

Loop invariant inference from postconditions
in EVE

Bachelor Thesis

By: Michael Ameri
Supervised by: Carlo Alberto Furia

Julian Tschannen
 Prof. Dr. Bertrand Meyer

Student Number: 08-918-435

1

Contents
Abstract ... 3

1 Introduction .. 4

2 Motivation behind inferring loop invariants and overall goals .. 5

2.1 Heuristics used for postcondition mutation .. 5

2.1.1 Constant relaxation .. 5

2.1.2 Uncoupling ... 6

2.1.3 Variable aging .. 6

3 Inferring loop invariants from postconditions: The algorithm and its implementation 7

3.1 Main Algorithm .. 7

3.2 Generating mutations of Postconditions .. 8

3.2.1 Generating coupled and uncoupled mutations.. 11

3.2.2 Aging variables ... 13

3.2.3 Checking if a formula is an invariant of a loop .. 13

3.3 Implementation challenges .. 15

4 Integration within AutoProof’s UI and its usage .. 16

5 Evaluation .. 19

6 Postcondition mutation API .. 21

6.1 IV_EXPRESSION_2_EIFFEL_POSTCONDITION .. 21

6.2 IV_EXPRESSION_REPLACER... 21

6.2.1 Creation procedure .. 21

6.2.2 Output .. 22

6.2.3 Example ... 22

6.3 IV_MUTATOR ... 22

6.3.1 Creation procedure .. 22

6.3.2 Processing an implementation which contains a loop and postcondition 23

6.3.3 Generating all mutations .. 23

6.3.4 Checking if an expression is a valid loop invariant .. 23

6.3.5 Generating coupled and uncoupled mutations.. 23

6.3.6 Extracting sub-expressions .. 24

6.3.7 Other features .. 24

6.4 IV_POSTCONDITION_MUTATION ... 24

6.4.1 Displaying an invariant for the user .. 24

7 Conclusions .. 26

8 Appendix .. 27

2

8.1 Source code of the test cases that were used for evaluation 27

9 References ... 37

3

Abstract

Loop invariants play a major role in automatic verification of programs. Finding a suiting loop

invariant can however be rather difficult. This thesis presents an implementation of automatic

loop invariant inference based on postcondition mutation integrated directly within EVE. EVE is

a development environment built on top of EiffelStudio. It integrates verification techniques

within the IDE. Autoproof is a tool within EVE which delivers static verification based on Hoare-

style proofs using Eiffel’s contracts. The implementation presented in this thesis provides an

additional tool within AutoProof, so that a developer can execute the postcondition mutation

algorithm and obtain invariants without having any further knowledge about the implementation.

4

1 Introduction

To prove that a feature is correct, it must be shown that the feature terminates, that for each

feature which is called by this feature, its pre-conditions are not violated, and that once the called

feature terminates, its postconditions are fulfilled. No universal algorithm can exist which would

perform this proof for every feature. Having invariants attached to loops can help automate this

proof in various cases. However, finding a loop invariant can be rather cumbersome for a

developer, which is why they are often omitted in practice. With this thesis I aim to integrate

automatic loop invariant generation within the verification environment EVE.

EVE [1] is a development environment built on top of EiffelStudio. It integrates verification

techniques within the IDE. Autoproof is a tool within EVE which delivers static verification

based on Hoare-style proofs using Eiffel’s contracts.
1

Among other contracts, Eiffel supports the notions of both postconditions for features and

invariants for loops. The goal of this thesis is to implement loop invariant inference from

postcondition mutation for Eiffel and integrate the solution within the Autoproof mechanism of

EVE. To achieve this, the algorithm presented in [2] was adopted. To date, a command line

solution which operates on annotated Boogie code is available at [3].

Once a developer using EVE decides to launch the postcondition mutation algorithm presented

here, the following is supposed to happen: Postconditions of features that contain loops are

mutated based on heuristics to generate invariant candidates for each loop in that feature. The

Boogie verifier [4] is then used to test each candidate if it is an invariant of some loop. The

candidates which pass the test are then presented in Autoproof’s window. This allows developers

to add automatically generated invariants to their loops. This procedure offers several advantages

to the developer. The loop invariants can help to understand what exactly is being executed. In

some instances the automatically generated loop invariants also enable AutoProof to successfully

prove that a postcondition of the feature never fails.

This thesis will first explain the motivation behind using the implemented inference techniques in

section 2. In the next section the algorithm behind the invariant generation based on

postcondition mutation and its implementation are presented. After that section 4 demonstrates

how a developer using EVE can execute the automatic invariant generation within the IDE,

before section 5 evaluates the implementation based on several test cases. Thereafter a set of API

is presented in section 6, which can be used to extend or alter the implemented functionality. In

the end a conclusion is drawn and ways to further develop the implementation are presented, both

in section 7.

1
 http://se.inf.ethz.ch/research/eve/

http://se.inf.ethz.ch/research/eve/

5

2 Motivation behind inferring loop invariants and overall goals

This section discusses the difficulties within automatic loop invariant generation and the

reasoning behind using mutated postconditions as loop invariants. Furthermore the heuristics

behind the algorithm which is presented in section 3 are explained.

Automatically generating loop invariants is not a trivial task. This implementation focuses on

inferring the invariants from the postcondtions of features which contain the loop, as suggested in

[2].

By definition, a loop invariant must hold at the following points during execution:

- After the loop is initialized, and before the first execution of the loop;

- After each consecutive execution of the loop’s body.

This makes it clear that the loop’s invariant cannot be stricter than its postcondition. Therefore

trying to infer loop invariants by weakening the loops postcondition is a valid approach. Since

Eiffel doesn’t have a notion of postconditions for loops, the feature’s postconditions are used.

This often already yields good results. If the current feature’s post conditions don’t match those

of the loop, a developer who wants to make use of this automatic loop invariant inference can

always create a new feature containing just the loop and attach the loops postconditions to that

new feature.

An invariant of a loop must not only be weaker than its postcondition, it must be weak enough to

hold after the initialization and after each consecutive iteration. It must also be strong enough to

yield the postcondition after the last execution of the loop’s body. This is why this

implementation uses the three heuristics which are presented in section 2.1, to mutate

postconditions in anticipation of finding a valid loop invariant.

