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Abstract

The Diffeif library is a library which provides functionality for computing the dif-
ference of two code or text chunks and visualize it in a GUI. The library is imple-
mented in and for Eiffel.

Finding the difference of two code or text pieces is a common problem. There
exists a bunch of algorithms for computing such a difference. The most widely used
algorithms are line-based, which can easily be adapted to word- or character-based.
Another class of algorithms can be applied to trees created from the corresponding
input, so called tree-based algorithms.

This documentation gives an overview of some existing line-based and tree-
based algorithms, explains the implemented algorithms in detail accompanying
with a performance analysis and provides a short overview of the implementation
and the usage of the library.
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Chapter 1

Introduction

Computing and visualizing differences has a wide range of applicability.

• Evolution of code. Explore how versions of text files or source programs
differ. Visualizing the difference will give an overview of the evolution of
the text or code.

• File merging. A file can be merged with the difference to other files. There
is no need to replace the whole file.

• Backup programs and file storage. For a new version of a backup the differ-
ence to the previous version can be stored instead of a whole new copy of
the corresponding files. This will safe space. The same method can be used
for file storage. If a file is evolved from another, it is a good idea to store
only the difference to the parent file instead of storing a new file. Especially
in the case of networking it will safe a lot of bandwidth.1 This method is
generally known as delta encoding.2

• HTTP Servers. They usually send the difference to clients if a new version
of a web page is available. This will safe bandwidth.

• Biology. The difference of molecules or amino acid sequences is computed.

• Video processing. Difference algorithms play an important role. Only the
difference between two video frames is transferred. The new frame can be

1The capacity of disks have evolved much faster than the bandwidth of (non-LAN) networking
did. Therefore, the bottleneck shifted from disks towards the bandwidth of networking.

2See http://en.wikipedia.org/wiki/Delta_encoding for further details. Re-
trieved 2012-12-28.

1
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CHAPTER 1. INTRODUCTION

created by merging the old frame with the difference. In video processing
the difference is often called a movement vector.

There are a lot of file comparison tool available for every conceivable operating
system. The most famous one is probably the GNU diff utility.3 Two major classes
of difference 4 algorithms can be distinguished:

• Flat-based diff algorithms. Algorithms working on a string or array of n
symbols. The symbols can be in the form of lines, words, characters or
bytes5. Throughout the document this class of algorithms will be referred to
as either flat-based diff algorithms or as line-based algorithms, unless other-
wise stated.

• Tree-based diff algorithms. Algorithms working on a tree, so called tree-
based algorithms. For code differencing, it is most often an abstract syntax
tree describing the syntactic structure of the code. Before applying this class
of algorithms, an appropriate input, like a file, has to be parsed into a tree.
This is described in Chapter 3.

Most diff algorithms compute an edit script which will turn the source file and
the source tree into the destination file and destination tree, respectively. Because
an edit script alters one file or tree into the other, it is common to name them the
source and destination. An edit script consists of a sequence of edit operations.
Each edit operation is one operation performed on the source file or source tree
and has an assigned cost6. There exists a wide range of edit operations. The most
commons are add, delete, change and move. From the add and delete operations
almost all other operations can be built. Therefore, standard algorithms only com-
pute the operations delete and add. In this thesis an additional copy operation7 is
introduced.

If each edit operation is assigned a cost of one then the length of an edit script,
or in other words the number of edit operations, is the so called edit distance. If
the edit operations are weighted in a different way, then the edit distance is the sum
of the costs of the operations in the edit script. The edit distance is a measure for

3Other programs are e.g. WinMerge and Microsoft XML Diff and Patch Tool.
4Referred to as diff throughout the document. It is explicitly stated and written in italic if diff

designates the GNU utility.
5Byte-diff is used for comparing binary files. This is not covered in this thesis.
6The term cost refers to an integer greater or equal zero. It reflects the weighting of the edit oper-

ation compared to other edit operations, i.e. an edit operation with a smaller cost is more important
than one with a higher cost and thus gets more likely used.

7Also called twin or clone operation

2
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the distance between two files or trees. If the edit distance is long, i.e. there exists
a lot of edit operations in the edit script in the unit cost case, the files or trees are
rather different.

Instead of creating an edit script, it is also common to compute the longest
common subsequence (LCS), which is defined to be the longest sequence con-
tained in two files or the biggest subtree contained in two trees8. In a more formal
way the longest common subsequence of two strings is defined as follows: let
A = a1a2...an and B = b1b2...bm be two strings. C = c1c2...ci is a common
subsequence of A and B if deleting n− i characters from A and m− i characters
from B yields C. C is the longest common subsequence if i is maximal.

As stated in [14], finding the longest common subsequence and computing the
edit script are dual problems. If we know the LCS, it is easy to get the edit script:
each item in the source file and destination file, which is not present in the LCS,
must be deleted or added from the source file and destination file, respectively. Vice
versa, the LCS can be computed from an edit script by including all items from the
source and destination file which are not deleted or added. Because all other edit
operations can be computed from the delete and add operation as stated above,
the LCS and an edit script are similar. Therefore, only edit scripts are examined
throughout this document, unless otherwise stated.

In Figure 1.1 an example is provided for introducing the edit operations and
showing how a difference can look like.9 Line-based diff is used in the example.
The different colors indicate the edit operations. Line 3 contains a change, which
is represented by green color. Line 5 is deleted from the source code. The used

color for this operation is red . The statement in line 9 of the source code is moved
to line 17 of the destination code. Yellow is used for this operation. In line 14 a
statement is added to the destination code, this corresponds to blue color. Finally,
the statement i := 1 in line 11 of the source code is copied and inserted at line 16
in the destination code. This is shown in orange color. The edit distance in the
example is five because there exists five edit operations. For a word- or character-
based diff, the result would look slightly different. This is demonstrated in Chapter
5.

The main issue of the diff algorithms is to find the optimal edit script, which is
the shortest edit script if all operations are assigned a cost of one or otherwise, the
edit script of minimum cost, i.e. minimizing the edit distance. It is possible that
there exists several optimal edit scripts. In such a situation just one script is taken

8This is also called the largest common subtree
9The code snippets could be shortened and simplified, but for demonstration purposes it is chosen

as it is.

3
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Source code
1 factorial (int: INTEGER): INTEGER
2 require

3 int valid: int < 0

4 int_small: int < 100

5 int small: int < 10

6 local
7 x, y: INTEGER
8 do

9 Result := y

10 from

11 x := 1

12 until
13 x > int
14 loop
15 y := y * x
16 end
17 end

Destination code
factorial (int: INTEGER): INTEGER

require

int valid: int > 0

int_small: int < 100
local

x, y: INTEGER
do

from
x := 1

until
x > int

loop
y := y * x

x := x + 1

end

x := 1

Result := y

end

xAdd xDelete xChange xMove xCopy

Figure 1.1: Example code calculating the factorial of a number.

or the algorithm uses semantic analysis to choose the proper edit script.10

1.1 Focus of this Work

This report provides an overview of existing tree-based and flat-based diff algo-
rithms, whereas one algorithm of each category is implemented. The implemen-
tation is given as a library for ease of reuse. Moreover, a GUI is provided for
visualizing the differences graphically. Primarily, the library can be used for code
differencing, although the flat-based diff algorithm is applicable to every other text
document. As stated in [9], there are four major fields of application for code
differencing.

• Editing aid. Verification of modifications and detection of unintended edits.

• Debugging aid. Finding the difference between a working and a non-working
piece of code.

• Program maintenance aid. Searching and joining changes in the same code
introduced by several different people.

10Semantic analysis is beyond the scope of this thesis and therefore not covered.

4
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• Quality control. Examining the difference between two versions of a pro-
gram.

The focus of the implemented algorithms lies on correctness, i.e. detecting all
differences and returning an edit script of minimal length, and not on performance,
even though the algorithms were chosen in a way so that the runtime should not be
too bad. At the end of this report, an overview of the performance of the imple-
mented algorithms is given.

1.2 Related Work

A good overview over flat-based diff algorithms is provided by Neil Fraser[6] and
Ward Cunningham [5]. Besides an introduction to diff algorithms, Neil Fraser
also introduced some pre- and postprocessing steps, which can be applied before
and after the diff algorithm, respectively. Preprocessing can consist, for example,
of detecting common prefixes and suffixes and singular insertions and deletions.
Postprocessing covers syntactic and semantic changes to the edit script. This will
be explained in more detail in Chapter 2.

A survey of tree-based diff algorithms was written by Philip Bille[1] and by
Daniel Hottinger and Franziska Meyer in their semester thesis about XML-diff
algorithms[10].

1.3 Thesis Organization

Chapter 2 presents different flat-based diff algorithms, applicable to words, char-
acter and lines. Moreover, postprocessing and preprocessing steps are introduced.
Chapter 3 deals with tree-based diff algorithms. In Chapter 4 the implementation
details of the library and the GUI are explained. A user guide for the library and
the GUI is presented in Chapter 5. A performance analysis of the implemented
flat- and tree-based diff algorithms can be found in chapter 6. Finally, chapter 7
and 8 contains the conclusion and future work, respectively.

1.4 Definitions

In this section some crucial definitions are given, which are used in one ore more
chapters. The terms are sorted alphabetically.

• Abstract Syntax Tree (AST): a tree representing the syntactic structure of a
piece of code.

5



CHAPTER 1. INTRODUCTION

• Damerau-Levenshtein Distance: distance metric obtained by allowing add,
delete and change edit operations and the transposition of two neighbouring
characters.

• Document Object Model (DOM): a specification of an API for the access of
XML and HTML documents defined by the World Wide Web Consortium
(W3C)11. It is up to the developers to implement the API. An implemen-
tation of the API allows to change the content, structure and layout of the
corresponding document.

• Dynamic Programming: a tabular computation method for solving of opti-
misation problems. The problem is divided into subproblems, which can be
solved in an optimal way.

• Edit Distance: a measure of the distance between two strings or trees. In
the case of strings it is often used to refer specifically to the Levenshtein dis-
tance. The edit distance is equal to the sum of the cost of each edit operation
in the edit script or, if unit costs are used, to the length of the edit script.

• Edit Operation: an operation performed on files or trees with an assigned
cost. The term cost refers to an integer greater or equal zero. It reflects the
weighting of the edit operation compared to other edit operations, i.e. an
edit operation with a smaller cost is more important than one with a higher
cost and thus gets more likely used. Most common edit operations are add,
delete, change and move.

• Edit Script: a sequence of edit operations which turns a source file and a
source tree into a destination file and destination tree, respectively.

• Extensible Markup Language (XML): a markup language for the represen-
tation of hierarchical structured data in the form of text files. It is defined,
among others, in the XML 1.0 Specification by W3C.12

• Hamming Distance: distance metric obtained by allowing only change edit
operations. Therefore, only strings of the same length can be compared.

• Levenshtein Distance: distance metric obtained by allowing add, delete and
change edit operations.

11http://www.w3.org/. Retrieved 2012-12-08.
12http://www.w3.org/TR/REC-xml/. Retrieved 2012-12-08.

6
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• Longest Common Subsequence (LCS): distance metric obtained by allowing
add and delete edit operations. A LCS is the longest sequence contained in
two strings.

• NP-hard Problem: for NP-hard (non-deterministic polynomial-time hard)
problems it is only possible to verify that a solution of the problem is correct,
but it is impossible to compute a solution in polynomial time.

• Ordered Tree: the order of the children of a node is important. The opposite
of an unordered tree.

• Preorder Traversal: depth-first traversal method, the root of a subtree is
visited first, followed by visiting the left subtree and the right subtree recur-
sively.

• Postorder Traversal: depth-first traversal method, the root node of a sub-
tree is visited last, i.e. first, the left subtree followed by the right subtree is
traversed recursively, and at last the root of the subtree is visited.

• Rooted Tree: a tree with a distinguished node, the root node. The opposite
of an unrooted tree.

• Tree: a set of hierarchical structured nodes. There exists three types of
nodes: a root node is the root of the tree, it has zero or more children but
no parent. An inner node has exactly one parent and at least one children. A
leaf node has one parent but no children.

7
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Chapter 2

Flat-Based Diff Algorithms

This chapter covers some flat-based diff algorithms. First, preprocessing and post-
processing steps are introduced, which can be applied before and after running
the diff algorithm, respectively, followed by a general introduction and some def-
initions of diff algorithms. Finally, some diff algorithms are explained in detail.
In Section 2.1 a straightforward algorithm is presented, followed by the basic dy-
namic programming algorithm in Section 2.2. Section 2.3 covers the Miller &
Myers’ algorithm which is implemented in the Diffeif library. The Hunt & McIl-
roy’s Algorithm is introduced in Section 2.4. The chapter is concluded by Heckel’s
algorithm in Section 2.5. For simplicity, we will consider throughout this chapter
an example of calculating the difference of two strings on character basis. A file
can easily be parsed in such a string and for word- and line-based diff, the pre- and
postprocessing steps as well as the underlying diff algorithm stay the same.

