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Abstract 
 

Loop invariants play a major role in automatic verification of programs. Finding a suiting loop 

invariant can however be rather difficult. This thesis presents an implementation of automatic 

loop invariant inference based on postcondition mutation integrated directly within EVE. EVE is 

a development environment built on top of EiffelStudio. It integrates verification techniques 

within the IDE. Autoproof is a tool within EVE which delivers static verification based on Hoare-

style proofs using Eiffel’s contracts. The implementation presented in this thesis provides an 

additional tool within AutoProof, so that a developer can execute the postcondition mutation 

algorithm and obtain invariants without having any further knowledge about the implementation.   
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1 Introduction 
 

To prove that a feature is correct, it must be shown that the feature terminates, that for each 

feature which is called by this feature, its pre-conditions are not violated, and that once the called 

feature terminates, its postconditions are fulfilled. No universal algorithm can exist which would 

perform this proof for every feature. Having invariants attached to loops can help automate this 

proof in various cases. However, finding a loop invariant can be rather cumbersome for a 

developer, which is why they are often omitted in practice. With this thesis I aim to integrate 

automatic loop invariant generation within the verification environment EVE. 

 

EVE [1] is a development environment built on top of EiffelStudio. It integrates verification 

techniques within the IDE. Autoproof is a tool within EVE which delivers static verification 

based on Hoare-style proofs using Eiffel’s contracts.
1
  

Among other contracts, Eiffel supports the notions of both postconditions for features and 

invariants for loops. The goal of this thesis is to implement loop invariant inference from 

postcondition mutation for Eiffel and integrate the solution within the Autoproof mechanism of 

EVE. To achieve this, the algorithm presented in [2] was adopted. To date, a command line 

solution which operates on annotated Boogie code is available at [3]. 

Once a developer using EVE decides to launch the postcondition mutation algorithm presented 

here, the following is supposed to happen: Postconditions of features that contain loops are 

mutated based on heuristics to generate invariant candidates for each loop in that feature. The 

Boogie verifier [4] is then used to test each candidate if it is an invariant of some loop. The 

candidates which pass the test are then presented in Autoproof’s window. This allows developers 

to add automatically generated invariants to their loops. This procedure offers several advantages 

to the developer. The loop invariants can help to understand what exactly is being executed. In 

some instances the automatically generated loop invariants also enable AutoProof to successfully 

prove that a postcondition of the feature never fails. 

 

This thesis will first explain the motivation behind using the implemented inference techniques in 

section 2. In the next section the algorithm behind the invariant generation based on 

postcondition mutation and its implementation are presented. After that section 4 demonstrates 

how a developer using EVE can execute the automatic invariant generation within the IDE, 

before section 5 evaluates the implementation based on several test cases. Thereafter a set of API 

is presented in section 6, which can be used to extend or alter the implemented functionality. In 

the end a conclusion is drawn and ways to further develop the implementation are presented, both 

in section 7. 

  

                                                
1
 http://se.inf.ethz.ch/research/eve/ 

http://se.inf.ethz.ch/research/eve/
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2 Motivation behind inferring loop invariants and overall goals 
 

This section discusses the difficulties within automatic loop invariant generation and the 

reasoning behind using mutated postconditions as loop invariants. Furthermore the heuristics 

behind the algorithm which is presented in section 3 are explained.  

Automatically generating loop invariants is not a trivial task. This implementation focuses on 

inferring the invariants from the postcondtions of features which contain the loop, as suggested in 

[2].  

By definition, a loop invariant must hold at the following points during execution: 

- After the loop is initialized, and before the first execution of the loop; 

- After each consecutive execution of the loop’s body. 

This makes it clear that the loop’s invariant cannot be stricter than its postcondition. Therefore 

trying to infer loop invariants by weakening the loops postcondition is a valid approach. Since 

Eiffel doesn’t have a notion of postconditions for loops, the feature’s postconditions are used. 

This often already yields good results. If the current feature’s post conditions don’t match those 

of the loop, a developer who wants to make use of this automatic loop invariant inference can 

always create a new feature containing just the loop and attach the loops postconditions to that 

new feature. 

An invariant of a loop must not only be weaker than its postcondition, it must be weak enough to 

hold after the initialization and after each consecutive iteration. It must also be strong enough to 

yield the postcondition after the last execution of the loop’s body.  This is why this 

implementation uses the three heuristics which are presented in section 2.1, to mutate 

postconditions in anticipation of finding a valid loop invariant. 

2.1 Heuristics used for postcondition mutation 
2.1.1 Constant relaxation 
Constant relaxation is the notion of replacing one or more constants by a variable. In many cases, 

this leads to a weaker form of the postcondition, which turns out to be a loop invariant. An 

example of this might be the feature max_value which iterates through an array to find the largest 

element in that array, in each iteration updating the maximum value if necessary. (The feature can 

be found in the appendix.) The postcondition reads as: 

across 1 |..| a.count as k all a[k.item] <= max_value end  

By replacing a.count, which is a constant, by the iteration number (denoted i), which is a 

variable, we get a valid loop invariant: 
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across 1 |..| i as k all a[k.item] <= max_value end  

Since we only look at elements of the array up to the i’th position, this is indeed a weakened form 

of the postcondition, which looks at all elements.  

In the algorithm, this heuristic is used in the two features which perform coupled- and uncoupled-

mutations. 

2.1.2 Uncoupling 
This notion is used in the feature which performs uncoupled mutations. Instead of replacing every 

occurrence of a constant, each occurrence is treated separately. In some instances this lead to 

additional invariants. 

 

2.1.3 Variable aging 
When a variable is aged, it is replaced by the value that the variable had one iteration earlier. For 

example if we have a loop that in each execution performs the task i := i + 1, and i is not 

changed in any other way, then aging(i) would return the expression i -1. 

The current implementation creates two mutations for each variable which needs to be aged; 

either by once decreasing the value by one, or by once incrementing the value by one. In practice 

this often achieves aging. A more sophisticated aging algorithm might be added to the algorithm 

at a later time. An example where this yields a correct result can be seen in the feature 

max_v2_paper, which is in the appendix. 
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3 Inferring loop invariants from postconditions: The algorithm and 
its implementation 

 

This section demonstrates and explains the general algorithm as well as the implementation 

behind the loop invariant inference based on postcondition mutation. 

