Interpreter for the SCOOP Programming Model

October 18, 2011

PROJECT PLAN

Type: Master Thesis

Period: October 2011 until March 2012

Student: Mischael Schill (me@mschill.ch), 5th Semester
Mentor: Prof. Bertrand Meyer

Supervisor: Benjamin Morandi

1 PROJECT DESCRIPTION

Overview

Benjamin Morandi, Sebastian Nanz, and Bertrand Meyer defined a comprehen-
sive operational semantics of the SCOOP programming model[4]. The next step
is to create an interpreter which strictly follows the semantics. This interpreter
is useful to develop and test the SCOOP semantics. The interpreter can be
used as a reference implementation for current and future developments (e. g.
optimizing compilers) and as a research basis for different strategies and new
features.

The Maude System|2] is a programming language supporting equational and
rewriting logic. This makes it very suitable for the task of implementing op-
erational semantics in the form of executable operational semantics. In fact,
there are several published examples[5] of structural operational semantics im-
plemented using Maude. Maude also provides a model checker which can check
properties either formulated as invariants or in Linear Time Logic.

Scope of the work

Implementation of the structural operational semantics of the SCOOP program-
ming model[4].

mailto:me@mschill.ch

Intended results

A complete interpreter for the SCOOP programming model according to the de-
fined structural operational semantics[4] with an emphasis on correctness, read-
ability and extendability. Having executable operational semantics, it should be
possible, using the model checking facility of Maude, to answer questions about
the operational semantics of SCOOP. For example, one question arose from the
work on the implementation of SCOOP in Eiffel: If we defer the locking of the
processors from the beginning of the feature application to the first separate
call, do we loose any of the properties established with SCOOP? This could be
generalized to questions concerning the impact of any change to the operational
semantics of SCOOP.

This work can possibly lead to a publication with the title: “Using an exe-
cutable operational semantics to finalize the design of a concurrent programming
model”.

Criteria for success

Complete all objectives listed under work packages.

2 BACKGROUND MATERIAL

Reading list

[4] describes the operational semantics, [5] is an example on how to implement
different operational semantics and [Il 3] provide information on the Maude
framework.

3 PROJECT MANAGEMENT

Components of the solution

1. Syntax: Maude features an integrated system for parsing. The Syntax of
the simplified SCOOP model has to be defined in Maude.

2. Abstract data types: Implement the abstract data types in Maude.

3. Implementation of the inference rules: Use rewrite rules to implement the
inference rules.

4. Simple Base Library (ANY, INTEGER, BOOLEAN, ...): Implement the
base classes that are needed to write programs in SCOOP.

5. Scheduling: Figure out how to change the rewrite strategies Maude ap-
plies.

6. Tracing: Find possibilities to trace the program execution and document
it.

7. Testing: Test the interpreter using examples.

e Write example programs and check them with the interpreter.
e Use provided Maude tools for testing and checking.

e Write code documentation for every (non-trivial) function, data type
etc.

8. Documentation:

e Write a comprehensive user guide on how to use the interpreter.

e The developer guide has to contain information on the architecture
of the interpreter and how to extend the interpreter with custom
schedulers.

9. Debugging: Add the possibility to pause the execution, go step by step
and to inspect the state.

Project steps / Milestones
1. Implement Syntax without features added by Milestone 5 to 10

2. Implement ADT’s without features added by Milestone 5 to 10

Implement inference rules without features added by Milestone 5 to 10

- W

Create runtime system
5. Add support for separate calls
6. Add support for expanded types
7. Add support for once routines
8. Add support for post condition evaluation (only synchronous)
9. Add support for processor tags
10. Add support for invariant evaluation
11. Test whole interpreter
12. Inspect tracing and debugging
13. Finish documentation

14. Finish thesis

Schedule
[Milestone [1 [2 [3[4 [5[6[7][8]9 [Weeks |
1 X 3

X[X

>

QO | O] T = W DO

9
10
11
12
13
14

| | | P <]
| | | P <]
olEaikaiEaikalls

ikl EaiEaikaikaikalle

| | AL AL R | | | | A

ol
RN W RN NN N =

Method of work
o Weekly meetings

Weekly reports

e Online communication

Maude for the implementation
o [ATEX for the documentation and thesis

e Iterative development, starting with a small subset of the SCOOP model
(e. g. no expanded classes)

Version Control System provided by the SCOOP research group

Deadline
Begin of April 2012

References

[1] Manuel Clavel, Francisco Duran, Steven Eker, Patrick Lincoln, Narciso
Marti-Oliet, José Meseguer, and Carolyn Talcott. Maude manual. Avail-
able from: http://maude.cs.uiuc.edu/maude2-manual.

[2] Maude homepage. Available from: http://maude.cs.uiuc.edu.

[3] Theodore McCombs. Maude primer. Available from: http://maude.cs.
uiuc.edu/primer|

http://maude.cs.uiuc.edu/maude2-manual
http://maude.cs.uiuc.edu
http://maude.cs.uiuc.edu/primer
http://maude.cs.uiuc.edu/primer

[4] B. Morandi, S. Nanz, and B. Meyer. A comprehensive operational semantics
of the scoop programming model. Arziv preprint arXiv:1101.1038, 2011.

[5] A. Verdejo and N. Marti-Oliet. Executable structural operational semantics
in maude. Journal of Logic and Algebraic Programming, 67(1-2):226-293,
2006.

	PROJECT DESCRIPTION
	BACKGROUND MATERIAL
	PROJECT MANAGEMENT