2.1 Heuristics used for postcondition mutation
2.1.1 Constant relaxation
Constant relaxation is the notion of replacing one or more constants by a variable. In many cases,

this leads to a weaker form of the postcondition, which turns out to be a loop invariant. An

example of this might be the feature max_value which iterates through an array to find the largest

element in that array, in each iteration updating the maximum value if necessary. (The feature can

be found in the appendix.) The postcondition reads as:

across 1 |..| a.count as k all a[k.item] <= max_value end

By replacing a.count, which is a constant, by the iteration number (denoted i), which is a

variable, we get a valid loop invariant:

6

across 1 |..| i as k all a[k.item] <= max_value end

Since we only look at elements of the array up to the i’th position, this is indeed a weakened form

of the postcondition, which looks at all elements.

In the algorithm, this heuristic is used in the two features which perform coupled- and uncoupled-

mutations.

2.1.2 Uncoupling
This notion is used in the feature which performs uncoupled mutations. Instead of replacing every

occurrence of a constant, each occurrence is treated separately. In some instances this lead to

additional invariants.

2.1.3 Variable aging
When a variable is aged, it is replaced by the value that the variable had one iteration earlier. For

example if we have a loop that in each execution performs the task i := i + 1, and i is not

changed in any other way, then aging(i) would return the expression i -1.

The current implementation creates two mutations for each variable which needs to be aged;

either by once decreasing the value by one, or by once incrementing the value by one. In practice

this often achieves aging. A more sophisticated aging algorithm might be added to the algorithm

at a later time. An example where this yields a correct result can be seen in the feature

max_v2_paper, which is in the appendix.

7

3 Inferring loop invariants from postconditions: The algorithm and
its implementation

This section demonstrates and explains the general algorithm as well as the implementation

behind the loop invariant inference based on postcondition mutation.

The algorithm is adapted from [2] and implemented in Eiffel. The implementation relies on

AutoProof’s intermediate AST representation of the Eiffel code that needs to be analyzed. This

approach has the advantage that AutoProof’s existing functionalities can be used as an API, for

example to check if a mutated postcondition is a valid invariant for some loop. All classes which

contain the prefix IV_ or E2B_ in their name are part of AutoProof’s implementation, while the

IV_ prefix specifically denotes classes used in AutoProof’s intermediate representation. For

consistency, classes added with this implementation also use the prefix when appropriate.

3.1 Main Algorithm
The main algorithm can be found in the class IV_MUTATOR. It is presented below as Code 1.
1 invariants():LINKED_LIST[IV_EXPRESSION]
2 -- This is adapted from the paper "Inferring Loop Invariants using

 Post-conditions". It is called invariants there.
3 -- It returns a list of expressions that are invariant of some loop

 in the procedure.
4 local
5 mutations: LINKED_LIST[IV_EXPRESSION]
6 -- expressions in this list are mutated, but not yet tested if

 they are valid invariants.
7 formula: IV_EXPRESSION
8 any_loop: ARRAY[IV_BLOCK]
9 do
10 across postconditions as post loop
11 across outer_loops as loops loop
12 -- compute all mutations of post
13 -- according to chosen strategies
14 mutations := mutate(post.item, loops.item)
15 across mutations as ms loop
16 formula:= ms.item
17 across all_loops as al loop
18 any_loop := al.item
19 if is_invariant(formula, any_loop) then
20 Result.force (formula)
21 end
22 end
23 end
24 end
25 end
26 end

Code 1: The main algorithm to find loop invariants by mutating postconditions of a feature.

8

The 10
th

 line of the code loops through all the postconditions of the feature that is currently being

analyzed. The next line then loops through all outer loops of the feature. Since the targets of an

inner loop are also targets of its encapsulating outer loop, it is enough to loop through outer loops

when the mutating feature is called. In line 14, the mutations of the current postcondition are

generated, using the feature which is presented in section 3.2. Lines 15 through 23 then loop

through all the generated mutations. Each mutation is attached as an invariant to every loop and

checked for its validity in line 19 of the code. If it passes this test, it is added to the Result list in

the next line. How this test is performed is explained in section 3.2.3

3.2 Generating mutations of Postconditions

The code snippet Code 2 shows the overall process of how mutations are generated. The usage of

this feature within the API is discussed in section 6.3.

This feature takes two arguments. The first is the postcondition which should be mutated. The

second argument is an array representing a loop. It contains three blocks, the “head”, “body” and

“end” of a loop. These three items are how loops are stored in AutoProof’s intermediate AST

representation. The Result of this feature is a linked list of expressions. Each expression

represents a mutation that is created based on heuristics. The reasoning behind the heuristics used

in this implementation is further explained in section 2.

Lines 16 and 17 of Code 2 create the Result, which is a list of expressions, and add the

postcondition itself as a first expression. Lines 18 through 23 are responsible for finding all basic

sub-expressions of the postcondition. In the 24
th

 line, all expressions which appear as a target of

an assignment in the body of a_loop are stored in the list targets_l. The next two lines then fill

the list constant_l with all sub-expressions which aren’t targets. So

 . Lines 27 and 28 then loop through the list of all

constants. For each constant, the lines 29 through 37 then loop through all targets and perform

coupled and uncoupled mutations, based on what options are selected in AutoProof’s window.

These options are all presented in section 4. Line 39 of the code then removes all duplicate

mutations from the Result. This is done because checking if a mutation is a valid invariant can be

very time consuming, so it shouldn’t have to be done more often than necessary.

The code snippets for coupled and uncoupled mutations can be found in section 3.2.1.

The arguments of both features are the same: A postcondition, two expressions representing a

constant and a variable and a loop. Both features also return the same type of result, namely a list

of expressions, representing mutated post conditions.

The feature performing coupled mutations works as follows: Every occurrence of a_constant in

the postcondtion a_post is replaced by a_variable in line 9 of the code. The remaining lines first

9

perform aging on a_variable, and then replace every occurrence of a_constant in the

postcondition by the aged variables. What aging exactly does is explained in section 3.2.2.

The difference between the result list of uncoupled and coupled mutations is that

uncoupled_mutations doesn’t replace all occurrences of a constant. It rather replaces one

occurrence at a time, and generates a new mutation for each constant which is replaced.