 

The algorithm is adapted from [2] and implemented in Eiffel. The implementation relies on 

AutoProof’s intermediate AST representation of the Eiffel code that needs to be analyzed. This 

approach has the advantage that AutoProof’s existing functionalities can be used as an API, for 

example to check if a mutated postcondition is a valid invariant for some loop. All classes which 

contain the prefix IV_ or E2B_ in their name are part of AutoProof’s implementation, while the 

IV_ prefix specifically denotes classes used in AutoProof’s intermediate representation. For 

consistency, classes added with this implementation also use the prefix when appropriate.  

 

3.1 Main Algorithm 
The main algorithm can be found in the class IV_MUTATOR. It is presented below as Code 1.  
1 invariants():LINKED_LIST[IV_EXPRESSION] 
2         -- This is adapted from the paper "Inferring Loop Invariants using  

 Post-conditions". It is called invariants there. 
3         -- It returns a list of expressions that are invariant of some loop  

 in the procedure. 
4         local 
5             mutations: LINKED_LIST[IV_EXPRESSION] 
6             -- expressions in this list are mutated, but not yet tested if  

     they are valid invariants.  
7             formula: IV_EXPRESSION 
8             any_loop: ARRAY[IV_BLOCK] 
9         do 
10            across postconditions as post loop 
11                across outer_loops as loops loop 
12                    -- compute all mutations of post 
13                    -- according to chosen strategies 
14                    mutations := mutate(post.item, loops.item) 
15                    across mutations as ms loop 
16                        formula:= ms.item 
17                        across all_loops as al loop 
18                            any_loop := al.item 
19                            if is_invariant(formula, any_loop) then 
20                                Result.force (formula) 
21                            end 
22                        end 
23                    end 
24                end 
25            end 
26        end   

Code 1: The main algorithm to find loop invariants by mutating postconditions of a feature. 
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The 10
th

 line of the code loops through all the postconditions of the feature that is currently being 

analyzed. The next line then loops through all outer loops of the feature. Since the targets of an 

inner loop are also targets of its encapsulating outer loop, it is enough to loop through outer loops 

when the mutating feature is called. In line 14, the mutations of the current postcondition are 

generated, using the feature which is presented in section 3.2. Lines 15 through 23 then loop 

through all the generated mutations. Each mutation is attached as an invariant to every loop and 

checked for its validity in line 19 of the code. If it passes this test, it is added to the Result list in 

the next line. How this test is performed is explained in section 3.2.3 

 

3.2 Generating mutations of Postconditions 
 

The code snippet Code 2 shows the overall process of how mutations are generated. The usage of 

this feature within the API is discussed in section 6.3. 

 

This feature takes two arguments. The first is the postcondition which should be mutated. The 

second argument is an array representing a loop. It contains three blocks, the “head”, “body” and 

“end” of a loop. These three items are how loops are stored in AutoProof’s intermediate AST 

representation. The Result of this feature is a linked list of expressions. Each expression 

represents a mutation that is created based on heuristics. The reasoning behind the heuristics used 

in this implementation is further explained in section 2. 

 

Lines 16 and 17 of Code 2 create the Result, which is a list of expressions, and add the 

postcondition itself as a first expression. Lines 18 through 23 are responsible for finding all basic 

sub-expressions of the postcondition. In the 24
th

 line, all expressions which appear as a target of 

an assignment in the body of a_loop are stored in the list targets_l. The next two lines then fill 

the list constant_l with all sub-expressions which aren’t targets. So 

                                           . Lines 27 and 28 then loop through the list of all 

constants. For each constant, the lines 29 through 37 then loop through all targets and perform 

coupled and uncoupled mutations, based on what options are selected in AutoProof’s window. 

These options are all presented in section 4. Line 39 of the code then removes all duplicate 

mutations from the Result. This is done because checking if a mutation is a valid invariant can be 

very time consuming, so it shouldn’t have to be done more often than necessary. 

 

The code snippets for coupled and uncoupled mutations can be found in section 3.2.1.  

The arguments of both features are the same: A postcondition, two expressions representing a 

constant and a variable and a loop. Both features also return the same type of result, namely a list 

of expressions, representing mutated post conditions. 

The feature performing coupled mutations works as follows: Every occurrence of a_constant in 

the postcondtion a_post is replaced by a_variable in line 9 of the code. The remaining lines first 
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perform aging on a_variable, and then replace every occurrence of a_constant in the 

postcondition by the aged variables. What aging exactly does is explained in section 3.2.2. 

The difference between the result list of uncoupled and coupled mutations is that 

uncoupled_mutations doesn’t replace all occurrences of a constant. It rather replaces one 

occurrence at a time, and generates a new mutation for each constant which is replaced. 
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    1 mutate(a_post:IV_POSTCONDITION; a_loop: ARRAY[IV_BLOCK]):  
LINKED_LIST[IV_EXPRESSION] 

    2   --Adapted from paper "Inferring Loop Invariants using Postconditions". 
    3   local 
    4       all_subexpressions: LINKED_LIST[IV_EXPRESSION] 
    5       bool_type: IV_BASIC_TYPE 
    6       all_types: IV_TYPES  
    7       targets_l: LINKED_LIST[IV_EXPRESSION] 
    8           --list of all the targets in the loop 
    9       constants_l: LINKED_LIST[IV_EXPRESSION] 
    10          --list of all_subexpressions minus list of targets 
    11      constant: IV_EXPRESSION 
    12          --single item of constant_l 
    13      variable: IV_EXPRESSION 
    14          --same as in paper 
    15  do 
    16      create Result.make 
    17      Result.force (a_post.expression) 
    18      create all_subexpressions.make 
    19      create all_types 
    20      all_subexpressions.append (subexp (a_post.expression, 

all_types.bool)) 
    21      all_subexpressions.append (subexp (a_post.expression, 

all_types.int)) 
    22      all_subexpressions.append (subexp (a_post.expression, 

all_types.real)) 
    23      all_subexpressions.append (subexp (a_post.expression,  

all_types.heap_type)) 
    24      targets_l := targets (a_loop.item (2))  
    25      create constants_l.make 
    26      [..] -- fill constants_l with subexpressions which aren't targets. 
    27      across constants_l as cs loop 
    28          constant := cs.item 
    29          across targets_l as ts loop 
    30              variable := ts.item 
    31              if options.is_coupled_mutations_enabled then 
    32                  Result.append (coupled_mutations (a_post, constant, 

variable, a_loop)) 
    33              end 
    34              if options.is_uncoupled_mutations_enabled then 
    35                  Result.append (uncoupled_mutations (a_post, constant, 

variable, a_loop)) 
    36              end 
    37          end 
    38      end 
    39      Result := remove_duplicates (Result) 
    40  end 
 