Before running a diff algorithm, it is a good idea to consider some preprocess-
ing steps as introduced by Neil Fraser[6]. This will help detecting special cases
for which the diff algorithm has not to run at all, and therefore it will safe runtime.
Furthermore, preprocessing simplifies the two strings lowering the runtime of the
diff algorithm.

A first step in preprocessing is to search for common prefixes and suffixes of
the two strings. A prefix and a suffix is a common substring at the beginning and at
the end of both strings, respectively. Because most of the time the two sequences
compared are similar to a certain extent, it is likely to find some common prefixes
and/or suffixes. In our running example on page 4, the first and second line of the
source and destination code form the prefix (see Figure 2.1).

The computation of the prefix and suffix can be done by scanning through
both strings in O(n) time or by a binary search taking O(log(n)) time1 where

1Assuming that the equality operation for two strings takes O(1) time

9
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Source code
1 factorial (int: INTEGER): INTEGER

2 require

3 int_valid: int < 0
4 int_small: int < 100
5 int_small: int < 10
6 local
7 x, y: INTEGER
8 do
9 Result := y

10 from
11 x := 1
12 until
13 x > int
14 loop
15 y := y * x
16 end
17 end

Destination code
factorial (int: INTEGER): INTEGER

require

int_valid: int > 0
int_small: int < 100

local
x, y: INTEGER

do
from

x := 1
until

x > int
loop

y := y * x
x := x + 1

end
x := x + 1
Result := y

end

Figure 2.1: Prefix of the example code.

n = min(length(source string), length(destination string)). The prefix and
suffix can safely be removed. The diff algorithm is applied to the rest of the string.
Once the prefix and suffix are calculated, it is also easy to detect the equality of
both strings: the two sequences are equal if the prefix and suffix span the whole
string.

The second step in preprocessing is to search for singular insertions and dele-
tions as described in [6]. They can be detected by deleting the prefix and suffix
from both strings. If only one element remains in one string then it is a singular
insertion or deletion. If such a common case is detected, the diff algorithm does not
need to run at all. Figure 2.2 shows an example of a singular deletion. The prefix
is marked in magenta and the suffix in grey . If the prefix and suffix are deleted,

line 12 in the source code remains, and hence it is an insert (marked in blue ).
Similar if a line would remain in the destination code, it would be a singular dele-
tion. Of course, the preprocessing could be extended to detect longer insertions
and deletions, but this will cost more runtime and, at some point, running the diff
algorithm without the preprocessing step is cheaper.

After the preprocessing is done, the diff algorithm can run. The flat-based diff
algorithms are almost always working on an array. The elements of the array are
lines, words or characters, depending on how the string is split. The algorithms
produce a minimal edit script, i.e. an edit script with minimal edit distance. The

10
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Source code
1 factorial (int: INTEGER): INTEGER

2 require

3 int valid: int > 0

4 local

5 x, y: INTEGER

6 do

7 from

8 x := 1

9 until

10 x > int

11 loop

12 y := y * x

13 x := x + 1

14 end

15 Result := y

16 end

Destination code
factorial (int: INTEGER): INTEGER

require

int valid: int > 0

local

x, y: INTEGER

do

from

x := 1

until

x > int

loop

x := x + 1

end

Result := y

end

Figure 2.2: A singular deletion.

edit distance can be defined in many ways. Often it refers to the longest common
subsequence which allows add and delete edit operations. Another famous distance
metric is the Levenshtein distance using add, delete and change operations. Other
distance metrics are the Hamming distance, allowing only the change operation2,
and the Damerau-Levenshtein distance, granting add, delete, change operations
and the transposition of two neighbouring characters. Usually a unit cost of 1 is
assigned to each edit operation, and therefore the minimal edit distance is reduced
to the minimal number of edit operations.

The edit script E for the example in Figure 1.1 on page 4 looks as follows:
E = [3, 3c3, 3; 5, 5d4, 4; 9, 9m17, 17; 15, 15a14, 14; 11, 11t16, 16]. The edit script
produced by the Diffeif library has the same style, it is inspired by the output
of the GNU diff tool. An edit operation is defined as O = s1, s2Xd1, d2 with
X ∈ {a, c, d,m, t}, s1 = source start index3, s2 = source end index, d1 = desti-
nation start index and d2 = destination end index. Now, the different types of edit
operations are explained in more detail.

1. X = a → s1 = s2. The index elements d1 to d2 of the destination string
were added after index element s2 of the source string.

2As a consequence, only strings of the same length can be compared.
3The index can refer to lines, words or characters.

11
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2. X = c. The index elements s1 to s2 of the source string were changed to
the index elements d1 to d2 of the destination string. Note that it is possible
for a change operation to cover unequal block sizes, i.e. a block of s2 − s1
elements in the source can be changed to d2−d1 elements in the destination,
where s2− s1 6= d2− d1.

3. X = d → d1 = d2. The index elements s1 to s2 were deleted from the
source string. The index element d1 (or d2) represents the position in the
destination string where the index elements s1 to s2 would be added if the
delete operation would be changed into an add operation.4

4. X = m.

(a) s1 = s2→ d1 = d2. The index element s1 (or s2) of the source string
was moved to the index element d1 (or d2) of the destination string.

(b) s1 6= s2 → s2 − s1 = d2 − d1. The index elements s1 to s2 of
the source string were moved to the index elements d1 to d2 of the
destination string.

5. X = t.

(a) s1 = s2 → d1 = d2. The index element d1 (or d2) of the destination
string was copied (cloned) from the index element s1 (or s2) of the
source string.

(b) s1 6= s2 → s2 − s1 = d2 − d1. The index elements d1 to d2 of the
destination string were copied (cloned) from the index elements s1 to
s2 of the source string.

If the flat-based diff algorithm is finished, the postprocessing steps adjust the
edit script. The flat-based diff algorithm implemented in the Diffeif library pro-
duces an edit script containing add and delete operations. Other edit operations
can be built from these two basic operations in the following way: a change opera-
tion can be derived from a delete operation followed by an add operation affecting
the same elements in the source and destination. If the same element is removed
from one place in the source and added to another place in the destination, it is a
move operation. If an element is added to the destination and another equal ele-
ment exists already in the source, a copy (or clone/twin) operation is detected. All
this can be done with scanning over the edit script. This does not introduce big

4Most of the time d1 and d2 are useless information for a delete operation, nevertheless they are
given for consistency.

12
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additional runtime costs because edit scripts are usually not that large. Neil Fraser
describes some more syntactic and semantic postprocessing steps.[6]

Before we will start with the flat-diff algorithms, the difference between line-
based, word-based and character-based diff should be shortly discussed. In ap-
pendix A some examples are shown.5 In these examples the differences between
line-based, word-based and character-based diff are not big (only line 3 differs
slightly) but usually there exists remarkable variances. Character-based diff pro-
duces the finest-grained result but takes the longest to execute because each charac-
ter must be compared. Line-based and word-based diff are faster and produce less
individual edits but the length of the particular edits is larger. Which level to use
depends on the application. Source code is usually compared with line-based diff,
whereas for a text word-based diff is applied. Character-based diff is often used
for binary data. Besides that, some algorithms are more efficient when applied to
bigger chunks of data, such as lines, others are faster at handling smaller chunks
of data, such as characters. That is because different lines appears infinitely often,
whereas characters are limited to a number of tokens, which appears more or less
frequently.[6]

2.1 Simple Algorithm

A straightforward technique for computing the diff is shortly covered in [9, 11, 13].
A first approach is to scan through both strings or files comparing each correspond-
ing element of the source and destination. An optimisation could be to require that
several consecutive elements have to match. Nevertheless, the produced edit script
is often much longer than the optimal one. A second approach is to compare not
only corresponding elements but also to examine shifted elements. If a mismatch
is encountered, the kth element of each file or string is compared against the k ele-
ments after the mismatch in the other file or string for k = 1, 2..., n, where n is the
position of a matching element.

Both methods are unscalable6 with the length of the strings or files and have a
time complexity of O(n*m), where n is the length of the source string or file and m
is the length of the destination string or file.

5Note that the Diffeif library would produce slightly different but still correct results for word-
diff and char-diff of the examples shown in the figures. The examples are only shown in this way for
easier understanding.

6Scalability is the ability of the algorithm to handle a growing amount of data (lines, words or
characters).
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2.2 Basic Dynamic Programming Algorithm

A good introduction to dynamic programming can be found in [7]. Most algo-
rithms in this and the next chapter are based on dynamic programming. In this
section, first, a formal definition of dynamic programming is given, followed by an
example showing a sample computation of a difference. Dynamic Programming is
a tabular computation method for solving of optimisation problems. The problem
in question is divided into subproblems, which can be solved in an optimal way. If
this is applied recursively reaching smaller and smaller subproblems, elementary
subproblems, which can not be divided further, are obtained at the end. From op-
timal solutions of these subproblems, an optimal solution of the problem can be
constructed in a bottom-up fashion.

As a distance metric the Levenshtein distance is used, allowing for deletions,
insertions and changes. The add and delete operations introduce a cost of 1,
whereas the change operation is assigned a cost of 2.7 With the cost of 2 for
a change operation it is more likely to get add and delete operations. This re-
flects the diff problem in a good way. Let us assume that we have two strings
A = a1, a2, ..., am and B = b1, b2, ..., bn, where ai and bj for i = 1, ...,m and
j = 1, ..., n represent characters, words or lines. For an optimal solution there are
only three possible cases for the last elements: (1) am and bn match or mismatch
→ for a1, ..., am−1 and b1, ..., bn−1 an optimal solution can be computed. (2) am
is deleted→ for a1, ..., am−1 and b1, ..., bn an optimal solution can be computed.
(3) bn is deleted8 → for a1, ..., am and b1, ..., bn−1 a optimal solution can be com-
puted. Therefore, we arrive at the following recursion for computing the optimal
edit distance between string A and B:

Dm,n = min(Dm−1,n−1 + xm,n, Dm,n−1 + 1, Dm−1,n + 1)

xm,n =

{
2 if am 6= bn
0 if am = bn.

The base conditions are D0,0 = 0, Di,0 = i and D0,j = j for i = 1, ...,m and
j = 1, ..., n.

The recursion can be computed with the help of a table D. The table contains
m + 1 rows with ai, i = 1, ...,m as the row labels and n + 1 columns with bj ,
j = 1, ..., n as the column labels. One extra row and column is needed for the
base conditions Di,0 and D0,j for i = 1, ...,m and j = 1, ..., n. In our case, the

7The chosen cost of 2 for a change operation is due to the fact that the algorithm in the next section
is based on this assumption. Of course, it is also possible to assign other costs for the operations.

8This corresponds to an insert of bn after the last position of string A.
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table can be filled row by row or column by column. There are two phases when
applying a dynamic programming algorithm. (1) In the forward computation phase
each entry of the table is calculated, in our case corresponding to the edit distance.
The entries can be computed from the entries in the west (left), north (above) and
northwest (diagonal) as shown in the example. The optimal solution is located
at the entry D(m,n). (2) In the backward computation phase a optimal solution
path is found, i.e. an optimal edit script. Of course, it is possible to calculate
the corresponding edit scripts already in the forward phase and thus making the
backward step unnecessary, which will safe computation time.

The time complexity of the described algorithm isO((m+1)∗(n+1)) because
every element of the table has to be computed. The space requirement is O(min(m
+ 1, n + 1)). According to [7], the algorithm can be improved by a divide and
conquer approach, not covered here, which reduces the cost of the computation.

S E T S I T

0 1 2 3 4 5 6 7

T 1 2 3 2 3 4 5 6

E 2 3 2 3 4 5 6 7

S 3 2 3 4 3 4 5 6

T 4 3 4 3 4 5 6 5

5 4 5 4 5 4 5 6

I 6 5 6 5 6 5 4 5

T 7 6 7 6 7 6 5 4

Figure 2.3: Dynamic Programming Example.

Let us look at an example which is shown in Figure 2.3. There are two strings
A = TEST IT and B = SETS IT. A character-based diff is searched. The table D
is filled row by row. Each field contains the edit distance for the corresponding
substrings and the arrows indicates from where the values come from. Note that
the table starts at position D(0,0). Filling the first row and column is simple: for the
difference between an empty substring of A and string B, every element of string B
has to be removed introducing a cost of 1 for each delete operation. The same holds
for the difference between an empty substring of B and string A. In the following,
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three entries of the table D are explained in more detail.

(1) For computing D(1,1) we can come either from D(0,0), D(1,0) or D(0,1).
D(0,0) holds a distance of 0 and because a1 = T 6= S = b1, a cost of 2
for a change would be introduced leading to a distance of 2 in D(1,1). D(1,0)
contains a distance of 1 revealing D(1,1) = 2 because b1 = S is added after
a1 = T . The same holds for D(0,1) except that a1 = T is deleted. Therefore,
the minimum achievable distance is D(1,1) = 2 coming from D(0,0), D(1,0) or
D(0,1).

