

A web-based IDE for Java

Software Engineering Laboratory

By: Marcel Bertsch

Supervised by: Christian Estler

 Dr. Martin Nordio

 Prof. Dr. Bertrand Meyer

Student Number: 09-928-896

2

Content
1 Introduction ..3

1.1 Motivation...3

1.2 Goal...3

2 Project Structure ...3

2.1 Creation ..3

2.2 Database ...4

2.3 Initial Main Class Content ..4

3 IDE ..4

3.1 Syntax Highlighter ...4

3.2 Package Explorer ...5

3.2.1 Structure..5

3.2.2 Adding & Deleting ..5

4 Compilation and Execution ..6

4.1 Compiler ..6

4.2 Running a Project ..6

5 Conclusion ..7

3

1 Introduction

1.1 Motivation
Software development is teamwork. Therefore we need good tools which allow us to cooperate in an
easy and pleasant way. Cloudstudio is such a tool; it provides not only code sharing features but also
a complete IDE to develop projects. What I like most at Cloudstudio is that it is browser-based, so no
additional software needs to be installed; hence compatibility is not an issue. The cloud is growing
more important, local data storage will probably be less common in the future. Google Docs is a good
example of how people can work together in the cloud, so why not also work with code in that way?

1.2 Goal
Goal of this project is extending Cloudstudio to also provide an IDE for Java development. Java is
ideal because it is frequently used and well established. It also stands for platform independence and
therefore correlates well with Cloudstudio. Starting point is an IDE which is completely designed for
Eiffel development. The Java version should have a look and feel similar to the Eiffel version but also
be comfortable for Java programmers not used to EiffelStudio.

2 Project Structure

2.1 Creation
In the New Project Dialog two new fields appear when selecting Java as a language:

 Package Name

 Main Class

The user can fill in one, both or none.

 If both fields are used, a class containing
the main method gets created in a
package, both named as given by the
user.

 If only a package name is filled in,
Cloudstudio will generate an empty
package.

 If the user provides a class name but not
a package name, the system will put it
into a default package.

 If neither is given the project will be
initially empty

For the RPC call the Eiffel version is reused. The package and main class name get appended to the
project’s name separated by spaces since all these parameters cannot contain any. The package
name will always be attached and is called “(default)” if the user has not entered something
different. This makes it possible to distinguish between package and main class name. On the server
side this information gets extracted if the project’s language is Java and the project accordingly
created.

4

2.2 Database
The database adds the following entries for a new project:

Table Name Content

`project`  The project’s name

 A generated id

 The owner’s id

 The language

 The project description

`documentfolders`  A folder for the source code named ‘Src’ with a generated id,
the project’s id and ‘0’ as the parent folder’s id which means
the folder is at the root

 Another folder with the package name having the ‘Src’ folder
as the parent folder (if no package name is given, a
‘(default)’ folder gets inserted)

`source_files`  The main class file (if provided) with `folder_id` pointing to
the package in `documentfolders`

2.3 Initial Main Class Content
Source file content is stored in the same way as used for Eiffel files, making it possible to reuse all
kinds of functionalities for source code management. For a detailed description have a look at the
Cloud Control1 project by Alexandru Dima and Alejandro García.

Package and class names are inserted making the initial content of the main class look like this:

3 IDE

3.1 Syntax Highlighter
Syntax highlighting is realized in the new Eiffel class EVSH_JAVA inheriting from
EV_SYNTAX_HIGHLIGHTER. When opening a file, the editor checks its ending. If it is “.java”, an

instance of EVSH_JAVA is created. Keywords, types and separators are taken from the book “Java in
a Nutshell”2.