 

Code 2: The postcondition mutation algorithm 
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3.2.1 Generating coupled and uncoupled mutations 
 

The actual implementations of both functions are shown in Code 3. Coupled_mutations first 

replaces every occurrence of a_constant in a_post with a_variable and adds this new expression 

to the Result list (line 9). In the next line the variable is then aged, which results in a list of new 

variables. For each one of these new variables the same replacement strategy is chosen again as 

in the beginning (lines 11-13). 

As described in section 2.1, uncoupled_mutations has to replace each occurrence of the constant 

one by one, without changing the other occurrences. The loop which starts in line 25 replaces one 

occurrence after the other by a_variable and its mutations, each time generating a new expression 

and adding it to the Result list (lines 31-35). Once the generated expression is equal to the 

postcondition, we know that nothing has been replaced, and the loop can stop (lines 27-29).  
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1 coupled_mutations(a_post: IV_POSTCONDITION; a_constant, a_variable:  
IV_EXPRESSION;a_loop: ARRAY[IV_BLOCK]): LINKED_LIST[IV_EXPRESSION] 

    2   --Adapted from paper "Inferring Loop Invariants using Postconditions". 
    3   --a_loop is passed because it is needed when aging is called. 
    4   local 
    5       aged_variable: IV_EXPRESSION 
    6       all_aged_variables: LINKED_LIST[IV_EXPRESSION] 
    7   do 
    8       create Result.make--line 5 
    9       Result.force(replace_all (a_post, a_constant, a_variable)) 
    10      all_aged_variables := aging (a_variable, a_loop) 
    11      across all_aged_variables as av loop 
    12              Result.force (replace_all (a_post, a_constant, av.item)) 
    13      end 
    14  end 
    15 

    16  uncoupled_mutations(a_post: IV_POSTCONDITION; a_constant, a_variable:  
     IV_EXPRESSION; a_loop: ARRAY[IV_BLOCK]): LINKED_LIST[IV_EXPRESSION] 

    17  local 
    18      index: INTEGER 
    19      expression_replaced: IV_EXPRESSION 
    20          --the expression of a_post, with the i'th occurrence of  

a_constant replaced by a_variable (i'th = index) 
    21      aged_variables: LINKED_LIST[IV_EXPRESSION] 
    22  do 
    23      create Result.make 
    24      index := 1 
    25      from  
    26          expression_replaced := replace_nth (a_post, a_constant,  

a_variable, index, a_loop) 
    27      until 
    28      --loop until nothing is replaced, so until replace_nth returns the  

  same result 
    29          expression_replaced.is_deep_equal(a_post.expression) 
    30      loop 
    31          expression_replaced := replace_nth (a_post, a_constant,  

a_variable, index, a_loop) 
    32          Result.force (expression_replaced) 
    33          aged_variables := aging (a_variable, a_loop) 
    34          across aged_variables as av loop 
    35              Result.force (replace_nth (a_post, a_constant, av.item,  

index, a_loop)) 
    36          end 
    37          index := index + 1 
    38      end 
    39  end 

  

Code 3: Implementations of coupled and uncoupled mutations. 
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3.2.2 Aging variables 
 
    aging(a_variable: IV_EXPRESSION; a_loop: ARRAY[IV_BLOCK]): 

LINKED_LIST[IV_EXPRESSION] 
    2   local 
    3       bin: IV_BINARY_OPERATION 
    4       val: IV_VALUE 
    5       t: IV_BASIC_TYPE 
    6   do 
    7       create Result.make 
    8       if options.is_aging_enabled then 
    9           if a_variable.type.is_integer then 
    10              create t.make_integer 
    11              create val.make ("1", t) 
    12              create bin.make (a_variable.twin, "-", val, t) 
    13              Result.force (bin) 
    14              create bin.make (a_variable.twin, "+", val, t) 
    15              Result.force (bin) 
    16          end 
    17      end 
    18  end  

Code 4:Implementation of the aging algorithm. 

 

The aging feature performs a very simple task in the current implementation. If the value it 

receives as an expression is of type INTEGER, it creates two new expressions of type 

IV_BINARY_EXPRESSION (lines 12, 14). The first is the variable minus one; the second is the 

variable plus one. It then returns these two expressions in a linked list. The if statement in line 8 

makes sure the code is only executed if the option is selected in the GUI. 

 

3.2.3 Checking if a formula is an invariant of a loop 
 

This feature first clones the universe so that the universe used by AutoProof is not changed and 

then attaches the formula as an invariant to the desired loop in the new universe (lines 14-16). 

Lines 17 through 25 then make use of AutoProof’s API. Boogie code is generated based on the 

new universe and a verifier is called on this code. The result of the verifier is then stored in res. If 

the result shows that either no feature returned an error (line 27), or at least the feature which 

contains the loop with the new invariant returned no error (line 33), then we know that a_formula 

is an invariant of a_loop. Otherwise we have to inspect each error message separately (lines 38, 

43). If the code of any error message indicates that the invariant failed, then a_formula is not 

considered to be an invariant of the loop (line 46). 