(2) For filling D(1,3) we can come from D(0,2), D(0,3) or D(1,2). Going from
D(0,2) to D(1,3) would introduce a cost of 0 because a1 = b3 revealing D(1,3)
= 2. This is already the minimum since D(0,3) = 3 → D(1,3) = 4 (deleting
a1 = T ) and D(1,2) = 3→ D(1,3) = 4 (adding b3 = T after a1 = T ).

(3) D(4,4) = 4 and this can be achieved by coming from D(3,3), D(4,3) or D(3,4)
because D(3,3) = 4→ D(4,4) = 6 (changing a4 = T to b4 = S), D(4,3) = 3
→ D(4,4) = 4 (adding b4 = S after a4 = T ) and D(3,4) = 3 → D(4,4) = 4
(deleting a4 = T ).

The minimum edit distance is D(m,n) = D(7,7) = 4. Due to the form of
the example, there exists eight different minimal edit scripts, obtained by back-
tracking, with an edit distance of 4.9 Three of these edit scripts10 are E1 =
[0a1, 0a2, 2d3, 4d4], E2 = [1c1, 2a3, 4d4] and E3 = [0a1, 1d1, 2a3, 4d4]. Note
that in this case, the length of the edit script is not equal to number of edit opera-
tions because not all edit operations have the same assigned cost.

2.3 Miller & Myers’ Algorithm

This section is based on the paper from Web Miller and Eugene W. Myers.[13] The
algorithm presented here is implemented in the Diffeif library, hence it is explained
in detail including code and an example. The basis is the dynamic programming
algorithm from the previous section but with the big advantage that there is no need
to compute every entry in the table and therefore it is faster. The distance metric
used is the Longest Common Subsequence allowing add and delete edit operations.

A table D with m + 1 rows and n + 1 columns with ai, i = 1, ...,m as the row
labels and bj , j = 1, ..., n as the column labels is used. Every entry D(i,j) in the
table holds the edit distance which corresponds to the number of edit operations

9Usually far less edit scripts of the same length exists.
10Instead of source/destination start and end index only one index is shown.
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needed to transform A[1:i] to B[1:j]. Accompanying with the edit distance the
corresponding edit script is stored for every entry in the table. The big difference to
the basic dynamic programming algorithm from the previous section is that, instead
of filling the table row by row or column by column, the algorithm determines all
entries of the table D in ascending order: first, all 0s are filled in the table, followed
by all 1s, 2s and so on until the south-east value D[m,n] is reached. As we can
see in Figure 2.3, the d entries of the table lies only on the diagonals -d, -d+2,...,d-
2,d11. For example, for d = 3 we only have to consider the diagonals -3, -1, 1 and
3. For efficiency reason, it is enough to compute and store only the position of the
last element on each diagonal. This information is held in the array last d[k]. For
each diagonal k, last d[k] holds the row number of the last entry.

Now let us look how an entry on diagonal k is calculated. For computing the
d entry on diagonal k, we only have to look at the diagonals k+1 and k-1, which
contain the (d-1) entry at their last position. There are only two possibilities for
getting to diagonal k: first, we can move down from the last entry on diagonal
k+1 which will lead to a value last d[k] = last d[k+1] + 1 because we moved one
row downwards from diagonal k+1, and to an according edit operation of deleting
the last d[k+1] + 1 symbol in string A. Second, we can move right from the last
entry on diagonal k-1 which will give us last d[k] = last d[k-1] because we stay
on the same row, and an edit operation of appending the last d[k-1] + k symbol
of B after the last d[k-1] symbol of A. Since we just want the farthest point on
diagonal k we can check if last d[k + 1] ≥ last d[k − 1]. If this is true, we can
just move down from diagonal k+1, otherwise we would move right from diagonal
k-1. In addition, there are two special cases: if k = d, we can only move right from
diagonal k-1 because the diagonal k+1 is not yet filled with entries. If k = -d, it is
only possible to move down due to the fact that diagonal k-1 is empty.

Finally, when a position on diagonal k is found, we can move down the diagonal
as far as possible until we encounter two different string elements, i.e. until ai+1 6=
bj+1 for i = row, ...,m and j = row + k, ..., n, where row indicates the position
found above (row = max(last d[k+1]+1, last d[k−1])). Row+k is the column
where the row intersects diagonal k. We continue with every relevant diagonal k
= -d, -d+2,...,d-2,d in the same way which will give us last d[k] values for the d
entry of the table. We proceed for every d entry until we arrive at the south-east
corner D(m,n) of the table. Accompanying with every last d[k] value an edit script
of length d is stored in script[k].

In Appendix B.1 Eiffel code for the Miller & Myers Algorithm can be found.

11The zeroth diagonal is the main diagonal, all diagonals above the main diagonal are numbered
in ascending order (1,2,...), all diagonals below the main diagonal are numbered in descending order
(-1,-2,...)
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In the following, the code is explained in detail. Lower and upper are a pair of
bounds indicating the range of diagonals to examine for each d entry of the table.
Lines 5–22 initialize the data structures including the last d array, the edit script
and the array of edit scripts.12 In line 18 and 19, row and col are initialized to the
number of prefix items of both strings, which were computed in a preprocessing
phase. The prefix represents the 0 entries of the table (line 20), which lie on the
main diagonal. In the lines 24–34 the special case of touching the bottom or right
border of the table is handled. If the bottom of the table is reached, the source
string is a proper prefix of the destination string and vice versa if the right border
of the table is reached. If both strings are identical, m = n must hold and hence
lower is set to 1 (line 25) and upper to -1. This implies that lower > upper and
two identical strings are detected (line 36).

There are two nested loops, an outer and an inner one. The inner loop iterates
over all edit distances (d values) until the south-east corner D(m,n) of the table
is hit (the result is found), or the edit distance is greater than max length (d >
max length) implying that no difference is calculated. This is desirable if too
large to be useful differences should be avoided. If max length is set to m+ n the
difference is calculated regardless of its size. After each iteration of the outer loop,
the lower bound is decremented by one and the upper bound is incremented by
one. This is because for each additional edit distance, one more upper and lower
diagonal has to be considered due to k = -d, -d+2,...,d-2,d.

The inner loop iterates over all relevant diagonals. Line 55 catches the case
that the inspected diagonal is the lowest one or last d[k + 1] ≥ last d[k − 1]. In
this instances, it is only possible to move down as described above. If we are at the
topmost diagonal or last d[k+1] < last d[k− 1], only a right move is applicable
(lines 64–68). Afterwards, we move down the diagonal until we hit the bottom or
right border of the table or ai+1 6= bj+1 for i = row, ...,m and j = row+k, ..., n.
If we hit the south-east corner, a result is found. This is detected by the lines 84–
88. Finally, the lines 90–93 and 95–98 handle two special cases: if we hit the
bottom of the table, say on diagonal k, it is useless to look to the left of diagonal
k. Therefore, the lower bound is incremented by one. In fact, on line 92 the lower
bound is incremented by two but with the decrementation by one on line 101, the
result is an incrementation by one. The same holds in the case that the right border
is hit, except that it is pointless to look above the diagonal and the upper bound is
therefore decremented by one.

An example of Miller & Myers algorithm is given in Figure 2.4. It calculates
the minimum edit script for the same strings as in the example of the previous

12The class EDIT OPERATION is not shown here but it is pretty obvious that it represents edit
operations.
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S E T S I T

0 1 2

T 1 2 2 3 4

E 2 2 3

S 2 3 3 4

T 3 3 4

4

I 4

T 4

Figure 2.4: Example of Miller & Myers Algorithm.

section. The entries in light grey are not calculated and stored explicitly, they are
only shown here for demonstration purposes. As we can see, compared to the
standard dynamic programming algorithm (Figure 2.3) much less entries of the
table have to be computed and stored, hence the algorithm shows a considerably
better space and time performance, especially for a small number of differences.
In the following, the calculation of every edit distance entry d, for d = 1,...,4, is
shown.

(1) For computing the d = 0 values, only diagonal 0 has to be considered. It is not
possible to slide down the diagonal because a1 = T 6= S = b1 and therefore
only at D(0,0) a 0 is filled in. This corresponds to last d[0] = 0 and script[0]
= {}.

(2) For calculating the d = 1 entries, the diagonals {-d,d+2,...,d-2,d}= {-1,1} have
to be inspected.

(a) Diagonal 1: it is only possible to move right from diagonal 0. Sliding
further down diagonal 1 is not admissible because a1 = T 6= E = b2.
Therefore, last d[1] = 0 (last entry on diagonal 1 is located on row 0) and
script[1] = {[0a1]} (insert b1 = S before a1 = T ).

(b) Diagonal -1: it is only possible to move down from diagonal 0. Since
a2 = E 6= S = b1, sliding down diagonal -1 is not applicable, and hence
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last d[-1] = 1 and script[-1] = {[1d0]} (delete a1 = T ).

(3) For filling the d = 2 values, the diagonals {-d,-d+2,...,d-2,d} = {-2,0,2} are the
interesting ones.

(a) Diagonal 2: last d[2] = 1 (D(1,3) = 1) and script[2] = script[1] + 0a2
= {[0a1,0a2]} (insert b2 = E before a1 = T ) because only a move right
from diagonal 1 is applicable, leading to the field D(0,2), afterwards mov-
ing down the diagonal one step due to a1 = T = b3.

(b) Diagonal 0: either moving down from diagonal 1 or moving right from
diagonal -1, followed by moving down on diagonal 0, leading to last d[0]
= 2. This means that the last entry on diagonal 0 is now located on row 2
(The zero value from step (1) is no more needed). In addition, script[0] =
[script[1] + 1d0, script[-1] + 0a1] = {[0a1,1d0],[1d0,0a1]}.13

(c) Diagonal -2: last d[-2] = 2 and script[-2] = script[-1] + 2d0 = {[1d0,2d0]}
due to first moving down from diagonal -1 and then sliding down on diag-
onal -2.

(4) For computing the edit distances with value d = 3, the diagonals -3,-1,1,3 has
to be examined.

(a) Diagonal 3: Moving right from the last entry on diagonal 2, i.e. from
last d[2]. Therefore, last d[3] = last d[2] = 1 (same row) and script[3]
= script[2] + 1a4 = {[0a1,0a2,1a4]}. Moving down on diagonal 3 is not
possible.

(b) Diagonal 1: Either moving down from the last entry on diagonal 2 (last d[2]
= 1 → last d[1] = 2) or moving right from the last entry on diagonal 0
(last d[0] = 2 → last d[1] = 2), then sliding down on diagonal 1, yield-
ing last d[1] = 3 and script[1] = [script[2] + 2d3, script[0] + 2a3] =
{[0a1,0a2,2a3],[0a1,1d0,2a3],[1d0,0a1,2a3]}.

(c) Diagonal -1: Moving down from diagonal 0 or moving right from diagonal
-2 introducing last d[1] = 4 and script[-1] = [script[0] + 3d2, script[-2]
+ 3a2] =
{[0a1,1d0,3d2],[1d0,0a1,3d2],[1d0,2d0,3a2]}.

(d) Diagonal -3: Moving down from diagonal -2, sliding down diagonal -3 is
not possible, leading to last d[-3] = 4 and script[-3] = script[-2] + 4d1 =
{[1d0,2d0,4d1]}.

13Note that {[0a1,1d0],[1d0,0a1]} contains two edit scripts: 0a1,1d0 and 1d0,0a1.
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(5) For the d = 4 entries of the table, the diagonals -4,-2,0,2,4 have to be consid-
ered.

(a) Diagonal 4: Only moving right from diagonal 3 is applicable, sliding
down diagonal 4 is not feasible. Therefore, last d[4] = 1 and script[4]
= script[3] + 1a5 = {[0a1,0a2,1a4,1a5]}.

(b) Diagonal 2: Moving right from diagonal 1, yielding last d[2] = 3 and
script[2] = script[1] + 3a5 =
{[0a1,0a2,2a3,3a5],[0a1,1d0,2a3,3a5],[1d0,0a1,2a3,3a5]}.

(c) Diagonal 0: Either moving down from the last entry on diagonal 1 (last d[1]
= 3 → last d[0] = 4) or moving right from the last entry on diagonal
-1 (last d[-1] = 4 → last d[0] = 4), leading to position D(4,4). After-
wards, sliding down diagonal 0 until last d[0] = 7 is possible because
a5 = b5, a6 = I = b6 and a7 = T = b7. At D(7,7) the south-east
corner is hit (row = m = 7 and col = n = 7), and hence the algorithm
terminates. Moreover, script[0] = [script[1] + 4d4, script[-1] + 4a4] =
{[0a1,0a2,2a3,4d4],[0a1,1d0,2a3,4d4],[1d0,0a1,2a3,4d4],
[0a1,1d0,3d2,4a4],[1d0,0a1,3d2,4a4],[1d0,2d0,3a2,4a4]}.

