput. Educ., 9(1):6:1–6:24, March 2009.

[50] D. L. Parnas. On the criteria to be used in decomposing systems into
modules. Commun. ACM, 15(12):1053–1058, December 1972.

[51] S.L. Pfleeger and J.M. Atlee. Software Engineering: Theory and Prac-
tice. Prentice Hall, Upper Saddle River, NJ, USA, 3rd edition, 2006.

[52] Roger Pressman. Software Engineering: A Practitioner’s Approach.
McGraw-Hill, Inc., New York, NY, USA, 6 edition, 2005.

[53] John A. Rice. Mathematical statistics and data analysis. 3rd edition,
2007.

[54] Ita Richardson, Allen E. Milewski, Neel Mullick, and Patrick Keil. Dis-
tributed development: An education perspective on the global studio
project. In Proceedings of the 28th International Conference on Soft-
ware Engineering, ICSE ’06, pages 679–684, New York, NY, USA, 2006.
ACM.

[55] Paul Rook (Editor). Software Reliability Handbook. Elsevier Science
Inc., New York, NY, USA, 1990.

[56] Christelle Scharff. An evolving collaborative model of working in stu-
dents’ global software development projects. In Proceedings of the 2011
Community Building Workshop on Collaborative Teaching of Globally
Distributed Software Development, CTGDSD ’11, pages 11–15, New
York, NY, USA, 2011. ACM.

[57] Diomidis Spinellis. Global software development in the freebsd project.
In Proceedings of the 2006 International Workshop on Global Software
Development for the Practitioner, GSD ’06, pages 73–79, New York, NY,
USA, 2006. ACM.

[58] Eleni Stroulia, Ken Bauer, Michelle Craig, Karen Reid, and Greg Wil-
son. Teaching distributed software engineering with ucosp: The under-
graduate capstone open-source project. In Proceedings of the 2011 Com-

251



munity Building Workshop on Collaborative Teaching of Globally Dis-
tributed Software Development, CTGDSD ’11, pages 20–25, New York,
NY, USA, 2011. ACM.

[59] Marco Trudel, Carlo A. Furia, Martin Nordio, and Bertrand Meyer.
Really automatic scalable object-oriented reengineering. In European
Conference on Object-Oriented Programming (ECOOP). Springer, 2013.

[60] Stefan Zurfluh. Rule-based code analysis, 2014.

252