The codes in line 45 are the ones which are generated in the feature create_error of the class 

E2B_OUTPUT_PARSER. 
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    is_invariant(a_formula: IV_EXPRESSION; a_loop: ARRAY[IV_BLOCK]): BOOLEAN 
2       --returns True iff a_formula is an invariant of a_loop. 
3       local 
4           ver: E2B_VERIFIER 
5           gen: E2B_BOOGIE_GENERATOR 
6           ver_input: E2B_VERIFIER_INPUT 
7           new_universe: IV_UNIVERSE 
8           res: E2B_RESULT 
9           attacher: IV_ATTACH_INVARIANT 
10              --visitor to attach invariant to a_loop in the universe. 
11      do 
12          -- Attach invariant and launch Boogie verifier 
13          Result := False 
14          new_universe := universe.deep_twin 
15          create attacher.make (a_loop.item (1), a_formula) 
16          new_universe.process (attacher) 
17          create gen.make (new_universe) 
18          gen.generate_verifier_input 
19          ver_input := gen.last_generated_verifier_input 
20          ver := Void 
21          create ver.make 
22          ver.set_input (ver_input) 
23          ver.verify 
24          ver.parse_verification_output 
25          res := ver.last_result 
26 

27          if res.failed_count = 0 and res.verified_count > 0 then  
28          --it must be an invariant, since no errors were detected anywhere.  

  if both are 0 then something failed. 
29              Result := True 
30          else 
31          --find out in which procedure a_loop is, then check if that  

procedure is in the verified list. if so, set Result to True. 
32              across res.verified_procedures as verified_procs loop 
33                  if (not (attacher.attached_to_procedure = Void)) and then  

(attacher.attached_to_procedure.name.is_equal  
(verified_procs.item.procedure_name)) then 

34                      Result := True 
35                  end 
36              end 
37          end 
38          if (not Result) and not (res.failed_count = 0 and  

res.verified_count = 0) then  
39          -- Until now it was only added it if the whole feature didn't have  

   any errors.  
40          -- So if anything couldn’t be proven, it wasn't added.  
41          -- Add check here to see if no invariant was found to be false. 
42              Result := true –set false once an error is found. 
43              across res.verification_errors as ver_errors loop 
44                  across ver_errors.item.errors as errs loop 
45                      if errs.item.code ~ "BP5004" or errs.item.code ~  

"BP5005" or errs.item.code ~ "BP5001loop_inv" then 
46                          Result := false 
47                      end 
48                  end 
49              end 
50          end 
51      end  

Code 5: Implementation of the feature which tests if a_formula is a valid invariant of a_loop with a verifier. 
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3.3 Implementation challenges 
During the process of development of the code, several challenges came up. The main ones are 

presented here together with their solutions. 

 

- While AutoProof’s intermediate AST representation of the Eiffel code brings many 

advantages to the current implementation, it also presents some challenges. The AST is 

originally constructed to produce Boogie code from it. So once an invariant is found, it 

must be translated back to Eiffel Syntax, which isn’t always trivial. For example correctly 

translating from Boogie’s “forall” structure to Eiffel’s equivalent, which is an “across” 

structure. An API to handle this translation is presented in section 6.1.  

- The feature is_invariant calls a verifier to check if an expression is a valid invariant of a 

loop. If the feature which is being checked has no other errors, this decision is easy since 

the verifier returns no errors. If one or more errors are found, these errors must be 

inspected to see if they are relevant to the attached invariant. The current implementation 

looks at the codes of the error code, which are generated in the class 

E2B_OUTPUT_PARSER, to see if an invariant failed. This however requires that there 

are no other faulty invariants in the original Eiffel code which is being analyzed. It would 

be possible to remove all other invariants; however this then has the disadvantage that a 

removed invariant might be needed to prove the correctness of the current invariant, 

which would fail in this case. 
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4 Integration within AutoProof’s UI and its usage 
 

This section demonstrates how a developer can make use of the automatic invariant generation by 

postcondition mutation within EVE. 

 

First, AutoProof’s window needs to be opened. This can be done under View -> Tools -> 

AutoProof. 

The usage of the postcondition mutation algorithm is integrated within AutoProof’s window. In 

the options section, four options relevant to postcondition mutation can be set or disabled. The 

“Postcondition Mutation” option is the main entry. The postcondition mutation and invariant 

generation algorithm will only be executed if this option is set. If it is disabled, the algorithm will 

not be executed, regardless of whether the following three options are set: 

- With coupled mutations 

- With uncoupled mutations 

- With aging. 

These options define if their corresponding parts of the algorithm should be executed (see section 

3). This means for example the coupled mutations will only be generated, if its option is set. The 

aging option is the only one of these three which is dependent on the other two. It will only 

generate more candidates if coupled mutations or uncoupled mutations (or both) is selected. Each 

part can potentially generate more invariant candidates. However, each candidate needs to be 

checked by Boogie which can increase the running time. This increase can be a few seconds up to 

a few minutes per candidate. Depending on which mutation options are selected, and on the 

postcondition which is currently being mutated, usually between one to about fifty candidates are 

generated (Of course there might be a lot more, for example if the postcondition has many 

replaceable sub expressions). It is therefore advised to first have fewer mutations generated, and 

increasing the number if no desired invariant is found. By default, only the options for 

postcondition mutation and coupled mutations are set, while the other two are disabled. 
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Figure 1: The default selection of the options of the postcondition mutation algorithm within AutoProof's 
window. 

 

Figure 2: Automatically generated loop invariants using coupled mutations and aging are presented within 
AutoProof’s window. The term “local1” in the first generated invariant must be replaced by i before copying 

it into the Eiffel code as an invariant. Once the invariant is inserted, AutoProof is then also able to 
successfully verify the postcondition of this feature, so the whole feature is verified. 
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To execute the automatic generation of invariants, one can press the “Prove” button once all the 

wanted options are selected. EiffelStudio will then be unresponsive while all the selected tasks 

are performed. Once AutoProof is finished, it will display which features could or couldn’t 

successfully be verified. Alongside this information, each feature for which one or more loop 

invariant was generated can be expanded to display the generated invariant. These invariant then 

belong to some loop within the feature. They are in Eiffel’s syntax, so they can easily be copied 

into the code. One small adjustment still needs to be made, which is replacing terms of the form 

“locali”, where i is a number. The term “local3” for example would have to be replaced by the 

third local variable which was defined under the local clause of that feature.  
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5 Evaluation 
 

Several experiments were performed to demonstrate the correct functionality of the 

implementation. The results are presented in Table 1.  