The minimum edit distance is D(m,n) = D(7,7) = d = 4 and the corresponding
edit scripts are hold in script[0]. There exists six different minimal edit scripts:
[0a1,0a2,2a3,4d4], [0a1,1d0,2a3,4d4], [1d0,0a1,2a3,4d4],[0a1,1d0,3d2,4a4],
[1d0,0a1,3d2,4a4] and [1d0,2d0,3a2,4a4]. Note that, in contrast to the standard dy-
namic programming algorithm, there are no change operations, hence the number
of minimal edit scripts is less than in Section 2.2. As described earlier, the change
operation can be easily derived from the add and delete operations.

A big advantage of the algorithm is that it always produces a shortest edit script,
in contrast to other algorithms. According to [13], the worst case runtime is in
O((2d + 1)min(m,n)) and the expected runtime is O(min(m,n) + d2) where
d = D(m,n). This reveals that the algorithm is especially efficient when the
differences between two files or strings are small compared to the their lengths m
and n, i.e. d� m and d� n, as a consequence the runtime complexity is reduced
to O(min(m,n)). In fact, the algorithm is often four times faster than the GNU
diff 14 tool, as stated in the paper [13]. A short exposition of the correctness of the
algorithm can also be found in this paper.

A variation of the algorithm from Miller & Myers is given in [14] revealing a
time and space complexity of O(ND) and a expected runtime of O(N +D2) with

14The first version of the GNU diff tool was implemented according to Hunt & McIlroys
algorithm[11].
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N = m + n (sum of the lengths of both strings) and D = |edit script| (number
of edit operations in the edit script). The algorithm is based on finding a path
in the edit graph with the smallest number of non-diagonal edges and performs
best for small number of differences. A further refinement presented in the paper
shows a linear space complexity of only O(N) at an expense of a poorer runtime
performance.

2.4 Hunt & McIlroy’s Algorithm (Original GNU Diff )

The Hunt & McIlroys algorithm was the basis for the first implementation of the
GNU diff tool. As stated in the previous section, it is less efficient than Miller
& Myers algorithm. Nevertheless, for the sake of completeness it is shortly dis-
cussed here. This section is based on the paper presenting the Hunt & McIlroys
algorithm.[11] Furthermore, the standard diff output, also used in the implementa-
tion of the Diffeif library, was introduced in this paper.

The available edit operations are add, change and delete, hence the used dis-
tance metric is the Levenshtein distance. As in the algorithms from the previous
sections, dynamic programming is used again. The dynamic programming table D
is annotated with the elements of the first string A as the rows and with the ele-
ments of the second string B as the columns, as a result the table is again of size
m + n, where m is the size of the first string and n is the size of the second string.
The table entry D(i,j), for i = 1,...,m and j = 1,...,n, stores the length of the longest
common subsequence of A(1..i) and B(1..j) instead of the length or cost of the edit
script as in the previous algorithms.15 Rather than filling the whole table, only the
so called k-candidates are computed and filled in the table, where k is the corre-
sponding length of the longest common subsequence. An entry of the table is a
k-candidate if and only if Ai = Bj and D(i, j) > max(D(i− 1, j), D(i, j − 1)).
First, all k-candidates are calculated. This is done by sorting the second string and
then putting the equal elements into the same equivalence class16. Afterwards, ev-
ery element of the first string is joined with an equivalence class. This produces
the candidates17 for each column. Then we generate the k-candidates by iterating
through the columns left to right. A candidate (i2, j2) on a column is a k-candidate
if i2 < i1 and j2 > j1 for (i1, j1) being a k-candidate. Now, the longest common
subsequence can be determined. A common subsequence is a set of k-candidates

15Certainly it is also possible to adapt the algorithm to hold the length or costs of the edit scripts
as the table entries.

16An equivalence class is a container holding equivalent elements regarding an equivalence rela-
tion.

17Note that this are not yet the k-candidates.
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lying on a strictly increasing path, i.e. i2 > i1 and j2 > j1 for (i1, j1) and (i2, j2)
being k-candidates k1 and k2 and k2 > k1. A longest common subsequence is a
longest path from a set of paths, meaning a path containing the most k-candidates.

The algorithm can be tuned by hashing each string element. This especially
helps for comparison of big files at the expense of stating unequal elements to be
equal if they fall in the same bucket. The worst case time complexity is O(mn log(m))
and the worst case space complexity is O(mn), but in practice the algorithm per-
forms better requiring only O(m(m + n)) time and linear space.

2.5 Heckel’s Algorithm

The flat-diff algorithms are completed by the presentation of Heckel’s algorithm[9].
A prominent feature of this algorithm is the detection of move operations. Beside
this, it also supports delete and add operations. First, an overview of the algorithm
is given, followed by an example.

It is assumed to have two strings or files A and B18 as in the previous sections.
The elements (or symbols) of A and B could either be lines, words or characters.
There are three data structures used by the algorithm: a symbol table (can be imple-
mented as an array) and arrays A and B representing the strings. The symbol table
contains the elements (or symbols) appearing in both strings, i.e. the characters,
words or lines. Moreover, the symbol table stores for each entry the number of oc-
currences in both strings, called OA and OB, and a link to the corresponding entry
in the array A. The symbol table can be built in a first step by scanning through
both strings, putting each element into the symbol table if it is not yet present and
incrementing a counter.

The second step consists of connecting the elements in array A and array B
having OA = OB = 1 (the elements occurring only once in both strings). These
are unchanged, perhaps moved elements. The third step is to scan upwards from
each mapped element until two not similar elements in both strings are found. This
means if A(i) and B(j) are paired in the second step and A(i+1) and B(j+1) are
equal, the corresponding elements are assumed to belong together (even if they
occur more than once in both strings). In the fourth step the same thing is applied
downwards the matching elements, i.e. compare A(i-1) with B(i-1), A(i-2) with
B(i-2), and so on until a non matching pair is found. After this step, everything is
done and the edit script can be created by scanning again through both strings. If a
element in array A (the source array) is not matched with an element in array B (the
destination array), a delete is found. Otherwise, if a unmatched element in array B

18In the following it is assumed to have two strings, but it is similar for two files.
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is encountered, an insert is found. The matched elements are moved if they do not
appear at the same position in both strings.

Array A Array B

T S
E E
S T
T S

I I
T T

Figure 2.5: Example of Heckel’s Algorithm.

In Figure 2.5 an example is shown, helping to better understand the algorithm.
The strings are the same as in the examples of the previous algorithms, A = TEST
IT and B = SETS IT. The algorithm is applied on character basis, and therefore
array A and array B contains the characters of the strings. In the first step the
symbol table is built, resulting in the entries (T,3,2), (E,1,1), (S,1,2), (Gap,1,1) and
(I,1,1). The first value of each entry is the corresponding element and the second
and third value is the number of occurrences of the element in string A (= OA) and
string B (= OB). In the second step the symbols with OA = OC = 1 are connected,
this are the elements E, I and Gap (solid lines). Afterwards, in the third and fourth
step, we scan downwards and upwards from the matchings found in the previous
step. Searching upwards yields no additional results but scanning downwards from
element A(6) = B(6) = I reveals the element A(7) = B(7) = T because both next
elements in string A and string B are equal (dashed line). Now it is time to build
the edit script. The elements in string A not touched by a line introduce deletions,
this applies to A(1), A(3) and A(4). Elements in string B not affected by a line
yield insertions, this is true for B(1), B(3) and B(4). The paired elements (solid
and dashed lines) can introduce moves. In this example this is not the case because
the lines are solely horizontal. For non horizontal lines the corresponding elements
would introduce moves.

The algorithm is easy to understand and has a good time and space perfor-
mance. Its runtime and space complexities are both linear in the file length. It
performs well on large files too. The algorithm can even be speeded up by using
hash codes for the elements of the strings. A major drawback is the possibility of
detecting wrong differences. If there are much duplicate elements, the algorithm
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provides bad results. Another algorithm providing move (and add) operations was
introduced by Tichy [18]. Its runtime performance is O(mn) and the space com-
plexity is in O(m+n) with m and n the length of string A and string B.
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Chapter 3

Tree-Based Diff Algorithms

In this chapter the most important tree-based diff algorithms are discussed. The
basic definitions used by the algorithms are similar to those of the flat-based case.
First, this definitions are adapted for using them with tree-based algorithms, fol-
lowed by the introduction of the notion of mappings, which is the most important
term for tree-based algorithms. Second, several different algorithms will be pre-
sented. In Section 3.1 the algorithm due to Tai is presented. Section 3.2 introduces
the algorithm by Zhang & Shasha. The X-Diff algorithm is covered in Section
3.3, followed by the LaDiff algorithm in Section 3.4. The chapter is concluded by
miscellaneous algorithms in Section 3.5.

As its name implies, a tree-based algorithm needs two trees as input, in the
following called source tree T1 and destination tree T2. A tree T is a set of hierar-
chical structured nodes. There exists three types of nodes: a root node is the root
of the tree. It has zero or more children1 but no parent. An inner node has exactly
one parent and at least one children. A leaf node has one parent but no children. If
the root and every inner node has exactly one child, the tree degenerates into a list.
An example of a (binary) tree is shown in Figure 3.1.

A set of trees is called a forest F. |T | and Nodes(T) denote the size and Nodes(T)
the number of nodes of the tree T. T[i] is the ith node of tree T, T[i..j] stands for
the nodes numbered i to j and T(v) is the subtree rooted at node v. F(v) is the forest
retrieved by deleting v from T(v). Parent(v) and P(v) denote the distinguished
parent of node v and l(v) is the leftmost leaf descendant of node v. The empty tree
is denoted by ∅.

In the Diffeif library the tree is obtained by first translating the two code snip-
pets, of which we want to calculate the difference, to XML representing the abstract

1In a binary tree every node has at most two children. For most tree-based diff algorithms the
number of children does not matter.
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Figure 3.1: An example of a tree.

syntax tree structure of the code and then parsing each XML file into a DOM-tree,
on which the tree-diff algorithm can operate. A detailed description of this steps
can be found in Chapter 4. Of course, the tree-based algorithms are not restricted
to trees representing the abstract syntax tree of a piece of code or to a DOM-tree,
and therefore a general tree is assumed throughout this chapter. There are two
major tree characteristics which distinguish the different algorithms: ordered and
unordered trees. In an ordered tree the order of the children of a node is important,
whereas for a unordered tree it does not play a role. For unordered trees the calcu-
lation of the difference is NP-hard2, i.e. the difference is not computable unless for
special cases (e.g. constant degree trees) or if some restrictions are applied (e.g. a
structure preserving restriction allowing only mappings of disjoint subtrees in the
source tree to disjoint subtrees in the destination tree).[1, 23, 19] Most algorithms
operate on rooted, ordered trees.

The algorithms either use preorder or postorder traversal to number the nodes
of a tree. Both are depth-first traversal methods. In preorder traversal the root of
a subtree is visited first, followed by visiting the left subtree and then the right
subtree recursively. In a postorder numbering the root node of a subtree is visited
last, i.e. first, the left subtree followed by the right subtree is traversed recursively
and at last the root of the subtree is visited. Which traversal method the different
algorithms are using is always stated at the beginning of the corresponding section.
In Figure 3.2 an example for preorder and postorder traversal is shown.

The tree-based diff algorithms calculate an edit script which turns the source
tree into the destination tree. Remember that an edit script is a sequence of edit
operations. Available edit operations of the tree-based diff algorithm in the Dif-
feif library are delete, add (insert), change, move and copy. Note that the distance
metrics introduced for the flat-based diff algorithms, such as the Levenshtein dis-
tance or the Hamming distance, cannot directly be used for tree-based diff. A very

2For NP-hard (non-deterministic polynomial-time hard) problems it is only possible to verify that
a solution of the problem is correct, but it is not possible to compute a solution in polynomial time.
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Figure 3.2: Preorder and postorder traversal.

important difference to the flat-based diff algorithms is the fact that detection of
moves (for ordered and unordered trees) is NP-hard.[8, 12, 10] There exists some
algorithms, e.g. [2], which are able to detect moves but they can only approximate
the result, and hence the resulting edit script could either be non minimal or visu-
ally not appealing. Of course, it is possible to build the move (and copy) operation
from the add and delete operations in a postprocessing step, but this can also lead
to visually not appealing results. In the Diffeif library move (and copy) operations
are optionally derived in such a postprocessing step. The different edit operations
have a slightly different semantic than in the flat-based case but the appearance
is similar. An edit operation is defined in the Diffeif library in the same way as
O = s1, s2Xd1, d2 with X ∈ {a, c, d,m, t}, s1 = source start index3, s2 = source
end index, d1 = destination start index and d2 = destination end index.

• Insert(x, y, k, s, t) appends node y from the destination tree as the kth child
to node x in the source tree, making the children s to t of node x the children
of node y. This can be simplified to Insert(x,y) or s1 = s2 = x, X = a and
d1 = d2 = y.4 Note that x, y, s and t refer to the node number and not the
node label.