10

 1 mutate(a_post:IV_POSTCONDITION; a_loop: ARRAY[IV_BLOCK]):
LINKED_LIST[IV_EXPRESSION]

 2 --Adapted from paper "Inferring Loop Invariants using Postconditions".
 3 local
 4 all_subexpressions: LINKED_LIST[IV_EXPRESSION]
 5 bool_type: IV_BASIC_TYPE
 6 all_types: IV_TYPES
 7 targets_l: LINKED_LIST[IV_EXPRESSION]
 8 --list of all the targets in the loop
 9 constants_l: LINKED_LIST[IV_EXPRESSION]
 10 --list of all_subexpressions minus list of targets
 11 constant: IV_EXPRESSION
 12 --single item of constant_l
 13 variable: IV_EXPRESSION
 14 --same as in paper
 15 do
 16 create Result.make
 17 Result.force (a_post.expression)
 18 create all_subexpressions.make
 19 create all_types
 20 all_subexpressions.append (subexp (a_post.expression,

all_types.bool))
 21 all_subexpressions.append (subexp (a_post.expression,

all_types.int))
 22 all_subexpressions.append (subexp (a_post.expression,

all_types.real))
 23 all_subexpressions.append (subexp (a_post.expression,

all_types.heap_type))
 24 targets_l := targets (a_loop.item (2))
 25 create constants_l.make
 26 [..] -- fill constants_l with subexpressions which aren't targets.
 27 across constants_l as cs loop
 28 constant := cs.item
 29 across targets_l as ts loop
 30 variable := ts.item
 31 if options.is_coupled_mutations_enabled then
 32 Result.append (coupled_mutations (a_post, constant,

variable, a_loop))
 33 end
 34 if options.is_uncoupled_mutations_enabled then
 35 Result.append (uncoupled_mutations (a_post, constant,

variable, a_loop))
 36 end
 37 end
 38 end
 39 Result := remove_duplicates (Result)
 40 end

Code 2: The postcondition mutation algorithm

11

3.2.1 Generating coupled and uncoupled mutations

The actual implementations of both functions are shown in Code 3. Coupled_mutations first

replaces every occurrence of a_constant in a_post with a_variable and adds this new expression

to the Result list (line 9). In the next line the variable is then aged, which results in a list of new

variables. For each one of these new variables the same replacement strategy is chosen again as

in the beginning (lines 11-13).

As described in section 2.1, uncoupled_mutations has to replace each occurrence of the constant

one by one, without changing the other occurrences. The loop which starts in line 25 replaces one

occurrence after the other by a_variable and its mutations, each time generating a new expression

and adding it to the Result list (lines 31-35). Once the generated expression is equal to the

postcondition, we know that nothing has been replaced, and the loop can stop (lines 27-29).

12

1 coupled_mutations(a_post: IV_POSTCONDITION; a_constant, a_variable:
IV_EXPRESSION;a_loop: ARRAY[IV_BLOCK]): LINKED_LIST[IV_EXPRESSION]

 2 --Adapted from paper "Inferring Loop Invariants using Postconditions".
 3 --a_loop is passed because it is needed when aging is called.
 4 local
 5 aged_variable: IV_EXPRESSION
 6 all_aged_variables: LINKED_LIST[IV_EXPRESSION]
 7 do
 8 create Result.make--line 5
 9 Result.force(replace_all (a_post, a_constant, a_variable))
 10 all_aged_variables := aging (a_variable, a_loop)
 11 across all_aged_variables as av loop
 12 Result.force (replace_all (a_post, a_constant, av.item))
 13 end
 14 end
 15

 16 uncoupled_mutations(a_post: IV_POSTCONDITION; a_constant, a_variable:
 IV_EXPRESSION; a_loop: ARRAY[IV_BLOCK]): LINKED_LIST[IV_EXPRESSION]

 17 local
 18 index: INTEGER
 19 expression_replaced: IV_EXPRESSION
 20 --the expression of a_post, with the i'th occurrence of

a_constant replaced by a_variable (i'th = index)
 21 aged_variables: LINKED_LIST[IV_EXPRESSION]
 22 do
 23 create Result.make
 24 index := 1
 25 from
 26 expression_replaced := replace_nth (a_post, a_constant,

a_variable, index, a_loop)
 27 until
 28 --loop until nothing is replaced, so until replace_nth returns the

 same result
 29 expression_replaced.is_deep_equal(a_post.expression)
 30 loop
 31 expression_replaced := replace_nth (a_post, a_constant,

a_variable, index, a_loop)
 32 Result.force (expression_replaced)
 33 aged_variables := aging (a_variable, a_loop)
 34 across aged_variables as av loop
 35 Result.force (replace_nth (a_post, a_constant, av.item,

index, a_loop))
 36 end
 37 index := index + 1
 38 end
 39 end

Code 3: Implementations of coupled and uncoupled mutations.

13

3.2.2 Aging variables

 aging(a_variable: IV_EXPRESSION; a_loop: ARRAY[IV_BLOCK]):

LINKED_LIST[IV_EXPRESSION]
 2 local
 3 bin: IV_BINARY_OPERATION
 4 val: IV_VALUE
 5 t: IV_BASIC_TYPE
 6 do
 7 create Result.make
 8 if options.is_aging_enabled then
 9 if a_variable.type.is_integer then
 10 create t.make_integer
 11 create val.make ("1", t)
 12 create bin.make (a_variable.twin, "-", val, t)
 13 Result.force (bin)
 14 create bin.make (a_variable.twin, "+", val, t)
 15 Result.force (bin)
 16 end
 17 end
 18 end

Code 4:Implementation of the aging algorithm.

The aging feature performs a very simple task in the current implementation. If the value it

receives as an expression is of type INTEGER, it creates two new expressions of type

IV_BINARY_EXPRESSION (lines 12, 14). The first is the variable minus one; the second is the

variable plus one. It then returns these two expressions in a linked list. The if statement in line 8

makes sure the code is only executed if the option is selected in the GUI.

3.2.3 Checking if a formula is an invariant of a loop

This feature first clones the universe so that the universe used by AutoProof is not changed and

then attaches the formula as an invariant to the desired loop in the new universe (lines 14-16).