Procedure LOC # LP M.V. CND INV REL T SRC 

max_paper 18 1 1 2 29 4 1 59 [2] 

max_v2_paper 17 1 1 2 29 4 1 70 [2] 

max_in_array 30 1 1 2 21+37+29 4 2 172  

add 20 1 1 2 9 1 1 20  

welfare_crook 33 1 1 3 49 25 20 107 [3] 

seq_search_v1 30 1 1 3 13+13+49 11 6 136 [3] 

seq_search_v2 27 1 1 1 25+17 16 1 86 [3] 

dutch_flag 74 1 1 5 9+17+65+57+49 18 7 458 [3] 

sum_and_max 30 1 1 3 7 1 1 22  

Table 1. Performed experiments. 

The table should be read as follows: 

LOC denotes how many lines of code the test cases contain. The total number of loops that an 

experiment contains can be found in the # coloumn, while the maximum amount of nested loops 

within a feature is denoted as LP. M.V. says how many variables are modified by the loop. CND 

denotes how many different mutations were created per postcondition, i.e. how many invariant 

candidates there were, while INV is the number of candidates that passed the test and are 

therefore valid invariants. The next coloumn, REL, then has the amount of these valid invariants, 

which are actually relevant to the code e.g. excluding tautological expressions. The second to last 

coloumn, T, denotes the running time that passed from starting the mutation in the GUI, until 

AutoProof finished. SRC refers to the source where the example was found. In some instances 

the examples are translated from other programming languages to Eiffel. The experiments which 

are adapted from [3] were originally written in Boogie processed with gin-pink. Their original 

results can be found in [2]. 

The experiments are executed on an Intel Core 2 Quad CPU Q9400 @2.66GHz running windows 

7 64-bit operating system, using EVE based on EiffelStudio 7.2.0.0 GPL Edition. All options 

within the postcondition mutation algorithm were activated in each case. In most cases this isn’t 

necessary to find the invariant. 

 

Comments on some of the test cases:  

max_paper: once the generated invariant is added, AutoProof can successfully prove the routine. 

max_v2_paper:  once the generated invariant is added, AutoProof can successfully prove the 

routine. 

max_in_array: once BOTH relevant generated invariants are added, AutoProof can successfully 

prove the routine. 

sum_and_max: AutoProof can only verify the generated invariant if the other two invariants in 

the code are provided. 
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In some cases, invariants were generated correctly based on the mutations, but were not presented 

to the developer because AutoProof could not verify the generated invariants to be correct, even 

if the invariants are manually inserted into the Eiffel code. These results are presented in Table 2. 

Procedure LOC # LP M.V. CND INV REL T SRC 

mjrty 48 1 1 2 25+28 2 0 251 [3] 

partition1 48 1 1 3 55 0 0 132 [3] 

Table 2: Test cases for which invariants were correctly generated based on the specifications of the 
postcondition mutation algorithm, but couldn’t be verified due to AutoProof’s limitations. 
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6 Postcondition mutation API 
The implementation offers several functions to be used in the form of an API. The useful classes 

and their features are presented in this section. 

 

6.1 IV_EXPRESSION_2_EIFFEL_POSTCONDITION 
 

This class is designed to take an IV_EXPRESSION and generate a string that represents this 

expression using Eiffel Syntax. The usage form is as follows: 

 
feature 

     

    converter(e: IV_EXPRESSION): STRING 

     

        local 

            printer: IV_EXPRESSION_2_EIFFEL_POSTCONDITION 

        do 

            create printer.make 

            converter.process(printer) 

            Result := printer.output 

        end 
 

 

Code 6: How to use an object of type IV_EXPRESSION_2_EIFFEL_POSTCONDITION. If printer is 
needed again later, printer.reset must be called first. 

 

6.2 IV_EXPRESSION_REPLACER 
 

This class is designed to replace a sub-expression of a given expression by a different sub-

expression. The expression that should be processed must be of type {IV_EXPRESSION}. The 

input expression itself will not be changed, only analyzed and copied, and a new output 

expression is generated which has the correct expressions replaced. The interesting functions are 

presented in the following subsections. 

 

6.2.1 Creation procedure 
 
    make_nth(a_post_expression: IV_EXPRESSION; a_old, a_new: IV_EXPRESSION;  

a_n_th: INTEGER) 
        -- replace the a_n_th occurence of a_old in a_post with a_new 

 
        -- if a_n_th is <=0, replace all occurences of a_old  
 

To create an object of type IV_EXPRESSION_REPLACER, this must be called. 

a_post_expression is the main expression, of which sub-expressions should be replaced. a_old is 

the sub-expression which should be replaced by the new sub-expression, a_new. If a_n_th is set 
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to be less or equal to zero, all occurrences of a_old in a_post_expression will be replaced by 

a_new. Otherwise only the a_n_th occurrence will be replaced. 

 

6.2.2 Output 
Once this object is created, it can be used to process an object of type {IV_EXPRESSION} since 

it inherits from {IV_EXPRESSION_VISITOR}. The newly generated expression with the replaced 

sub-expressions is then stored in output, where it can be accessed. 

 

6.2.3 Example 
An example of how to use an object of this type is presented in the following code block. 
    replace_all(a_post: IV_POSTCONDITION; a_old, a_new: IV_EXPRESSION): 

IV_EXPRESSION 
        -- replace every ocurrence of a_old in a_post with a_new 
        -- uses class IV_EXPRESSION_REPLACER 
        local 
            replacer: IV_EXPRESSION_REPLACER 
        do 
            create replacer.make_nth (a_post.expression, a_old, a_new, 0) 
            a_post.expression.process (replacer) 
            Result := replacer.output 
        end  

Code 7 shows an example of how to use the class IV_EXPRESSION_REPLACER. This feature is taken 
from the class IV_MUTATOR. 

6.3 IV_MUTATOR 
 

This is the class where the main algorithm lies and most of the computation is performed. A 

detailed explanation was given in section 3. The interesting features that can be used as part of 

the API are presented here. 

 

6.3.1 Creation procedure 
 
make (a_universe: IV_UNIVERSE; a_options: E2B_OPTIONS)  
 

When creating an object of this type, this feature must be called. The first argument delivers the 

intermediate AST representation that should be analyzed. The second argument is used to check 

which parts of the algorithm should be executed. If it should be different options than what are 

selected in the GUI, a new object can be created. The flags in the class E2B_OPTIONS that are 

relevant and must be set accordingly are: 

- is_postcondition_mutation_enabled 

- is_coupled_mutations_enabled 

- is_aging_enabled 

- is_uncoupled_mutations_enabled 

By default the first two are set to true, while the other two are set to false in the creation feature.  
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In the current implementation all the arguments are generated by AutoProof and passed on in the 

creation procedure of the class E2B_VERIFY_TASK. 