• Delete(x) or s1 = s2 = x, X = d and d1 = d2 = λ5 deletes node x from
the source tree. The children of node x are appended to the parent of node x.

• Change(x, y) or s1 = s2 = x, X = c and d1 = d2 = y changes node x in
the source tree to node y in the destination tree.

3The index refers to the node numbers.
4In most cases (e.g. for visualizing the difference) it is not necessary to know at which position

in the source tree node x was inserted
5λ denotes the empty string.
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• Move(x, y) or s1 = s2 = x, X = m and d1 = d2 = y moves node x in the
source tree to node y in the destination tree.

• Copy(x, y) or s1 = s2 = x, X = t and d1 = d2 = y inserts node y in the
destination tree as a copy of node x in the source tree.

Figure 3.3 provides an example of an edit sequence containing the edit opera-
tions introduced above.

As for flat-based diff algorithms the minimal edit script is searched, i.e. the edit
script with minimal cost.6 For this purpose a cost function γ : (x → y) −→ <+

0

with x ∈ Nodes(T1) ∪ λ, y ∈ Nodes(T2) ∪ λ, λ a special blank symbol and T1
and T2 the source and destination tree, is introduced.[10] To each operation a→ b
a nonnegative real number γ(a, b) is assigned. γ(a → λ) is the assigned cost of
deleting node a, γ(λ → b) is the cost for the deletion of node b and γ(a → b) is
the cost for changing node a into node b. If a = b, it holds that γ(a → b) = 0. In
contrast to the flat-based diff algorithms, it is possible to assign a cost to each edit
operation depending on the node instead of a global cost. For example, a deletion
of a node labelled x could introduce a higher cost than deleting a node labelled y.
Therefore, the costs of the edit operations have to be chosen carefully depending
on the tree structure (for each tree separately). If an operation is assigned a very
high or infinite cost, the edit operation is most likely not used.

The notion of a mapping is crucial for tree-based diff algorithms.[1, 17, 20] A
mapping is a connection of the source and destination tree which maps correspond-
ing nodes to each other. It describes indirectly the edit operations used for trans-
forming a tree into another tree but ignoring the order of the edit operations. For-
mally, a mapping is defined as a set of tuples (a, b), where a ∈ Nodes(T1) and b ∈
Nodes(T2), satisfying for any pair (a1, b1) and (a2, b2) in the mapping[1, 17, 20]:

(1) a1 = a2 ⇐⇒ b1 = b2 (one-to-one mapping)

(2) a1 is to the left of a2 ⇐⇒ b1 is to the left of b2 (preserve sibling order)

(3) a1 is an ancestor of a2 ⇐⇒ b1 is an ancestor of b2 (preserve ancestor order)

These structural preserving conditions imply that two nodes a and b are in
the mapping if and only if both nodes are equal or the corresponding edit script
contains an edit operation Change(a,b), and the above constraints hold for every
other pair of nodes in the mapping. The edit script can easily be derived from

6If unit costs of one are used for each edit operation, the minimal edit script corresponds to the
minimum length edit script, i.e. the edit script with the smallest number of edit operations.
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Figure 3.3: An example of an edit sequence on trees.
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a mapping by creating a delete operation for every node of the source tree not
contained in the mapping, generate an insert operation for every not mapped node
in the destination tree and introducing a change operation for every two non equal
nodes in the mapping. Similarly, it is easy to get a mapping from an edit script.
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Figure 3.4: A sample mapping.

Figure 3.4 shows a mapping of the tree in Figure 3.3 (a) as the source tree
T1 and the tree in Figure 3.3 (f) as the destination tree T2. The corresponding
edit script7 is [Delete(2), Delete(5), Insert(1, 2), Insert(1, 5), Insert(5, 6)] =
[2d, 5d, 1a2, 1a5, 5a6]. There is an infinite number of possible edit scripts which
turn the source tree into the destination tree. Thus, it is impossible to enumerate
all edit scripts and pick the one with the minimum costs (or the shortest one if the
same costs for all edit operations are used). That is why mappings are important
because with mappings it is possible to compute the minimal edit script in polyno-
mial time.[17]

7Instead of source/destination start and end index only one index is shown.

32



CHAPTER 3. TREE-BASED DIFF ALGORITHMS

3.1 Tai’s Algorithm

In this section the algorithm introduced by Tai[17] for solving the tree-to-tree cor-
rection problem8 on ordered tree is presented. It has not a good time and space
complexity and is impractical to implement due to the complexity of the algo-
rithm. Nevertheless, it is a basis of the algorithm shown in the next section. Tai’s
algorithm is a generalization of the string-to-string correction problem introduced
in the previous chapter. In fact, each string can be represented as a tree of depth
two with a virtual root node. The algorithm provides change, insert and delete op-
erations. It uses a preorder traversal to number the nodes. This has the advantage
that the nodes T[1] to T[i] of a tree T form a subtree rooted at T[1]. T[i] denotes
the node with number i of tree T. It is assumed that the root of the source tree T1
and of the destination tree T2 are equal and remains unchanged.

As for the flat-based algorithms, a dynamic programming approach is used with
the following recursion[17]:

Dm,n = min(Dm−1,n + γ(T [m]→ λ),

Dm,n−1 + γ(λ→ T [n]),

MIN M(m,n))

The base conditions areD1,1 = 0,Di,1 =
i∑

k=2

γ(T1[k]→ λ) andD1,j =
j∑

k=2

γ(λ→

T2[k]) for 1 < i ≤ |T1| and 1 < j ≤ |T2|. Dm,n is the edit distance9 from the
nodes T1[1], ..., T1[m], also denoted as T1(1 : m), to the nodes T2[1], ..., T2[n], re-
ferred to as T2(1 : n). The resulting edit distance containing all nodes is obtained
by settingm to the number of nodes in tree T1 and n to the number of nodes in tree
T2.

As can be seen in the formula above, the value of the edit distance Dm,n can
be obtained by solving a finite number of subproblems (mappings) of smaller size,
hence the edit distance can be computed by solving these smaller subproblems
(mappings) in advance and then compute the final distance by composing the sub-
problems (mappings). Suppose M is a minimum cost mapping (also called an
optimal mapping) from T1(1 : m) to T2(1 : n). For an optimal mapping there are
only three possible cases for the last element of each tree:

(1) T1[m] is not in the mapping. The mappingM ′ from T1(1 : m−1) to T2(1 : n)
must be minimal and Cost(M) = Cost(M ′) + γ(T1[m] → λ) = Dm−1,n +
γ(T1[m]→ λ).

8The tree-to-tree correction problem is just another name for finding the minimal cost edit script.
9The corresponding edit script can be computed in parallel.
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(2) T2[n] is not in the mapping. The mapping M ′ from T1(1 : m) to T2(1 : n− 1)
must be minimal and Cost(M) = Cost(M ′) + γ(λ → T2[n]) = Dm,n−1 +
γ(λ→ T2[n]).

(3) T1[m] and T2[n] are in the mapping. The mapping M ′ from T1(1 : m− 1) to
T2(1 : n − 1) must be minimal. This is a special case because it is possible
under some circumstances thatCost(M) = Cost(M ′)+γ(T1[m]→ T2[n]) >
Dm−1,n−1 + γ(T1[m] → T2[n]), i.e. it is not allowed to add the nodes T1[m]
and T2[n] to the mapping M ′.

Case (3) needs a deeper examination. It is not possible to add T1[m] and T2[n]
to every matching from T1(1 : m − 1) to T2(1 : n − 1) because constraint (3) of
the matching definition on page 30 could be violated, i.e. the ancestor order would
be no longer preserved. Figure 3.5 shows an example of such a mapping.
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Figure 3.5: An illegal mapping.

The minimum mapping from T1(1 : 2) to T2(1 : 3) is {(1, 1), (2, 2)}.10 If
the nodes T1[3] and T2[4] are added to the mapping (red dashed line), the resulting
mapping {(1, 1), (2, 2), (3, 4)} is not a legal mapping from T1(1 : 3) to T2(1 : 4)
because T1[2] is an ancestor of T1[3] but T2[2] is not an ancestor of T2[4]. Thus,
the minimum cost mapping from T1(1 : 3) to T2(1 : 4) is {(1, 1), (2, 2)}.

MIN M(m,n) was introduced in the dynamic programming formula to en-
sure that only legal mappings are achieved. MIN M(m,n) is the minimum cost
mapping from T1(1 : m) to T2(1 : n) with T1[m] and T2[n] included in the map-
ping.11

As stated in [17], the time and space complexity of the algorithm is in O(V1 ∗
V2 ∗L2

1 ∗L2
2) with V1 and V2 the number of nodes in tree T1 and T2 and L2 and L2

the maximum depth of T1 and T2, respectively.

10Same costs for all edit operations are assumed.
11The formal definition of MIN M(m,n) is not given here. It can be looked up in [17].
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3.2 Zhang & Shasha’s Algorithm

The algorithm due to Zhang & Shasha[20] is an improvement of Tai’s algorithm
presented in the last section. It has a better time and space complexity and, more-
over, it is simpler. The algorithm can only be used for ordered trees and provides
change, insert and delete operations. In intermediate steps, the algorithm calcu-
lates the distance between two ordered forests. forestdist(T1[i1..j1], T2[i2..j2])
designates the distance between T1[i1..j1] and T2[i2..j2]. The final result is then
composed of these intermediate results. Therefore, the algorithm uses a postorder
numbering of the nodes. This has the advantage that T [i..j] (the nodes numbered
i to j) denotes an ordered subforest of T. In Figure 3.6 an example is shown of a
forest induced by the nodes T[1..5].
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(b) The forest induced by T[1..5]

Figure 3.6: An example of a forest.

Moreover, mappings for forests are defined in the same way as for trees and
i > j implies T [i..j] = ∅. Zhang & Shasha’s algorithm is implemented in the
Diffeif library, and therefore it is explained in detail by giving a formal definition
of the algorithm, followed by Eiffel pseudocode.

First, the set of keyroots for the source tree T1 and the destination tree T2 has
to be computed. The keyroots are the nodes which have a left sibling, i.e. l(k) 6=
L(p(k)) for all k ∈ Nodes(T ), plus the root of the tree. Remember that P (k)
denotes the parent of node k and l(k) is the leftmost leaf descendant of node k.
The keyroots of the tree in Figure 3.6 (a) are {2, 5, 6, 7}. For example, node 6
(labelled with F) has the leftmost leaf descendant l(6) = 4 but l(p(6)) = l(7) = 1
and thus node 6 is a keyroot. On the other hand, l(3) = 1 and l(p(3)) = l(7) = 1
and therefore node 3 is not a keyroot. Note that the number of keyroots is always
equal to the number of leaves in the tree.[4] In addition to the keyroots, the leftmost
leaf descendant for each node of the tree must also be precomputed. For the tree
in Figure 3.6 (a) the leftmost leaf descendants are [1, 2, 1, 4, 5, 4, 1]. For example,
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the leftmost leaf of node 6 is node 4 and therefore a 4 is stored in the array at
position 6. The keyroots and the leftmost leaf descendants are stored in arrays.
Their computation can be done in linear time.

To calculate the minimum cost mapping from a node in the source tree to a
node in the destination tree (stored in a permanent tree distance array), the children
of the corresponding nodes have to be mapped, i.e. all keyroots plus the leftmost
child (remember that the leftmost child is not part of the keyroots). The keyroots
represent the nodes which need separate computation. To obtain the minimum cost
mapping of a keyroot, the minimum cost mapping of its subforests, stored in a
temporary forest distance array, has to be computed. For each node, which is not a
keyroot (the leftmost child of each parent node), the mapping can directly be read
out from the tree distance array.12

Tai’s algorithm computed the solution top down, and therefore it was necessary
to record several solutions for later backtracking if an illegal mapping was detected
on the lower levels. Zhang & Shasha’s algorithm does the computation bottom up,
as a consequence only one solution to a subproblem has to be remembered because
the minimum cost mapping of all descendants of each node have been calculated
before the node is visited.

For computing the minimum cost mapping between two forests T1[l(i1)..i]
and T2[l(j1)..j], where i ∈ keyroots(T1), j ∈ keyroots(T2), i1 ∈ [l(i), ..., i],
j1 ∈ [l(j), ..., j] and i1 and j1 are ancestors of i and j, respectively, the following
dynamic programming recursion can be used[20]:

forestdist(T1[l(i1)..i], T2[l(j1)..j]) = min(

forestdist(T1[l(i1)..i− 1], T2[l(j1)..j]) + γ(T1[i]→ λ),

forestdist(T1[l(i1)..i], T2[l(j1)..j − 1]) + γ(λ→ T2[j]),

forestdist(T1[l(i1)..l(i)− 1], T2[l(j1)..l(j)− 1])

+ forestdist(T1[l(i)..i− 1], T2[l(j)..j − 1) + γ(T1[i]→ T2[j]))

The border conditions are:

(i) forestdist(∅, ∅) = 0

(ii) forestdist(T1[l(i1)..i], ∅) =
i∑

k=l(i1)

γ(T1[k]→ λ)

(iii) forestdist(∅, T2[l(j1)..j]) =
j∑

k=l(j1)

γ(λ→ T2[k]).