Lines 17 through 25 then make use of AutoProof’s API. Boogie code is generated based on the

new universe and a verifier is called on this code. The result of the verifier is then stored in res. If

the result shows that either no feature returned an error (line 27), or at least the feature which

contains the loop with the new invariant returned no error (line 33), then we know that a_formula

is an invariant of a_loop. Otherwise we have to inspect each error message separately (lines 38,

43). If the code of any error message indicates that the invariant failed, then a_formula is not

considered to be an invariant of the loop (line 46).

The codes in line 45 are the ones which are generated in the feature create_error of the class

E2B_OUTPUT_PARSER.

14

 is_invariant(a_formula: IV_EXPRESSION; a_loop: ARRAY[IV_BLOCK]): BOOLEAN
2 --returns True iff a_formula is an invariant of a_loop.
3 local
4 ver: E2B_VERIFIER
5 gen: E2B_BOOGIE_GENERATOR
6 ver_input: E2B_VERIFIER_INPUT
7 new_universe: IV_UNIVERSE
8 res: E2B_RESULT
9 attacher: IV_ATTACH_INVARIANT
10 --visitor to attach invariant to a_loop in the universe.
11 do
12 -- Attach invariant and launch Boogie verifier
13 Result := False
14 new_universe := universe.deep_twin
15 create attacher.make (a_loop.item (1), a_formula)
16 new_universe.process (attacher)
17 create gen.make (new_universe)
18 gen.generate_verifier_input
19 ver_input := gen.last_generated_verifier_input
20 ver := Void
21 create ver.make
22 ver.set_input (ver_input)
23 ver.verify
24 ver.parse_verification_output
25 res := ver.last_result
26

27 if res.failed_count = 0 and res.verified_count > 0 then
28 --it must be an invariant, since no errors were detected anywhere.

 if both are 0 then something failed.
29 Result := True
30 else
31 --find out in which procedure a_loop is, then check if that

procedure is in the verified list. if so, set Result to True.
32 across res.verified_procedures as verified_procs loop
33 if (not (attacher.attached_to_procedure = Void)) and then

(attacher.attached_to_procedure.name.is_equal
(verified_procs.item.procedure_name)) then

34 Result := True
35 end
36 end
37 end
38 if (not Result) and not (res.failed_count = 0 and

res.verified_count = 0) then
39 -- Until now it was only added it if the whole feature didn't have

 any errors.
40 -- So if anything couldn’t be proven, it wasn't added.
41 -- Add check here to see if no invariant was found to be false.
42 Result := true –set false once an error is found.
43 across res.verification_errors as ver_errors loop
44 across ver_errors.item.errors as errs loop
45 if errs.item.code ~ "BP5004" or errs.item.code ~

"BP5005" or errs.item.code ~ "BP5001loop_inv" then
46 Result := false
47 end
48 end
49 end
50 end
51 end

Code 5: Implementation of the feature which tests if a_formula is a valid invariant of a_loop with a verifier.

15

3.3 Implementation challenges
During the process of development of the code, several challenges came up. The main ones are

presented here together with their solutions.

- While AutoProof’s intermediate AST representation of the Eiffel code brings many

advantages to the current implementation, it also presents some challenges. The AST is

originally constructed to produce Boogie code from it. So once an invariant is found, it

must be translated back to Eiffel Syntax, which isn’t always trivial. For example correctly

translating from Boogie’s “forall” structure to Eiffel’s equivalent, which is an “across”

structure. An API to handle this translation is presented in section 6.1.

- The feature is_invariant calls a verifier to check if an expression is a valid invariant of a

loop. If the feature which is being checked has no other errors, this decision is easy since

the verifier returns no errors. If one or more errors are found, these errors must be

inspected to see if they are relevant to the attached invariant. The current implementation

looks at the codes of the error code, which are generated in the class

E2B_OUTPUT_PARSER, to see if an invariant failed. This however requires that there

are no other faulty invariants in the original Eiffel code which is being analyzed. It would

be possible to remove all other invariants; however this then has the disadvantage that a

removed invariant might be needed to prove the correctness of the current invariant,

which would fail in this case.

16

4 Integration within AutoProof’s UI and its usage

This section demonstrates how a developer can make use of the automatic invariant generation by

postcondition mutation within EVE.

First, AutoProof’s window needs to be opened. This can be done under View -> Tools ->

AutoProof.

The usage of the postcondition mutation algorithm is integrated within AutoProof’s window. In

the options section, four options relevant to postcondition mutation can be set or disabled. The

“Postcondition Mutation” option is the main entry. The postcondition mutation and invariant

generation algorithm will only be executed if this option is set. If it is disabled, the algorithm will

not be executed, regardless of whether the following three options are set:

- With coupled mutations

- With uncoupled mutations

- With aging.

These options define if their corresponding parts of the algorithm should be executed (see section

3). This means for example the coupled mutations will only be generated, if its option is set. The

aging option is the only one of these three which is dependent on the other two. It will only

generate more candidates if coupled mutations or uncoupled mutations (or both) is selected. Each

part can potentially generate more invariant candidates. However, each candidate needs to be

checked by Boogie which can increase the running time. This increase can be a few seconds up to

a few minutes per candidate. Depending on which mutation options are selected, and on the

postcondition which is currently being mutated, usually between one to about fifty candidates are

generated (Of course there might be a lot more, for example if the postcondition has many

replaceable sub expressions). It is therefore advised to first have fewer mutations generated, and

increasing the number if no desired invariant is found. By default, only the options for

postcondition mutation and coupled mutations are set, while the other two are disabled.

17

Figure 1: The default selection of the options of the postcondition mutation algorithm within AutoProof's
window.

Figure 2: Automatically generated loop invariants using coupled mutations and aging are presented within
AutoProof’s window. The term “local1” in the first generated invariant must be replaced by i before copying

it into the Eiffel code as an invariant. Once the invariant is inserted, AutoProof is then also able to
successfully verify the postcondition of this feature, so the whole feature is verified.