 

6.3.2 Processing an implementation which contains a loop and postcondition 
process_implementation (a_implementation: IV_IMPLEMENTATION) 
            -- Process implementation `a_implementation'. 
            -- this should be the first feature called after creation. 
  
This is the feature that executes the main algorithm. It should usually be called right after the 

creation procedure. After this is executed, all the generated invariants are stored in the output 

feature. The argument should be an object that represents an implemented feature and is within 

the universe. The feature it represents should also contain one or more loops and postconditions.  

Executing this feature might have a long running time, since several invariant candidates might 

be generated and checked with Boogie, similar to executing the algorithm from within the GUI. 

 

6.3.3 Generating all mutations 
 
mutate(a_post:IV_POSTCONDITION; a_loop: ARRAY[IV_BLOCK]):  

LINKED_LIST[IV_EXPRESSION]  
 

This feature is automatically called within process_implementation, but can also be called 

separately later on. It is used to generate mutations of the postcondition that is passed as the first 

argument for the loop that is passed as the second argument. The Result contains all the mutated 

expressions. These have not yet been checked if they are actually invariants of the loop. 

 

6.3.4 Checking if an expression is a valid loop invariant 
 
is_invariant(a_formula: IV_EXPRESSION; a_loop: ARRAY[IV_BLOCK]): BOOLEAN 
        --returns True iff a_formula is an invariant of a_loop.  
 

This feature returns true if and only if a_formula is an invariant of the loop represented by the 

second argument. Calling it can be very time consuming, since Boogie code is generated and 

checked with a verifier. 

 

6.3.5 Generating coupled and uncoupled mutations 
The signatures of the features are as follows: 

 
coupled_mutations(a_post: IV_POSTCONDITION; a_constant, a_variable:  

IV_EXPRESSION;a_loop: ARRAY[IV_BLOCK]): LINKED_LIST[IV_EXPRESSION] 

uncoupled_mutations(a_post: IV_POSTCONDITION; a_constant, a_variable:  

IV_EXPRESSION; a_loop: ARRAY[IV_BLOCK]): LINKED_LIST[IV_EXPRESSION]  
 

These features are used to generate coupled and uncoupled mutations of the expression of a_post. 

The Result is a linked list of all mutated expressions. 
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6.3.6 Extracting sub-expressions 
 
subExp(an_expression: IV_EXPRESSION; a_type:IV_TYPE):  

LINKED_LIST[IV_EXPRESSION]  
 

Returns a list of expressions that are sub-expressions of an_expression and of type a_type. 

 

6.3.7 Other features 
Various features which are accessible within the same package are presented here. These can all 

be used once the creation procedure and the feature process_implementation both have been 

called.  
body: IV_BLOCK 
        --body of the implementation 
contracts: LINKED_LIST [IV_CONTRACT] 
        --all the contracts of this implementation. 
postconditions: LINKED_LIST [IV_POSTCONDITION] 
        --list of copy of all the postconditions of this implementation. 
outer_loops: LINKED_LIST [ARRAY[IV_BLOCK]] 
        --list of outer loops in the procedure. Each loop is saved as an array  

    of 3 items, loop_head_X, loop_body_(X+1), loop_end_(X+2) 
all_loops: LINKED_LIST [ARRAY[IV_BLOCK]] 
        --list of all loops (inner and outer) in the procedure. Each loop is  

    saved as an array of 3 items, loop_head_X, loop_body_(X+1),  

    loop_end_(X+2) 
universe: IV_UNIVERSE 
        --the complete universe that the AST for this implementation was taken  

    from.  
 
 
 

6.4 IV_POSTCONDITION_MUTATION 
 

This class is built as a visitor and inherits from both IV_UNIVERSE_VISITOR and 

IV_STATEMENT_VISITOR. It visits the main nodes of the universe, and once an implementation 

node is found which contains a loop, it calls an object of type IV_MUTATOR on it to generate 

loop invariants. Once this is done, this class is also responsible for displaying the found invariants 

in AutoProof’s window, as seen in the following subsection. 

 

6.4.1 Displaying an invariant for the user  
 
display_invariant(a_implementation: IV_IMPLEMENTATION; a_output: 

LIST[IV_EXPRESSION]) 
        --displays the generated invariants on the screen, in AutoProofs  

    window. a_implementation is the implementation of the procedure that    

    the inviariant belongs to.  
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This feature is responsible for displaying the generated loop invariables within AutoProof’s 

windows. It does so by adding the generated invariants to the object of type E2B_VERIFIER, 

which is used by AutoProof to display the results. If the results should be displayed in a different 

manner, this feature can be adjusted accordingly.  
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7 Conclusions 
The current implementation fulfills the goal of integrating an automatic invariant inference from 

postcondition mutations algorithm by using the techniques presented in [2]. A developer using 

EVE can launch the procedure within AutoProof’s GUI without having any further knowledge of 

how the inference works, by just selecting all the options. A more knowledgeable developer 

might leave certain options unchecked, so that the process might be sped up by not creating as 

many mutations, and later using other options if no invariant was found.  

Furthermore an API is presented in section 6 which offers some additional functionality to those 

available in the GUI. This allows the functionality of the current implementation to be used and 

extended later on. 

 

The main challenges which were met during development are:  

- Understanding how AutoProof’s intermediate AST representation is built up. Once this 

learning process was done, the additional functionality that was gained was very helpful 

and sped up the overall implementation time. 

- Finding a way to translate the intermediate representation back to Eiffel syntax, so it can 

be presented to the developer.  

 

Several non-trivial ways in which the current implementation might be enhanced or altered are: 

- The aging algorithm could be optimized to actually find the value a variable had in the 

last execution of the body.  

- A generated invariant might be a tautology, in which cases the current implementation 

presents it to the developer as an invariant. The developer should then notice this and not 

add it as an invariant, since it doesn’t help. However, even if it is added, it shouldn’t 

affect any proof of correctness of the program. 