Known types boolean, char, byte, short, int, long, float, double

1
 http://cloudstudio.origo.ethz.ch/wiki/cloudcontrol

2 Java in a Nutshell 5th Edition by David Flanagan

5

Keywords abstract, assert, boolean, break, byte, case, catch, char, class, const,
continue, default, do, double, else, enum, extends, false, final, finally,
float, for, goto, if, implements, import, instanceof, int, interface, long,
native, new, null, package, private, protected, public, return, short,
static, strictfp, super, switch, synchronized, this, throw, throws,
transient, true, try, void, volatile, while

Separators () { } [] < > : ; , . @

String/Character delimiter ‘ “

Escape character \

3.2 Package Explorer

3.2.1 Structure
In comparison to the Eiffel IDE, both the folders and the files must be loaded when opening a project.
This makes the updateClusters method in class IdeGroupPresenter a bit more
complicated. Since all the server database requests are asynchronous, making two separated ones
would not lead to a deterministic result. The solution is combining them in a single request which
returns two lists, one with folders and the other with files. Both are packed into a hash map to be
sent to the client. To work with document folders in the code and database two new classes have
been added:

Class Name Functionalities

DocumentFoldersTable  Inserting a new folder into the database

 Get a folder from the DB by its id

 Get all folders of a project

 Delete a folder and all subfolders/-files if wanted

DocumentFolderModel  Represents a document folder as in the DB

 Contains the folder’s name, its id, the parent’s id and the
project id

First the folders get added to the TreeStore object which is
used for the package explorer. Top-level folders (those with
parent id “0”) are added straightaway, sub folders not until
their parent is in the structure. Added folders get deleted
from the list and the process is repeated until the list is
empty. A hash map keeps track of added folders by mapping
their ids to the corresponding ModelData in the tree. If the
parent folder is named “Src”, the package icon is used, a
normal folder icon otherwise. In a second step the source files
are added.

3.2.2 Adding & Deleting
Adding and deleting packages and source files can be done by right-clicking on the parent
folder/package for adding and on the element itself for deleting. The context menu always contains
the two options “New…” and “Delete…” The action when clicked depends on the element.

6

Element New… Delete…

Project Folder Create a new top-level folder Not supported

Src Folder Create a new package Not supported

Package Add a new file to the package Delete the package and all files in it

Source File Not supported Delete the file

Other Folders Not supported yet, might be used for library import in the future

4 Compilation and Execution

4.1 Compiler
Java compilation starts in the same way as it was implemented for Eiffel projects. When the user
starts the RPC by clicking the compile button, all the project’s source files are read from the database
and copied to the file system at location C:/Cloudstudio/[projectID]/[userID]. Now the class
JavaCompiler uses java.lang.Runtime and java.lang.Process to create a new folder for the
compiled project at C:/Cloudstudio/[projectID]/[userID]/compiled and starts javac to compile the
source files. If javac exits with code 0, the user is informed that the compilation was successful. If the
exit code is not equal to 0, javac’s error output is sent to the client console. Unlike as in the Eiffel
version, these return messages are not processed on the client side and are printed as sent by the
server.

Note that the JDK binary folder must be in the server’s path for this to work.

4.2 Running a Project
Due to security concerns it is not possible to run projects on the server. The workaround is an
executable JAR archive of the project, generated by the server and sent to the user. When the user
clicks the run button, a dialog appears where the name of the main class (including package) must be
entered. This information is required to determine the entry point of the program and will be put
into the manifest file in the archive which makes the JAR executable.
The callback of the run RPC opens a new window connecting to getJarServlet mapped to
GetJarService. The URL is provided by the callback and contains all information required
(projected and userID) to find the JAR in the file system which then is sent to the client where the
browser’s standard download dialog appears. As soon as the download is completed, the JAR file on
the server gets deleted and further requests with the same URL will receive a file not found error. To
execute the JAR, the user can simply double-click it or type “java –jar [JarName].jar” into the
command shell.

7

cloudstudio/WEB-INF/web.xml

com.cloudstudio.server.compiler.JavaCompiler.runJavaProject

com.cloudstudio.server.compiler.GetJarService.doGet

5 Conclusion
Programmers now have a web-based IDE where they can develop Java projects together. They are
able to add and delete files and packages, write code, compile it and download an executable version
of their project. There are still a lot of things to do and improve; this project is to be seen as a
framework for further development steps on Cloudstudio.