18

To execute the automatic generation of invariants, one can press the “Prove” button once all the

wanted options are selected. EiffelStudio will then be unresponsive while all the selected tasks

are performed. Once AutoProof is finished, it will display which features could or couldn’t

successfully be verified. Alongside this information, each feature for which one or more loop

invariant was generated can be expanded to display the generated invariant. These invariant then

belong to some loop within the feature. They are in Eiffel’s syntax, so they can easily be copied

into the code. One small adjustment still needs to be made, which is replacing terms of the form

“locali”, where i is a number. The term “local3” for example would have to be replaced by the

third local variable which was defined under the local clause of that feature.

19

5 Evaluation

Several experiments were performed to demonstrate the correct functionality of the

implementation. The results are presented in Table 1.

Procedure LOC # LP M.V. CND INV REL T SRC

max_paper 18 1 1 2 29 4 1 59 [2]

max_v2_paper 17 1 1 2 29 4 1 70 [2]

max_in_array 30 1 1 2 21+37+29 4 2 172

add 20 1 1 2 9 1 1 20

welfare_crook 33 1 1 3 49 25 20 107 [3]

seq_search_v1 30 1 1 3 13+13+49 11 6 136 [3]

seq_search_v2 27 1 1 1 25+17 16 1 86 [3]

dutch_flag 74 1 1 5 9+17+65+57+49 18 7 458 [3]

sum_and_max 30 1 1 3 7 1 1 22

Table 1. Performed experiments.

The table should be read as follows:

LOC denotes how many lines of code the test cases contain. The total number of loops that an

experiment contains can be found in the # coloumn, while the maximum amount of nested loops

within a feature is denoted as LP. M.V. says how many variables are modified by the loop. CND

denotes how many different mutations were created per postcondition, i.e. how many invariant

candidates there were, while INV is the number of candidates that passed the test and are

therefore valid invariants. The next coloumn, REL, then has the amount of these valid invariants,

which are actually relevant to the code e.g. excluding tautological expressions. The second to last

coloumn, T, denotes the running time that passed from starting the mutation in the GUI, until

AutoProof finished. SRC refers to the source where the example was found. In some instances

the examples are translated from other programming languages to Eiffel. The experiments which

are adapted from [3] were originally written in Boogie processed with gin-pink. Their original

results can be found in [2].

The experiments are executed on an Intel Core 2 Quad CPU Q9400 @2.66GHz running windows

7 64-bit operating system, using EVE based on EiffelStudio 7.2.0.0 GPL Edition. All options

within the postcondition mutation algorithm were activated in each case. In most cases this isn’t

necessary to find the invariant.

Comments on some of the test cases:

max_paper: once the generated invariant is added, AutoProof can successfully prove the routine.

max_v2_paper: once the generated invariant is added, AutoProof can successfully prove the

routine.

max_in_array: once BOTH relevant generated invariants are added, AutoProof can successfully

prove the routine.

sum_and_max: AutoProof can only verify the generated invariant if the other two invariants in

the code are provided.

20

In some cases, invariants were generated correctly based on the mutations, but were not presented

to the developer because AutoProof could not verify the generated invariants to be correct, even

if the invariants are manually inserted into the Eiffel code. These results are presented in Table 2.

Procedure LOC # LP M.V. CND INV REL T SRC

mjrty 48 1 1 2 25+28 2 0 251 [3]

partition1 48 1 1 3 55 0 0 132 [3]

Table 2: Test cases for which invariants were correctly generated based on the specifications of the
postcondition mutation algorithm, but couldn’t be verified due to AutoProof’s limitations.

21

6 Postcondition mutation API
The implementation offers several functions to be used in the form of an API. The useful classes

and their features are presented in this section.

6.1 IV_EXPRESSION_2_EIFFEL_POSTCONDITION

This class is designed to take an IV_EXPRESSION and generate a string that represents this

expression using Eiffel Syntax. The usage form is as follows:

feature

 converter(e: IV_EXPRESSION): STRING

 local

 printer: IV_EXPRESSION_2_EIFFEL_POSTCONDITION

 do

 create printer.make

 converter.process(printer)

 Result := printer.output

 end

Code 6: How to use an object of type IV_EXPRESSION_2_EIFFEL_POSTCONDITION. If printer is
needed again later, printer.reset must be called first.

6.2 IV_EXPRESSION_REPLACER

This class is designed to replace a sub-expression of a given expression by a different sub-

expression. The expression that should be processed must be of type {IV_EXPRESSION}. The

input expression itself will not be changed, only analyzed and copied, and a new output

expression is generated which has the correct expressions replaced. The interesting functions are

presented in the following subsections.

6.2.1 Creation procedure

 make_nth(a_post_expression: IV_EXPRESSION; a_old, a_new: IV_EXPRESSION;

a_n_th: INTEGER)
 -- replace the a_n_th occurence of a_old in a_post with a_new

 -- if a_n_th is <=0, replace all occurences of a_old

To create an object of type IV_EXPRESSION_REPLACER, this must be called.

a_post_expression is the main expression, of which sub-expressions should be replaced. a_old is

the sub-expression which should be replaced by the new sub-expression, a_new. If a_n_th is set

22

to be less or equal to zero, all occurrences of a_old in a_post_expression will be replaced by

a_new. Otherwise only the a_n_th occurrence will be replaced.

6.2.2 Output
Once this object is created, it can be used to process an object of type {IV_EXPRESSION} since

it inherits from {IV_EXPRESSION_VISITOR}. The newly generated expression with the replaced

sub-expressions is then stored in output, where it can be accessed.

6.2.3 Example
An example of how to use an object of this type is presented in the following code block.
 replace_all(a_post: IV_POSTCONDITION; a_old, a_new: IV_EXPRESSION):

IV_EXPRESSION
 -- replace every ocurrence of a_old in a_post with a_new
 -- uses class IV_EXPRESSION_REPLACER
 local
 replacer: IV_EXPRESSION_REPLACER
 do
 create replacer.make_nth (a_post.expression, a_old, a_new, 0)
 a_post.expression.process (replacer)
 Result := replacer.output
 end

Code 7 shows an example of how to use the class IV_EXPRESSION_REPLACER. This feature is taken
from the class IV_MUTATOR.

6.3 IV_MUTATOR

This is the class where the main algorithm lies and most of the computation is performed. A

detailed explanation was given in section 3. The interesting features that can be used as part of

the API are presented here.