12Note that this reduces the time complexity because, instead of computing the mapping of the
subforests for all nodes, it must only be done for the keyroots.
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In the following, the intuition for the above recursion is presented. There
are three ways of computing the minimum cost mapping between two forests
T1[l(i1)..i] and T2[l(j1)..j]:

(1) T1[i] is not in the mapping. Therefore, the cost of deleting T1[i] and the forest
distance of the remaining nodes have to be summed up.

(2) T2[j] is not in the mapping. Therefore, the cost of inserting T2[j] and the forest
distance of the remaining nodes have to be summed up.

(3) If T1[i] and T2[j] are both in the mapping, the cost of changing T1[i] in T2[j],
the forest distance of the remaining nodes and a special term for guaranteeing
the mapping restrictions have to be summed up.

Eiffel pseudocode for Zhang & Shasha’s algorithm can be found in appendix
B.2.13 The computation of the leftmost leaf arrays (lml T1 and lml T2) and the
keyroots arrays (keyroots T1 and keyroots T2) is not shown because the calcu-
lation is straightforward. The two outermost loops iterate over the keyroots of T1
and T2. In the lines 24–40 the border conditions (ii) and (iii) are applied. In the
two innermost loops (lines 42–76) the forest distances are computed according to
the recursive dynamic programming algorithm. The final distance between the two
trees is available in treedist(m,n), where m and n are the number of nodes in tree T1
and T2, m = Nodes(T1) and n = Nodes(T2). It is easy to extend the pseudocode
to compute the corresponding minimal cost edit script in parallel to the calculation
of the minimal edit distance (the minimal cost mapping).

The time complexity of the algorithm is in O(|T1| ∗ |T2| ∗min(height(T1),
leaves(T1)) ∗min(height(T2), leaves(T2))) and the space complexity is in
O(|T1|∗|T2|), where |T | is the number of nodes in tree T , leaves(T ) is the number
of leaf nodes in tree T and heigth(T ) is the height of tree T . In addition, the
algorithm can be parallelized, leading to a time complexity of O(|T1| ∗ |T2|).[20]
Due to the good time and space complexity, the algorithm is currently the reference
for tree-based diff algorithms.[4]

3.3 X-Diff Algorithm

The X-Diff algorithm due to Wang, DeWitt and Cai[19] provides insert, delete
and change edit operations. The algorithm is an instance of the class of diff al-
gorithms for unordered trees, i.e. trees in which only ancestor but not sibling

13Note that it is only pseudocode. For the real code take a look at the Diffeif library.
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relationships are relevant. As mentioned at the beginning of this chapter, the prob-
lem of computing the difference of unordered trees is NP-hard.[1, 23, 19] Hence,
strong assumptions have to be made to solve it in polynomial time.[10] Due to
these assumptions, the algorithms are efficient but provide not exact results. X-Diff
also uses the notion of a mapping14. It is defined in the same way as for Zhang &
Shasha’s algorithm except that children are only allowed to map if their ancestors
are mapped. Furthermore, each node is assigned a node signature which is used for
comparing two nodes (Two nodes are equal if they have the same signature). This
reduces the mapping space and accelerates the algorithm. The X-Diff algorithm is
not usable for the Diffeif library because in our case it is important to maintain the
order of child nodes. Nevertheless, in the following X-Diff is presented shortly for
giving an idea of tree-based diff algorithms for unordered trees.

There are three steps in X-Diff. The first step is a preprocessing step. In this
step every node in the source and destination tree gets annotated with a hash value
representing the entire subtree rooted at that node. This hash value corresponds to
the signature of the node mentioned above. Note that for two isomorphic trees15

all nodes of the source tree have the same hash value as those in the destination
tree because the algorithm operates on unordered trees.

The second step consists of creating a minimum cost mapping between the
nodes of both trees. The algorithm starts at the bottom of the tree (the highest
level) and proceeds bottom up from level to level until the top of the tree (the low-
est level) is reached. At each level, first, all equivalent subtrees are filtered out. This
is done by looking at the corresponding hash values. If the hash value of a node
in the source tree is equal to the hash value of a node in the destination tree, the
corresponding subtrees are most likely equal and they can be filtered out (remem-
ber that a hash value of a node represents the whole subtree rooted at that node).
Because most of the time the difference is rather small, there are often subtrees to
filter out and thus the algorithm is speeded up. Second, the mapping for the re-
maining subtrees at the corresponding level is computed recursively with dynamic
programming as done in the previous algorithms. Very important is the fact that
the mapping must only be computed between nodes having the same signature, as
stated in [19]. This reduces the mapping space and transfers the NP-hard problem
to a polynomial time problem.

In the third and last step, the minimum cost edit script is generated from the
minimum cost mapping. This is done by recursively traversing all nodes in both
trees bottom up.

The time complexity of X-Diff is in O(|T1| ∗ |T2| ∗max(deg(T1), deg(T2)) ∗

14In the X-Diff paper it is called a matching.
15Trees are isomorphic if they have the same shape.

38



CHAPTER 3. TREE-BASED DIFF ALGORITHMS

log2(max(deg(T1), deg(T2))), where deg(T ) is the maximum out-degree of a tree
T .

3.4 LaDiff Algorithm

The Tool LaDiff and the corresponding algorithm are described in the paper of
Chawathe et al[2]. Although LaDiff is a tool for comparing Latex documents, it is
possible to use the algorithm in other cases. The LaDiff algorithm is an instance of
the class of diff algorithms for ordered trees. Beside insert, delete and change oper-
ations, a move edit operation is provided. Thus, the definition of the edit operations
on page 29 have to be extended by the move operationMove(x, y, k) which moves
the subtree rooted at node x in the source tree, so that x gets the kth child of node y
in the destination tree. There are only few algorithms able to detect moves[10] due
to the fact that the detection of moves is NP-hard in the tree-diff case[8, 12, 10]
and therefore some restrictions have to be introduced to make the problem solv-
able. These restrictions lead to a faster runtime of the LaDiff algorithm compared
with the previously presented algorithms at the expense of the possibility of pro-
ducing non minimal cost edit scripts. The creation of a minimum cost edit script
can be guaranteed if there are not too many duplicate nodes.16 Of course, it is also
possible to construct moves in a postprocessing phase from insert and delete oper-
ations. If one is interested in an exact result (as for the Diffeif library), this is the
way to go.

The algorithm performs two steps. First, the minimal cost mapping17 between
the nodes of both trees is computed. Second, the minimum cost edit script is gen-
erated from the mapping. The mapping constraints introduced on page 30 are ex-
tended by two additional restrictions: (1) Two nodes which are too different, must
not be mapped to each other18 and (2) a pair of internal nodes are only allowed to
be in the mapping if they have a certain number of common descendants. The map-
ping is obtained by scanning through the tree levels bottom-up. At each level k, an
initial mapping between the nodes of level k is acquired by computing the longest
common subsequence (LCS) between the nodes of both trees at level k and add all
nodes in the LCS to the mapping. Afterwards, the initial mapping is extended by
scanning through the still unmapped nodes and compare them with every node in
the other tree at level k.

The generation of the minimal cost edit script from the minimal cost mapping

16It is not further explained what too many is.
17In the paper [2] it is called a matching but the meaning is the same.
18This can be achieved by using a compare function returning a real number in a specific interval.

If the value is above a certain threshold, the nodes must not map to each other.
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involves five phases. In the first phase, called the update phase, for each pair of
dissimilar nodes in the mapping, a change operation is added to the edit script. The
second phase is the align phase. A pair of internal nodes x and y in the mapping
has misaligned children, if node u and v are children of node x in the source tree
T1 and u is to the left of v but the partner of u in the destination tree T2 is to the
right of the partner of v. If a pair of internal nodes in the mapping have misaligned
children, move operations, so called intra-parent moves, are added to the edit script
to align the children (bring them to the right order). In the third phase, for every
node in the destination tree T2 which is not in the mapping, an insert operation is
added to the edit script. In the fourth phase, the move phase, every node x in the
source tree T1 is moved if the parent of x does not map to the parent of the partner
of x in the destination tree T2. The last phase is the delete phase. For all nodes in
the source tree T1 which are not in the mapping, a delete operation is added to the
edit script. For the first four phases a breadth-first scan is applied and for the last
phase a postorder traversal is used. It is also easy to see that the first, third and fifth
phase are similar to the translation of a mapping to an edit script described in the
previous sections, only the second and fourth steps are new.

The time complexity of the algorithm is in O(ne+ e2), where n is the number
of leaves in the trees and e is the (weighted) edit distance, i.e. the runtime is
proportional to the number of nodes multiplied with the number of differences.
Because most of the time the number of differences, and thus the edit distance,
is small compared with the size of the tree, it holds that e � n and therefore the
algorithm is fast.

3.5 Miscellaneous Algorithms

In this section, the chapter about tree-based diff algorithms is concluded by the
listing of a selection of miscellaneous algorithms together with their runtime. The
algorithms are not explained in detail, only an overview of additional tree-based
diff algorithms is given. Short descriptions of the algorithms can be found in [1].
All algorithms provide insert, delete and change edit operations.

In [12] Klein introduced an algorithm for unrooted ordered trees based on dy-
namic programming similar to the one due to Zhang & Shasha in Section 3.2. The
algorithm requires fewer subproblems to be solved in the worst case and thus it
is faster. The time complexity of the algorithm is in O(|T1|2 |T2| log |T2|) and the
space complexity is in O(|T1| |T2|).

Chen [3] proposed another more advanced algorithm, using fast matrix multi-
plicaton, for ordered trees. The runtime is in O(|T1| |T2|+ L2

1 |T2|+ L2.5
1 L2) and

the space usage is in O((|T1| + L2
1)min(L2, D2) + |T2|), where L is the number
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of leaves and D is the depth of a tree.
In [22, 21] Zhang introduced two algorithms for the constraint edit distance

between two trees for the unordered and the ordered case. The restrictions intro-
duced is that disjoint subtrees must be mapped to disjoint subtrees only. The time
complexity in the unordered case is O(|T1| |T2| (I1 + I2) log(I1 + I2)), where I is
the maximum degree of a tree, and for ordered trees O(|T1| |T2|) time is needed.
Both algorithms use O(|T1| |T2|) space.

Another algorithm due to Zhang & Shasha[16] for rooted ordered trees uses
the unit cost model, i.e. each edit operation is assigned the same cost. Thus, the
edit distance is equal to the number of edit operations. The time complexity of
the algorithm is O(c2min(|T1| , |T2|)min(L1, L2)), where c is the edit distance
between T1 and T2. The space complexity is O(|T1| |T2|).

The last algorithm mentioned here is the one from Selkow[15]. Insert and
delete operations are confined to the leaves of the trees, and thus the algorithm is
simple but does not always provide the most intuitive edit script. For example, if
an internal node is removed, the algorithm removes all descendants of that node
instead of only removing the affected node. The algorithms needs O(|T1| |T2|)
time and space.
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Chapter 4

Implementation

In this chapter the architectural design details of the Diffeif library and the GUI
are revealed. Throughout this chapter it is assumed that the input consists of two
code snippets, which corresponds to the intended usage of the library and the GUI,
although other types of input are also possible. As seen in Chapter 3, the tree-based
diff algorithm works on trees. Therefore, the code snippets have to be converted
into an intermediate data format representing the hierarchical structure of the code
which then can be parsed into a DOM-tree. This is discussed in Section 4.1. In the
Sections 4.2 and 4.3 the class diagrams of the Diffeif library and the corresponding
GUI are given and explained in detail. The implementation details of the classes
are not given here due to the large amount and the size of the classes. With the com-
ments in the code and the explanations of the algorithms in the previous chapters,
it should not be a problem to understand the implementation of the classes.

4.1 Internal Data Representation

The flat-based diff algorithm operates directly on the code snippets and thus no
conversion into another format is needed. Of course, any other textual input can
be provided to the flat-based diff algorithm. Remember that flat-based diff is an
umbrella term that encompasses line-based, word-based and character-based diff,
but the underlying diff algorithm is the same for all three types of diff.

The tree-based diff algorithm implemented in the Diffeif library needs as input
two XML files, hence the code snippets have to be converted into such files before-
hand. In the case of code snippets, the XML file represents the abstract syntax tree
of the code. Note that every code snippet has an implicit structure visible to hu-
mans but not to machines, and therefore a conversion to another format, e.g. XML,
on which machines can derive the hierarchical structure, is required. Of course, the
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tree-based diff algorithm is not only restricted to XML files representing code. In
fact, it can be used for a wide range of XML files. In Listing 4.1 a small example
code snippet is shown.