- Since Boogie isn’t complete in the sense that it cannot always find a proof even if there is 

one, some invariants might not be presented to the developer although they are generated 

correctly. The implementation could differentiate between invariants which are proven to 

be false, and those for which Boogie can find no proof, and present the latter to the 

developer to make the final decision. 

- If there is a ‘check’ instruction directly after a loop, this function could be treated as the 

loop’s postcondition and be mutated together with the feature postconditions. 
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8 Appendix 
8.1 Source code of the test cases that were used for evaluation 
  

All the source codes which were used during the evaluation are presented here. Invariants which 

are in the code are needed for AutoProof to be able to verify the procedures. Some features are 

commented out and replaced by equivalent inline postconditions to enable AutoProof to verify 

the feature. 
    max_Paper(a: ARRAY[INTEGER]; n: INTEGER):INTEGER 

        require 

            size_of_array_is_n: a.count = n 

            n_positive: n>=1 

        local 

            i: INTEGER 

        do 

            from i:=0; Result := a[1]; 

            until i>= n 

            loop 

                i:= i+1 

                if Result <= a[i] then 

                    Result := a[i] 

                end 

            end 

        ensure 

            across 1 |..| n as j all a[j.item] <= Result end 

 

        end  
 
        max_v2_Paper(a: ARRAY[INTEGER]; n: INTEGER):INTEGER 

        require 

            size_of_array_is_n: a.count = n 

            n_positive: n>=1 

        local 

            i: INTEGER 

        do 

            from i:=1; Result := a[1]; 

            until i> n 

            loop 

                if Result <= a[i] then 

                    Result := a[i] 

                end 

                i:= i+1 

            end 

        ensure 

            across 1 |..| n as j all a[j.item] <= Result end 

        end 
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max_in_array (a: ARRAY [INTEGER]): INTEGER 

        note 

            pure: True 

        require 

            a /= Void 

            a.count > 0 

        local 

            x, y: INTEGER 

        do 

            from 

                x := 1 

                y := a.count 

            invariant 

                y >= x 

                across 1 |..| x as i all a[i.item] <= a[x] or a[i.item] <=  

a[y] end 

                across y |..| a.count as i all a[i.item] <= a[x] or a[i.item]  

<= a[y] end 

            until 

                x = y 

            loop 

                if a[x] <= a[y] then 

                    x := x + 1 

                else 

                    y := y - 1 

                end 

            end 

            Result := x 

        ensure 

            1 <= Result and Result <= a.count 

            across 1 |..| a.count as i all a[i.item] <= a[Result] end 

            across a as i all i.item <= a[Result] end 

        end 
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    add (a, b: INTEGER): INTEGER 

        require 

            a > 0 

            b > 0 

        local 

            i: INTEGER 

        do 

            from 

                Result := a 

                i := 0 

            invariant 

                Result = a + i 

            until 

                i >= b 

            loop 

                Result := Result + 1 

                i := i + 1 

            end 

        ensure 

            Result = a + b 

        end  
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    p_f, p_g, p_h: INTEGER  

    find_crook(left:INTEGER; F,G,H: ARRAY[INTEGER]) 

        require 

            left >= 1 

            left <= F.count 

            left <= G.count 

            left <= H.count 

            F /= Void 

            G /= Void 

            H /= Void 

        local 

 

        do 

            from p_f := left-1; 

            p_g := left-1; 

            p_h := left-1; 

            until (not (F[p_f+1] /= G[p_g+1]  or  G[p_g+1] /= H[p_h+1])) 

            loop 

                if F[p_f+1] < G[p_g+1] then 

                    p_f := p_f + 1; 

                else 

                    if G[p_g+1] < H[p_h+1] then 

                        p_g := p_g + 1; 

                    else 

--                      check H[p_h+1] < F[p_f+1] end 

                        p_h := p_h + 1; 

                    end 

 

                end 

            end 

        ensure 

            en1: p_f+1 >= left and p_g+1 >= left and p_h+1 >= left; 

        end  
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        --return values 
        found: BOOLEAN 
        p: INTEGER 
        seq_search (a: ARRAY[INTEGER]; n: INTEGER; v: INTEGER) 
            require 
                n>=0 
            local 
                i: INTEGER 
            do 
                i:= 1 
                found:= False 
                from 
                invariant 

                until not (i <= n  and  (not found)) 
                loop 
                    if a[i]=v then 
                        p:=i 
                        found := True 
                    else 
                        i := i + 1 
                    end 
                end 
            ensure 
                (not found) or (a[p] = v) 
                (not found) or (1 <= p and p <= n) 
--              found or not_exists (v, a, 1, n) 
                found or across 1 |..| n as j all a[j.item] /= v end 
            end 
--      not_exists(v: INTEGER; a: ARRAY[INTEGER]; low, high: INTEGER): BOOLEAN 
--      do 
--          Result := across low |..| high as j all a[j.item] /= v end 
--      end  



32 
 

        found: BOOLEAN 

        p: INTEGER 

        seq_search_v2 (a: ARRAY[INTEGER]; n: INTEGER; v: INTEGER) 

            require 

                n>=0 

                n <= a.count 

            local 

                i: INTEGER 

            do 

 

                found:= False 

                from i:= 1 

                invariant 

                    true 

--                  not not across 1 |..| n as i25 all a[i - 1] /= v end 

                until i > n  or else  ( A[i] = v) 

                loop 

                    i := i + 1; 

                end 

                if  i <= n  then 

                    p := i; 

                    found := true; 

                end 

 

            ensure 

                not (not (across 1 |..| n as j all a[j.item] /= v end)) or  

(found and a[p] = v) -- not exists, or found 

                (not (across 1 |..| n as j all a[j.item] /= v end)) or (not  

found) --exists or not found. 

            end  
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--colors defined as 0: blue, 1:white, 2:red. 
is_flag_color(i:INTEGER):BOOLEAN 
    do 
        Result := i = 0 or i = 1 or i = 2 
    end 
b:INTEGER 
r:INTEGER 
--invariant might not be maintained. 
make_flag(a:ARRAY[INTEGER]; n: INTEGER): ARRAY[INTEGER] 
    require 
        n>=1 
        n<=a.count 
--      is_flag_color_array(a,1,n) 
        across 1 |..| n as curr all is_flag_color(a[curr.item]) end 
    local 
        i: INTEGER 
        tmp: INTEGER --used for swap 
    do 
        Result:= a 
        from 
            b:=1 
            i:=1 
            r:= n+1 
        invariant 