6.3.1 Creation procedure

make (a_universe: IV_UNIVERSE; a_options: E2B_OPTIONS)

When creating an object of this type, this feature must be called. The first argument delivers the

intermediate AST representation that should be analyzed. The second argument is used to check

which parts of the algorithm should be executed. If it should be different options than what are

selected in the GUI, a new object can be created. The flags in the class E2B_OPTIONS that are

relevant and must be set accordingly are:

- is_postcondition_mutation_enabled

- is_coupled_mutations_enabled

- is_aging_enabled

- is_uncoupled_mutations_enabled

By default the first two are set to true, while the other two are set to false in the creation feature.

23

In the current implementation all the arguments are generated by AutoProof and passed on in the

creation procedure of the class E2B_VERIFY_TASK.

6.3.2 Processing an implementation which contains a loop and postcondition
process_implementation (a_implementation: IV_IMPLEMENTATION)
 -- Process implementation `a_implementation'.
 -- this should be the first feature called after creation.

This is the feature that executes the main algorithm. It should usually be called right after the

creation procedure. After this is executed, all the generated invariants are stored in the output

feature. The argument should be an object that represents an implemented feature and is within

the universe. The feature it represents should also contain one or more loops and postconditions.

Executing this feature might have a long running time, since several invariant candidates might

be generated and checked with Boogie, similar to executing the algorithm from within the GUI.

6.3.3 Generating all mutations

mutate(a_post:IV_POSTCONDITION; a_loop: ARRAY[IV_BLOCK]):

LINKED_LIST[IV_EXPRESSION]

This feature is automatically called within process_implementation, but can also be called

separately later on. It is used to generate mutations of the postcondition that is passed as the first

argument for the loop that is passed as the second argument. The Result contains all the mutated

expressions. These have not yet been checked if they are actually invariants of the loop.

6.3.4 Checking if an expression is a valid loop invariant

is_invariant(a_formula: IV_EXPRESSION; a_loop: ARRAY[IV_BLOCK]): BOOLEAN
 --returns True iff a_formula is an invariant of a_loop.

This feature returns true if and only if a_formula is an invariant of the loop represented by the

second argument. Calling it can be very time consuming, since Boogie code is generated and

checked with a verifier.

6.3.5 Generating coupled and uncoupled mutations
The signatures of the features are as follows:

coupled_mutations(a_post: IV_POSTCONDITION; a_constant, a_variable:

IV_EXPRESSION;a_loop: ARRAY[IV_BLOCK]): LINKED_LIST[IV_EXPRESSION]

uncoupled_mutations(a_post: IV_POSTCONDITION; a_constant, a_variable:

IV_EXPRESSION; a_loop: ARRAY[IV_BLOCK]): LINKED_LIST[IV_EXPRESSION]

These features are used to generate coupled and uncoupled mutations of the expression of a_post.

The Result is a linked list of all mutated expressions.

24

6.3.6 Extracting sub-expressions

subExp(an_expression: IV_EXPRESSION; a_type:IV_TYPE):

LINKED_LIST[IV_EXPRESSION]

Returns a list of expressions that are sub-expressions of an_expression and of type a_type.

6.3.7 Other features
Various features which are accessible within the same package are presented here. These can all

be used once the creation procedure and the feature process_implementation both have been

called.
body: IV_BLOCK
 --body of the implementation
contracts: LINKED_LIST [IV_CONTRACT]
 --all the contracts of this implementation.
postconditions: LINKED_LIST [IV_POSTCONDITION]
 --list of copy of all the postconditions of this implementation.
outer_loops: LINKED_LIST [ARRAY[IV_BLOCK]]
 --list of outer loops in the procedure. Each loop is saved as an array

 of 3 items, loop_head_X, loop_body_(X+1), loop_end_(X+2)
all_loops: LINKED_LIST [ARRAY[IV_BLOCK]]
 --list of all loops (inner and outer) in the procedure. Each loop is

 saved as an array of 3 items, loop_head_X, loop_body_(X+1),

 loop_end_(X+2)
universe: IV_UNIVERSE
 --the complete universe that the AST for this implementation was taken

 from.

6.4 IV_POSTCONDITION_MUTATION

This class is built as a visitor and inherits from both IV_UNIVERSE_VISITOR and

IV_STATEMENT_VISITOR. It visits the main nodes of the universe, and once an implementation

node is found which contains a loop, it calls an object of type IV_MUTATOR on it to generate

loop invariants. Once this is done, this class is also responsible for displaying the found invariants

in AutoProof’s window, as seen in the following subsection.

6.4.1 Displaying an invariant for the user

display_invariant(a_implementation: IV_IMPLEMENTATION; a_output:

LIST[IV_EXPRESSION])
 --displays the generated invariants on the screen, in AutoProofs

 window. a_implementation is the implementation of the procedure that

 the inviariant belongs to.

25

This feature is responsible for displaying the generated loop invariables within AutoProof’s

windows. It does so by adding the generated invariants to the object of type E2B_VERIFIER,

which is used by AutoProof to display the results. If the results should be displayed in a different

manner, this feature can be adjusted accordingly.

26

7 Conclusions
The current implementation fulfills the goal of integrating an automatic invariant inference from

postcondition mutations algorithm by using the techniques presented in [2]. A developer using

EVE can launch the procedure within AutoProof’s GUI without having any further knowledge of

how the inference works, by just selecting all the options. A more knowledgeable developer

might leave certain options unchecked, so that the process might be sped up by not creating as

many mutations, and later using other options if no invariant was found.

Furthermore an API is presented in section 6 which offers some additional functionality to those

available in the GUI. This allows the functionality of the current implementation to be used and

extended later on.

The main challenges which were met during development are:

- Understanding how AutoProof’s intermediate AST representation is built up. Once this

learning process was done, the additional functionality that was gained was very helpful

and sped up the overall implementation time.

- Finding a way to translate the intermediate representation back to Eiffel syntax, so it can

be presented to the developer.

Several non-trivial ways in which the current implementation might be enhanced or altered are:

- The aging algorithm could be optimized to actually find the value a variable had in the

last execution of the body.