Listing 4.1: Example code in Eiffel.
prune_first (n: INTEGER)

do
prune (n, 1)

end

The corresponding XML file representing the abstract syntax tree of that code
snippet is available in the appendix in Listing C.1 on page 71.1 The XML file
is shown in a prettified format providing better human readability. The first line
of the XML file contains the XML declaration stating the used XML version and
the encoding. The second line defines a XML namespace identifying the unique
vocabulary of the XML document. The rest of the XML File consists of three
constructs: elements, attributes and texts.2 An element either begins with a start
tag, e.g. < start tag >, and ends with an end tag, e.g. < end tag >, or it is made
up of an empty element tag, e.g. < empty element tag / >. Attributes consists
of a name/value pair and are located inside a start tag or an empty element tag, for
example < start tag name = ”value” >. Texts appear inside an element, i.e.
between a start and an end tag. Note that in the example new line symbols (%N)
are explicitly shown in the text elements. The XML file can easily be retrieved
from a code file by using EVE, the Eiffel Verification Environment3.

The XML files are internally parsed into separate DOM-trees using some li-
braries of EVE. Afterwards, the tree-based diff algorithm runs on these DOM-trees.
The DOM-tree retrieved from the XML file in Listing C.1 is shown in the appendix
in Figure C.1 on page 73. There are two types of nodes: element nodes and text
nodes. Element nodes are ordered internal nodes with one label, the name. Text
nodes are ordered leaf nodes with one label, the value. They are shown as a dashed
rectangle. According to the Document Object Model specification by the World
Wide Web Consortium4, the attributes should form separate unordered leaf nodes
with two labels, name and value, but for the Diffeif library this is not necessary,
and therefore the attributes are annotated at the corresponding element node. As
can be seen in Figure C.1, the small code snippet introduces a lot of nodes, and

1The XML file was provided by my supervisor Yu Pei.
2In general, there are much more constructs available for a XML file but in our case three are

enough.
3http://se.inf.ethz.ch/research/eve/. Retrieved 2012-12-14.
4http://www.w3.org/TR/REC-xml/. Retrieved 2012-12-14.
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hence the tree-based diff algorithm is slowed down. As a consequence, the Diffeif
library offers additional functionality for skipping unnecessary nodes, i.e. internal
element nodes with only one child not being a text node. Further speedup offered
by the Diffeif library is the merging of element and text nodes into one single node.
In the majority of cases, the tree-based diff algorithm returns accurate results using
this optimisation because most element nodes have either none or only one text
node as a child. Let us assume that the keywords if and end form two text nodes
belonging to the same parent element node. If the conditional branch is removed
from the code, both keywords disappear from the DOM-tree, and thus there is no
disadvantage in this case if both keywords are located in the same element.

4.2 Diffeif Library

The class diagram of the Diffeif library is shown in Figure 4.1. A red arrow from
a class A to a class B symbolizes the inheritance of class A from class B. A green
arrow from a class A to a class B signifies that class A is a client of class B and
class B is a supplier of class A, i.e. class A holds an object of the type of class B at
runtime. Classes annotated with a star (*) are deferred and classes annotated with
a plus (+) are effective.

Figure 4.1: Class diagram for the Diffeif library.

DIFFEIF is a deferred class encapsulating common features for tree-based
diff and flat-based diff. FLAT DIFF is a deferred superclass containing the most
functionality for CHAR DIFF, WORD DIFF and LINE DIFF which are effective
classes inheriting from the superclass FLAT DIFF. The class TREE DIFF inher-
its directly from DIFFEIF. The classes DIFFEIF and FLAT DIFF are clients
of the deferred class EDIT OPERATION which provides the edit operations used
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in the edit script, more precisely it contains attributes denoting the start and end
index in the source and destination of the corresponding edit operation. The effec-
tive edit operations are subclasses of the EDIT OPERATION class and just con-
tain a character identifier symbolizing the type of the edit operation. The class
DELETE TREE NODE stands for a special edit operation only available for tree-
based diff. Moreover, DIFFEIF is a client of the EVENT TYPE class which
implements the publisher/subscriber design pattern. The EVENT TYPE class is
used in the library to notify registered subscribers (publish events) about certain
events. Clients of the Diffeif library are able to register agents to the corresponding
EVENT TYPE. Once routines ensure that the EVENT TYPE objects in the Diffeif
library are create once and only once at the first call to the object, either through
publishing an event or subscribing an agent, similar to the singleton design pattern.
This is also called lazy creation.

Last but not least, the classes TREE ITERATOR,
TREE EXTENDED POSTORDER ITERATOR, TREE POSTORDER ITERATOR,
TREE PREORDER ITERATOR and TRAVERSAL ELEMENT implements the it-
erator design pattern. These classes are used to traverse trees in preorder and pos-
torder. The class TREE PREORDER ITERATOR provides the iteration over a tree
in preorder by visiting element nodes, text nodes and attribute nodes of the tree.
The class TREE POSTORDER ITERATOR supports the iteration over the tree in
postorder by visiting only element nodes. The class
TREE EXTENDED POSTORDER ITERATOR enables to iterate in postorder not
only over element nodes but also over text nodes.

4.3 GUI

The class diagram of the GUI is shown in Figure 4.2.

Figure 4.2: Class diagram for the GUI.
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DIFFGUI is the main class of the system containing the user interface, i.e. the
user must only care about this class and can use the features of the class after cre-
ating an object of the type of this class. DIFFGUI is a client of APPLICATION,
the root class of the GUI, which is a client of MAIN WINDOW. MAIN WINDOW
is the responsible class for building the GUI with the menu bar, status bar and
all its subwindows. The main window contains two text boxes, a LEFT TEXT
and a RIGHT TEXT, both inheriting from the deferred class TEXT. The classes
EV RICH TEXT BORDERLESS and EV RICH TEXT BORDERLESS IMP are mi-
nor redefinitions of EV RICH TEXT and EV RICH TEXT IMP, respectively, al-
lowing text boxes with smoother borders. The STATE class encapsulates the actual
state of the GUI. This class is used by MAIN WINDOW and TEXT and its descen-
dants, i.e. it is a supplier to them. Furthermore, the class STATE must also know
the MAIN WINDOW class, i.e. STATE is also a client of MAIN WINDOW.

MESSAGE is a deferred class representing different types of messages used by
the GUI, e.g. error messages, information messages, value selection dialogues etc.
The last remaining class is named INTERFACE NAMES. It contains many string
constants utilized by the main window and the messages.
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Chapter 5

User Guide

Overall, the usage of the GUI and the library is straightforward1. Nevertheless, in
this chapter there are some hints given, explaining the usage in more detail. Do not
forget to add the Diffeif library to your project.

First, the user must create an object of the corresponding type of diff he want to
use, either LINE DIFF, WORD DIFF, CHAR DIFF or TREE DIFF. The creation
procedures allow to create an object with a source and destination string (for flat-
based diff) or file set (set string and set file) or with additional options set right
at the creation time of the object (set file option and set string option). These
features can also be used to set new files on an existing object. On the created
object, the user can set different options, some of them are listed in Table 5.1.

Once the options are set, the diff algorithm can be called with the diff fea-
ture. The calculated difference is stored in the attribute difference: LINKED LIST
[EDIT OPERATION], and the attribute difference set: BOOLEAN is set to true.
If both files or strings are equal, the attribute equality:BOOLEAN is set to true.
Note that it is possible for a change operation to cover unequal block sizes,
i.e. a block of n elements in the source can be changed to m elements in the
destination, where n 6= m.

For using the GUI, the Diffgui library has to be included in the project. First,
an instance of the class DIFFGUI must be created. This can be done in three
ways: by creating the instance with default settings (make), by setting a source
file and a destination file (set file), or by setting a source string and a destina-
tion string (set string). On this newly created object it is possible to set different
options like in the Diffeif library (see Table 5.1). Afterwards, there are two possi-
bilities to launch the GUI: by calling launch on the DIFFGUI object, or by calling
launch and calculate on the DIFFGUI object, which not only launches the GUI

1Read the comments of the different features in the Diffeif library.
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but also calculates and visualizes the initial difference of the files or strings which
are set previously. A screenshot of the GUI is shown in Figure 5.1.2

Figure 5.1: A screenshot of the GUI.

2Note that blank lines are added to synchronize the source and destination.
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Table 5.1: Features of a DIFFEIF object.

Feature Tree-diff only Description

enable move (bool: BOOLEAN) Enables/Disables move operations.

enable copy (bool: BOOLEAN) Enables/Disables copy operations.

enable write file (path: STRING) Difference will be written to a file. File will
be created at path.

disable write file Difference will not be written to a file.

set max length (length: INTEGER) Set the maximum length of the edit script
(number of differences). If the number of dif-
ferences is larger than max length, the differ-
ence will not be calculated.

reset max length Resets the maximum allowed length of an edit
script to the default value -1 (edit scripts of
arbitrary size are computed).

enable ignore whitespace (bool: BOOLEAN) Enables/Disables ignoring of leading and
trailing whitespace of text for diff computa-
tion.

transform xml to code (directory path: STRING) x Transforms a bunch of XML documents to
code (.e files). All subfolders and files in di-
rectory path are traversed recursively.

set add cost (cost: INTEGER) x Set the assigned cost for an add operation.

set change cost (cost: INTEGER) x Set the assigned cost for a change operation.

set delete cost (cost: INTEGER) x Set the assigned cost for a delete operation.

enable speedup (bool: BOOLEAN) x Enables/Disables speeding up the computa-
tion of the diff.

enable extended computation (bool: BOOLEAN) x Enables/Disables a more exhaustive computa-
tion, leading to the most accurate result at the
expense of a higher computation time. The
speedup option can also be used with the ex-
tended computation.
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Chapter 6

Performance Analysis

In this chapter the runtime performance of the flat-based diff and the tree-based
diff algorithm implemented in the Diffeif library is empirically studied. Miller &
Myers’ algorithm from Section 2.3 and Zhang & Shasha’s algorithm from Section
3.2 are used in the Diffeif library. The analytical bound of the performance can
be found in the corresponding sections. The experiments were performed on an
Intel R© Core

TM
2 Duo 2.20 GHz PC with 4 GB memory. The operating system is

Microsoft Windows R© 7 x64.
Two data sets were used for the performance measurement. The first data set,

used for testing the flat-based diff algorithm, consists of 5,566 plain text docu-
ments1 containing code snippets representing a feature or a class.2 From these text
files, 222 pairs were built by combining different files, resulting in a varying num-
ber of differences (from 2 to 1,200). The number of lines of the text files varies
between 0 and 1,200. On these pairs the line-based diff algorithm were run and
the runtime was measured according to some criteria explained in Section 6.1. The
second data set, used for testing the tree-based diff algorithm, contains 5,566 XML
documents representing the abstract syntax tree of the code snippets of the first data
set.3 48 pairs were built from these documents (with and without the speedup op-
tion enabled for tree-diff).4 The number of nodes of the pairs of XML files varies
between 42 and 800 and therefore the height of the trees and the number of leaves

1The comma is used as a delimiter for numbers, i.e. 5, 566 = 5566.
2Because the main purpose of the Diffeif library is to support the calculation of differences be-

tween codes snippets, files in the size of common code snippets are chosen as test files. Of course,
the algorithm can also be applied to general text files. In this case the measured execution time for
code files can be scaled up.

3The XML data set was provided by my supervisor Yu Pei.
4The amount of test data files for tree-based diff is smaller than for flat-based diff due to the shape

of the data and the fact that running the tree-based diff algorithm consumes much more time.
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in the trees is varying too. On these pairs of XML files the tree-based diff algorithm
were run logging the execution time. Note that in the figures similar data points
are merged into a single data point for better visibility and that there were more
measurements gathered for small values due to the shape of the available test data
and the complexity of the algorithms.

In Section 6.1 the performance of Miller & Myers’ algorithm for flat-based diff
is analysed, followed by an overview of the runtime behaviour of Zhang & Shasha’s
algorithm for tree-based diff in Section 6.2. Last but not least, in Section 6.3 the
performance of the Miller & Myers’ algorithm and Zhang & Shasha’s algorithm
are related to each other.

6.1 Miller & Myers’ Algorithm (flat-based)

This section covers the performance analysis of the flat-based diff algorithm used
in the Diffeif library. The detail of the algorithm can be looked up in Section 2.3.
Remember that word-based diff and character-based diff use the same algorithm
as line-based diff. Word-based diff and character-based diff provide only a finer
grained partition of the input text (into words or characters) than line-based diff
does. This implies that the execution time for character-based diff is slightly higher
than for word-based diff, which itself has a somewhat higher runtime than line-
based diff. In the following, only the performance of line-based diff is studied.