--          across 1 |..| (b-1) as curr all Result[curr.item] = 0 end 
--          across b |..| (r-1) as curr all Result[curr.item] = 1 end 
--          across r |..| n as curr all Result[curr.item] = 2 end 
        until 
            i>=r 
        loop 
            if (Result).item(i)=0 then 
                --swap 
                tmp:=(Result).item(i) 
                (Result).item(i):= (Result).item(b) 
                (Result).item(b) := tmp 
                ----- 
                i:= i+1 
                b:= b+1 
            else 
                if (Result).item(i) = 1 then 
                    i := i + 1 
                else 
                    r:= r-1 
                    --swap 
                    tmp:=(Result).item(i) 
                    (Result).item(i):= (Result).item(r) 
                    (Result).item(r) := tmp 
                    ----- 
                end 
            end 
        end 
    ensure 
        min_b: 1<=b 
        b_min_r: b<=r 
        r_min_n: r<=n+1 
        blue: across 1 |..| (b-1) as curr all Result[curr.item] = 0 end 
        white: across b |..| (r-1) as curr all Result[curr.item] = 1 end 
        red: across r |..| n as curr all Result[curr.item] = 2 end  
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--      monochrome (Result, 1, b-1, 0) 
--      monochrome (Result, b, r-1, 1) 
--      monochrome (Result, r, n, 2) 
    end 
--  --gives semantic error in output.bpl 
--  monochrome(a: ARRAY[INTEGER]; low:INTEGER; high: INTEGER; col: 

INTEGER):BOOLEAN 
--      require 
--          is_flag_color(col)--needed? 
--      do 
--          Result:= across low |..| high as curr all a[curr.item] = col end 
--      end 

 
----gives semantic error in output.bpl 
--is_flag_color_array(a:ARRAY[INTEGER]; low: INTEGER; high: INTEGER): BOOLEAN 
 

--  do 
--      Result:= across low |..| high as curr all is_flag_color(a[curr.item]) 

end 
--  end 
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-- invariants were generated correctly, but could not be verified by Boogie, 

even if they were inserted into the code. 

-- only two tautologies were verified 

cnt (c:INTEGER; a: ARRAY[INTEGER]; min: INTEGER; max: INTEGER):INTEGER 

    require 

        1 <= min and min <= a.count 

        1 <= max and max <= a.count 

    local 

        i: INTEGER 

    do 

        from 

        Result := 0 

        i:= min 

        until i > max 

        loop 

            if a[i] = c then 

                Result := Result + 1 

            end 

            i:= i+1 

        end 

    end 

cand: INTEGER 

count: INTEGER 

mjrty(a: ARRAY[INTEGER]; n: INTEGER) 

    require 

        n >= 0; 

    local 

        i,k: INTEGER 

    do 

        i := 0 

        count := 0 

        from 

        until i >= n 

        loop 

            i:= i+1 

            if count = 0 then 

                count := 1; 

                cand := A[i]; 

            else 

                if A[i] = cand then 

                    count := count + 1; 

                else 

                    count := count - 1; 

                end 

            end 

        end 

    ensure 

        across a as all_els all (cnt(all_els.item,a,1,n) <= cnt(cand,a,1,n)) 

end 

        --exists...: 

        (across a as all_els all 2*cnt(all_els.item, a, 1, n) <= n end) or 

(2*cnt(cand, a, 1, n) > n) 

    end  
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-- invariant correctly generated but AutoProof cannot verify it, even if it is 

added to code. 
    index: INTEGER  
    partition1 (a: ARRAY[INTEGER]; left : INTEGER; right: INTEGER; pivot: 

INTEGER): ARRAY [INTEGER] 
        -- partitions TODO 
        require 
            left <= right 
        local 
            i: INTEGER 
            temp: INTEGER 
        do 
            Result := a 
            i := left 
            index := left 
 

            from 
            until i > right 
            loop 
                if Result[i] < pivot then                      
                    temp := Result[i] --swap 
                    Result[i]:=Result[index] 
                    Result[index]:= temp 
                    index := index + 1 
                end 
                i := i + 1 
            end 
 

        ensure 
--          across left |..| min (index, right)  as k all  Result[k.item] <=  

pivot end -- doesnt work 
            across left |..| index  as k all (left > right) or  Result[k.item]  

<= pivot end --doesnt work 
--          across left |..| (index - 1) as k all a[k.item] < pivot end --this  

one works.. 
            -- is_LT_pivot (pivot, Result, left, right, index) 
        end 
 

    min(a,b:INTEGER):INTEGER 
        do 
            if a<b then 
                Result := a 
            else 
                Result := b 
            end 
        ensure 
            Result <= a and Result <= b 
        end 
 

    -- is_LT_pivot (pivot: INTEGER; a: ARRAY[INTEGER]; left: INTEGER; right:  

INTEGER;index_l: INTEGER): BOOLEAN 
        -- require 
            -- left <= right --TODO adjust this. 
        -- do 
            -- Result := across left |..| (index_l - 1) as k all a[k.item] <  

pivot end 
        -- end 
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    sum, max: INTEGER 
 

     sum_and_max (a: ARRAY [INTEGER]) 
         note 

             framing: False 
         require 
             a /= Void 
             a.count > 0 
             across a as ai all ai.item >= 0 end 
         local 
             i: INTEGER 
         do 
             from --loop_head_6 
                 i := 1 
                 sum := 0 
             invariant 

--               1 <= i and i <= a.count + 1 
                across 1 |..| (i-1) as ai all a[ai.item] <= max end 
                across a as ai all ai.item >= 0 end 
--               sum <= (i-1) * max 
             until 
                 i > a.count 
             loop 
                 sum := sum + a[i] 
                 if a[i] > max then 
                     max := a[i] 
                 end 
                 i := i + 1 
--           variant 
--               a.count - i + 1 
             end 
--           check sum <= a.count * max end 
         ensure 
             sum <= a.count * max 
         end 
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