- A generated invariant might be a tautology, in which cases the current implementation

presents it to the developer as an invariant. The developer should then notice this and not

add it as an invariant, since it doesn’t help. However, even if it is added, it shouldn’t

affect any proof of correctness of the program.

- Since Boogie isn’t complete in the sense that it cannot always find a proof even if there is

one, some invariants might not be presented to the developer although they are generated

correctly. The implementation could differentiate between invariants which are proven to

be false, and those for which Boogie can find no proof, and present the latter to the

developer to make the final decision.

- If there is a ‘check’ instruction directly after a loop, this function could be treated as the

loop’s postcondition and be mutated together with the feature postconditions.

27

8 Appendix
8.1 Source code of the test cases that were used for evaluation

All the source codes which were used during the evaluation are presented here. Invariants which

are in the code are needed for AutoProof to be able to verify the procedures. Some features are

commented out and replaced by equivalent inline postconditions to enable AutoProof to verify

the feature.
 max_Paper(a: ARRAY[INTEGER]; n: INTEGER):INTEGER

 require

 size_of_array_is_n: a.count = n

 n_positive: n>=1

 local

 i: INTEGER

 do

 from i:=0; Result := a[1];

 until i>= n

 loop

 i:= i+1

 if Result <= a[i] then

 Result := a[i]

 end

 end

 ensure

 across 1 |..| n as j all a[j.item] <= Result end

 end

 max_v2_Paper(a: ARRAY[INTEGER]; n: INTEGER):INTEGER

 require

 size_of_array_is_n: a.count = n

 n_positive: n>=1

 local

 i: INTEGER

 do

 from i:=1; Result := a[1];

 until i> n

 loop

 if Result <= a[i] then

 Result := a[i]

 end

 i:= i+1

 end

 ensure

 across 1 |..| n as j all a[j.item] <= Result end

 end

28

max_in_array (a: ARRAY [INTEGER]): INTEGER

 note

 pure: True

 require

 a /= Void

 a.count > 0

 local

 x, y: INTEGER

 do

 from

 x := 1

 y := a.count

 invariant

 y >= x

 across 1 |..| x as i all a[i.item] <= a[x] or a[i.item] <=

a[y] end

 across y |..| a.count as i all a[i.item] <= a[x] or a[i.item]

<= a[y] end

 until

 x = y

 loop

 if a[x] <= a[y] then

 x := x + 1

 else

 y := y - 1

 end

 end

 Result := x

 ensure

 1 <= Result and Result <= a.count

 across 1 |..| a.count as i all a[i.item] <= a[Result] end

 across a as i all i.item <= a[Result] end

 end

29

 add (a, b: INTEGER): INTEGER

 require

 a > 0

 b > 0

 local

 i: INTEGER

 do

 from

 Result := a

 i := 0

 invariant

 Result = a + i

 until

 i >= b

 loop

 Result := Result + 1

 i := i + 1

 end

 ensure

 Result = a + b

 end

30

 p_f, p_g, p_h: INTEGER

 find_crook(left:INTEGER; F,G,H: ARRAY[INTEGER])

 require

 left >= 1

 left <= F.count

 left <= G.count

 left <= H.count

 F /= Void

 G /= Void

 H /= Void

 local

 do

 from p_f := left-1;

 p_g := left-1;

 p_h := left-1;

 until (not (F[p_f+1] /= G[p_g+1] or G[p_g+1] /= H[p_h+1]))

 loop

 if F[p_f+1] < G[p_g+1] then

 p_f := p_f + 1;

 else

 if G[p_g+1] < H[p_h+1] then

 p_g := p_g + 1;

 else

-- check H[p_h+1] < F[p_f+1] end

 p_h := p_h + 1;

 end

 end

 end

 ensure

 en1: p_f+1 >= left and p_g+1 >= left and p_h+1 >= left;

 end

31

 --return values
 found: BOOLEAN
 p: INTEGER
 seq_search (a: ARRAY[INTEGER]; n: INTEGER; v: INTEGER)
 require
 n>=0
 local
 i: INTEGER
 do
 i:= 1
 found:= False
 from
 invariant

 until not (i <= n and (not found))
 loop
 if a[i]=v then
 p:=i
 found := True
 else
 i := i + 1
 end
 end
 ensure
 (not found) or (a[p] = v)
 (not found) or (1 <= p and p <= n)
-- found or not_exists (v, a, 1, n)
 found or across 1 |..| n as j all a[j.item] /= v end
 end
-- not_exists(v: INTEGER; a: ARRAY[INTEGER]; low, high: INTEGER): BOOLEAN
-- do
-- Result := across low |..| high as j all a[j.item] /= v end
-- end

32

 found: BOOLEAN

 p: INTEGER

 seq_search_v2 (a: ARRAY[INTEGER]; n: INTEGER; v: INTEGER)

 require

 n>=0

 n <= a.count

 local

 i: INTEGER

 do

 found:= False

 from i:= 1

 invariant

 true

-- not not across 1 |..| n as i25 all a[i - 1] /= v end

 until i > n or else (A[i] = v)

 loop

 i := i + 1;

 end

 if i <= n then

 p := i;

 found := true;

 end

 ensure

 not (not (across 1 |..| n as j all a[j.item] /= v end)) or

(found and a[p] = v) -- not exists, or found

 (not (across 1 |..| n as j all a[j.item] /= v end)) or (not

found) --exists or not found.

 end

33

--colors defined as 0: blue, 1:white, 2:red.
is_flag_color(i:INTEGER):BOOLEAN
 do
 Result := i = 0 or i = 1 or i = 2
 end
b:INTEGER
r:INTEGER
--invariant might not be maintained.
make_flag(a:ARRAY[INTEGER]; n: INTEGER): ARRAY[INTEGER]
 require
 n>=1
 n<=a.count
-- is_flag_color_array(a,1,n)
 across 1 |..| n as curr all is_flag_color(a[curr.item]) end
 local
 i: INTEGER
 tmp: INTEGER --used for swap
 do
 Result:= a
 from
 b:=1
 i:=1
 r:= n+1
 invariant

-- across 1 |..| (b-1) as curr all Result[curr.item] = 0 end
-- across b |..| (r-1) as curr all Result[curr.item] = 1 end
-- across r |..| n as curr all Result[curr.item] = 2 end
 until
 i>=r
 loop
 if (Result).item(i)=0 then
 --swap
 tmp:=(Result).item(i)
 (Result).item(i):= (Result).item(b)
 (Result).item(b) := tmp

 i:= i+1
 b:= b+1
 else
 if (Result).item(i) = 1 then
 i := i + 1
 else
 r:= r-1
 --swap
 tmp:=(Result).item(i)
 (Result).item(i):= (Result).item(r)
 (Result).item(r) := tmp

 end
 end
 end
 ensure
 min_b: 1<=b
 b_min_r: b<=r
 r_min_n: r<=n+1
 blue: across 1 |..| (b-1) as curr all Result[curr.item] = 0 end
 white: across b |..| (r-1) as curr all Result[curr.item] = 1 end
 red: across r |..| n as curr all Result[curr.item] = 2 end

34

-- monochrome (Result, 1, b-1, 0)
-- monochrome (Result, b, r-1, 1)
-- monochrome (Result, r, n, 2)
 end
-- --gives semantic error in output.bpl
-- monochrome(a: ARRAY[INTEGER]; low:INTEGER; high: INTEGER; col:

INTEGER):BOOLEAN
-- require
-- is_flag_color(col)--needed?
-- do
-- Result:= across low |..| high as curr all a[curr.item] = col end
-- end

----gives semantic error in output.bpl
--is_flag_color_array(a:ARRAY[INTEGER]; low: INTEGER; high: INTEGER): BOOLEAN

-- do
-- Result:= across low |..| high as curr all is_flag_color(a[curr.item])

end
-- end

35

-- invariants were generated correctly, but could not be verified by Boogie,

even if they were inserted into the code.

-- only two tautologies were verified

cnt (c:INTEGER; a: ARRAY[INTEGER]; min: INTEGER; max: INTEGER):INTEGER

 require

 1 <= min and min <= a.count

 1 <= max and max <= a.count

 local

 i: INTEGER

 do

 from

 Result := 0

 i:= min

 until i > max

 loop

 if a[i] = c then

 Result := Result + 1

 end

 i:= i+1

 end

 end

cand: INTEGER

count: INTEGER

mjrty(a: ARRAY[INTEGER]; n: INTEGER)

 require

 n >= 0;

 local

 i,k: INTEGER

 do

 i := 0

 count := 0

 from

 until i >= n

 loop

 i:= i+1

 if count = 0 then

 count := 1;

 cand := A[i];

 else

 if A[i] = cand then

 count := count + 1;

 else

 count := count - 1;

 end

 end

 end

 ensure

 across a as all_els all (cnt(all_els.item,a,1,n) <= cnt(cand,a,1,n))

end

 --exists...:

 (across a as all_els all 2*cnt(all_els.item, a, 1, n) <= n end) or

(2*cnt(cand, a, 1, n) > n)

 end

36

-- invariant correctly generated but AutoProof cannot verify it, even if it is

added to code.
 index: INTEGER
 partition1 (a: ARRAY[INTEGER]; left : INTEGER; right: INTEGER; pivot:

INTEGER): ARRAY [INTEGER]
 -- partitions TODO
 require
 left <= right
 local
 i: INTEGER
 temp: INTEGER
 do
 Result := a
 i := left
 index := left

 from
 until i > right
 loop
 if Result[i] < pivot then
 temp := Result[i] --swap
 Result[i]:=Result[index]
 Result[index]:= temp
 index := index + 1
 end
 i := i + 1
 end

 ensure
-- across left |..| min (index, right) as k all Result[k.item] <=

pivot end -- doesnt work
 across left |..| index as k all (left > right) or Result[k.item]

<= pivot end --doesnt work
-- across left |..| (index - 1) as k all a[k.item] < pivot end --this

one works..
 -- is_LT_pivot (pivot, Result, left, right, index)
 end

 min(a,b:INTEGER):INTEGER
 do
 if a<b then
 Result := a
 else
 Result := b
 end
 ensure
 Result <= a and Result <= b
 end

 -- is_LT_pivot (pivot: INTEGER; a: ARRAY[INTEGER]; left: INTEGER; right:

INTEGER;index_l: INTEGER): BOOLEAN
 -- require
 -- left <= right --TODO adjust this.
 -- do
 -- Result := across left |..| (index_l - 1) as k all a[k.item] <

pivot end
 -- end

37

 sum, max: INTEGER

 sum_and_max (a: ARRAY [INTEGER])
 note

 framing: False
 require
 a /= Void
 a.count > 0
 across a as ai all ai.item >= 0 end
 local
 i: INTEGER
 do
 from --loop_head_6
 i := 1
 sum := 0
 invariant

-- 1 <= i and i <= a.count + 1
 across 1 |..| (i-1) as ai all a[ai.item] <= max end
 across a as ai all ai.item >= 0 end
-- sum <= (i-1) * max
 until
 i > a.count
 loop
 sum := sum + a[i]
 if a[i] > max then
 max := a[i]
 end
 i := i + 1
-- variant
-- a.count - i + 1
 end
-- check sum <= a.count * max end
 ensure
 sum <= a.count * max
 end

9 References

[1] "EVE," [Online]. Available: https://trac.inf.ethz.ch/trac/meyer/eve. [Accessed 28 June 2013].

[2] C. A. Furia and B. Meyer, Inferring Loop Invariants Using Postconditions In Fields of Logic
and Computation: Essays Dedicated to Yuri Gurevich on the Occasion of His 70thBirthday.
Lecture Notes in Computer Science, 6300:277-300, Springer, 2010.

[3] "gin-pink," [Online]. Available: http://se.inf.ethz.ch/people/furia/software/gin-pink.html.
[Accessed 28 June 2013].

[4] "Boogie," [Online]. Available: http://research.microsoft.com/en-us/projects/boogie/. [Accessed
28 June 2013].

[5] J. Tschannen, C. A. Furia, M. Nordio and B. Meyer, "Usable Verification of Object-Oriented
Programs by Combining Static and Dynamic Techniques," 2011.

[6] J. Tschannen, "Automatic verification of Eiffel programs. Master's Thesis.," ETH, 2009.

38