As seen in Section 2.3, the worst case runtime complexity is in O((2d +
1)min(m,n)) and the expected time complexity is in O(min(m,n) + d2), where
m and n are the number of lines in the source and destination, respectively, and d
is the number of differences between the two files. This implies that the algorithm
performs well when d is small compared to m and n, i.e. it is preferable to use
the algorithm on not totally different files. Figure 6.1 shows the relation of both
complexities to the execution time. The worst case complexity ranges from 25 to
981,167 and the expected time complexity is in the interval from 9 to 1,341,141.
The executions time lies between less than one second and 1,109 seconds.

In Figure 6.1(a) the worst case time complexity is plotted against the execution
time. The execution time is not strictly increasing as might be reasonably expected.
This is due to the preprocessing step of the algorithm, where prefixes and suffixes
are eliminated. The shape of the differences has an influence too, i.e. if the differ-
ences span a consecutive block, the execution time needed might be smaller than
for scattered differences. These two things, the preprocessing step and the shape of
the differences, lead in some cases to a much smaller runtime as one might expect.
In general, it can be said that the runtime increases if the worst case time complex-
ity increases, i.e. if the size of the files and/or the number of differences grows. For
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example, for O((2d + 1)min(m,n)) = O(12, 831) with m = 39, n = 177 and
d = 164 the runtime is 2 seconds, whereas for the computation of two pairs of files
with the worst case runtime complexity O((2d + 1)min(m,n)) = O(422, 609)
with m = 373, n = 467 and d = 566, 229 seconds are needed. On the other
hand, if the number of differences for both examples is reduced to a small number,
say d ∈ [1, 20], the runtime is less than a second. As already mentioned above,
the execution time needed is mainly limited by the number of differences. If we
have two files, both containing 1,000 lines, and a huge difference between them,
say d = 1, 000, then O((2d + 1)min(m,n)) = O((2 ∗ 1, 000 + 1) ∗ 1, 000) =
O(2, 001, 000). For getting the same runtime complexity with a small number of
differences, say d = 30, the files must contain at least 32,803 lines. Indeed, the
expected time complexityO(min(m,n)+d2) reveals that the execution time often
depends on the number of differences if the variance of the sizes of the files is not
too big.

In Figure 6.1(b) the execution time in relation to the expected time complexity
is plotted. Most of the time the execution time does not fit well the expected exe-
cution time, i.e. in most cases the algorithm is in fact faster. This is also due to the
preprocessing steps and the shape of the differences.
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(a) Execution time vs. worst case time complexity
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(b) Execution time vs. expected time complexity

Figure 6.1: Performance of the flat-based algorithm.

6.2 Zhang & Shasha’s Algorithm (tree-based)

The performance of the tree-based algorithm used in the Diffeif library is studied
in this section. The algorithm can be looked up in Section 3.2. The worst case time
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complexity of the algorithm is in O(|T1| ∗ |T2| ∗min(height(T1), leaves(T1)) ∗
min(height(T2), leaves(T2))) = Time Complexity, where |T | is the number of
nodes in tree T , leaves(T ) is the number of leaf nodes in tree T and heigth(T ) is
the height of tree T . As can be seen from this formula, the execution time mainly
depends on the size and the shape of the trees but not directly on the number of
differences as it is the case for flat-based diff. This makes the tree-based algorithm
interesting for files with big differences.

Figure 6.2 shows the execution time of the tree-based diff algorithm based
on the time complexity and the sum of the number of nodes of the source and
destination tree. The time complexity spans the interval from 26,730 to 96,083,456.
The number of nodes ranges from 42 to 800. The execution time lies between 1
second and 4,277 seconds ≈ 71 minutes.

Figure 6.2(a) relates the execution time of the tree-based diff algorithm to the
analytical time complexity. The execution time is not strictly increasing as might
be expected. Outlier data points can arise from the shape of the tree, i.e. if the
tree has a special shape, the number of keyroots can change, and thus the runtime
is affected.5 Furthermore, the number of differences can have an indirect influence
(if two trees are very similar, they are equally shaped). In general, it can be assumed
that the runtime of the algorithm increases when the time complexity grows. The
experiments have shown that the runtime gets too big if the time complexity is
greater than 0.4∗108 or if there are more than approximately 400 nodes in the trees.
In this case the algorithm needs more than half an hour for computing the result. If
the time complexity is bigger than 108 or if the amount of nodes in the trees exceed
1,000, the computation time even raises to more than one hour. Unfortunately, the
XML test data are parsed into really big trees, making the tree-based diff algorithm
very slow. Therefore, it is almost always a must to use the speedup option to shrink
the size of the trees, their height and also the number of leaves, resulting in a much
faster runtime (See next section). Of course, in some rare cases the speedup option
can produce suboptimal results.

It is not surprising that the biggest influence on the runtime comes from the
number of nodes in the trees. Figure 6.2(b) shows the execution time according to
the sum of the number of nodes in the source tree and the destination tree. Again,
the curve is not strictly increasing. This is due to the influence of the height and of
the number of leaves of the trees (see the time complexity formula). As a general
rule, it can be assumed that if the number of nodes is increasing, the execution time
most likely increases for normal shaped trees too.6

5To relate the execution time of the algorithm to the shape of tree would be very difficult and is
omitted here.

6It is not explained here what a normal shape of a tree is.
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Figure 6.2: Performance of the tree-based algorithm.
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6.3 Miller & Myers’ Algorithm vs. Zhang & Shasha’s Al-
gorithm

In this section the tree-based diff algorithm and the flat-based diff algorithm used
in the Diffeif library are compared on the same set of files, see Figure 6.3. 28 pairs
of files were built out of the test data set. For line-based diff and tree-based diff
the same pairs were used, i.e. for tree-based diff each text file was converted to
a XML file representing the abstract syntax tree of the code contained in the text
file, and thus the runtime of the two algorithms can be compared although the tree-
based diff algorithm works on tree nodes and the line-based diff algorithm operates
on lines. In Figure 6.3 these pairs of files are plotted against the execution time
needed to compute the difference between the two files. The pairs are arranged in
increasing order according to the value of (2d+1)min(m,n), i.e. Pair (i+1) >
Pair (i)⇐⇒ (2di+1 + 1)min(mi+1, ni+1) > (2di + 1)min(mi, ni).7

In Figure 6.3 it can be seen that tree-based diff with the speedup option enabled
performs much better than the tree-based diff without using the speedup option. In
all cases the speeded up tree-based diff algorithm is at least 5 times faster. In some
cases it is up to 11 times faster and on average it is 9 times faster. Moreover, the
variance of the amount of speedup is small, i.e. the computation is most of the
time accelerated by a factor of 9. In addition, the variance of the runtime is much
lower for the tree-based diff with speedup than it is when the speedup option is
not used. For all pairs the runtime of the line-based diff algorithm is less than
1.8 Most of the time, the tree-based diff algorithm without speedup enabled can
not compete with the line-based algorithm in terms of the runtime, whereas the
tree-based diff algorithm with speedup enabled can keep up with the line-based
algorithm in almost all cases.

Altogether, it has been shown that the flat-based diff algorithm is fast. Of
course, tree-based diff sometimes provides better results but at the expense of a
much higher runtime. Therefore, in most cases and especially if time matters it is
better to use flat-based diff. If the tree-based diff algorithm is used, it is recom-
mended to enable the speedup option, reducing the execution time noticeably at
the expense of a small chance of getting not an optimal result. As a consequence,
if the result has to be optimal regardless of the computation time, the tree-based
diff algorithm without the speedup option enabled should be used.

The diff algorithms implemented in the Diffeif library were not compared with

7Also other sorting criteria can be used, e.g m + n + d or min(m,n) + d2. This would only
change the shape of the curves, but the implications would be the same.

8It was only possible to use small text files resulting in a runtime for the line-based diff algorithm
of less than 1 second because otherwise the obtained XML files would have been too big.
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Figure 6.3: Performance of tree-based diff vs. flat-based diff.

algorithms from other diff tools because it is either not clear which diff algorithm
is used by the tools or the implementation details of the algorithms are hidden.
Moreover, it is in general very difficult to compare two different programs due
to the fact that most of the time performance depends on the used test data and
on the programming details.[13] Therefore, to compare the diff algorithms with
other tools it would have been necessary to implement other algorithms in the same
programming language and the same spirit as it was done in the Diffeif library. The
gentle reader can try out other tools himself. There are lot of diff tools available
for every possible platform. Some famous tools are, among others, the GNU diff
tool, WinMerge and Microsoft XML Diff and Patch Tool.9

9A list of available diff tools can be found at http://en.wikipedia.org/wiki/
Comparison_of_file_comparison_tools. Retrieved 2012-12-28. Most of them are line-
based diff tools.
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Chapter 7

Conclusion

The aim of this thesis was to investigate different non-hierarchical and hierarchical
algorithms for computing the difference between two files or two strings, to select
one hierarchical and one non-hierarchical algorithm for the implementation as a
library and to visualize the differences in a GUI.

The non-hierarchical computation of a difference can be done line-based, word-
based or character-based. For all three variants the underlying algorithm is the
same, only the partitioning of the files or strings is different. A majority of flat-
based tools offers only line-based diff, but in the Diffeif library all three variants
are provided. Most diff algorithms are of non-hierarchical nature, so called flat-
based diff algorithms. Many of these algorithms are based on dynamic program-
ming, which was presented in detail at the beginning of this report. Moreover,
different distance metrics were introduced as a prerequisite for the flat-based diff
algorithms. Miller & Myers algorithm was chosen for the implementation. The ex-
periments revealed that the algorithm performs well, especially for files with small
differences. The algorithm performs even faster in some cases because prefixes,
suffixes and singular insertions and deletions are detected before running the algo-
rithm. This is due to the preprocessing step added to the algorithm in the Diffeif
library. A postprocessing step, also added to the algorithm, even detects change,
move and copy operations, which the original algorithm was not able to detect.

Tree-based diff algorithms are much more complex and in general slower than
flat-based diff algorithms. There is still a lot of ongoing research in this field. The
algorithms can be categorized into two different classes: algorithms operating on
ordered trees and algorithms operating on unordered trees. For unordered trees,
the computation of the difference is always NP-hard. Moreover, the computation
of moves is also NP-hard. This is an important difference to flat-based diff algo-
rithms. Algorithms operating on unordered trees or calculating move operations
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can only approximate the result, leading to non optimal edit scripts. As a prereq-
uisite for many algorithms, the notion of a mapping was introduced in detail. An
edit script can be derived from such a mapping. Algorithms of both categories,
operating on ordered and unordered trees, were investigated in this report. One al-
gorithm presented is also able to detect move operations. Furthermore, some of the
algorithms build on dynamic programming. For the implementation in the Diffeif
library Zhang & Shasha’s algorithm was chosen. The algorithm was extended by
a postprocessing step for detecting move and copy operations, which the original
algorithms was not able to detect.

The experiments have shown that the tree-based diff algorithm is in general
slow compared with the flat-based diff algorithm. Therefore, a speedup option for
tree-based diff was introduced leading to an acceleration of the computation by a
factor of 9 on average and in some cases even by a factor of 11. In addition, the
flat-based diff algorithm showed a much better scalability1 than the tree-based diff
algorithm. Last but not least, it was shown that the performance of the flat-based
diff algorithm mainly depends on the size of the files and the number of differences
and for the tree-based diff algorithm the number of nodes in the trees is the most
important term regarding the performance.

1Remember that scalability is the ability of the algorithm to handle a growing amount of data
(lines, words, characters or nodes).
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Chapter 8

Future Work

In this chapter some directions for future work are revealed. There exists still a
wide field of interesting tasks. In the following, some of these tasks are listed.

• The diff algorithms implemented in the Diffeif library can be compared to
other tools, for example the GNU diff tool, WinMerge or Microsoft XML Diff
and Patch Tool, regarding the performance or other quantitative or qualitative
measurements.

• A faster tree-based diff algorithm can be developed from scratch and added
to the Diffeif library. For example, the optimality of the edit script can be
sacrificed in favour of a better runtime performance. Furthermore, Zhang &
Shasha[20] described a parallelized version of their algorithm reducing the
execution time.

• The Diffeif library can be extended by a diff algorithm which uses semantic
methods.

• The edit script can be overlayed onto the data using node annotations, i.e. ev-
ery node knows by which edit operation it is affected if any. This corresponds
to the notion of a delta tree.[2] It would lead to an easy processing (the trees
just have to be traversed, reading out the edit operation at the nodes). On the
other hand, the edit script would get very big because it is always of the size
of the trees, leading to a higher space consumption. Usually the edit scripts
are not that big, and thus it is questionable if it is an advantage to blow up
the edit script by using node annotations.

• Other display formats of the edit script can be developed.
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• Allowing to set or calculate the costs for each edit operation of the tree-
based diff algorithm for each node separately, e.g. depending on the number
of children of the node.

64



Appendix A

Line-Based vs. Word-Based vs.
Character-Based Diff

xAdd xDelete xChange xMove xCopy

Source code
1 factorial (int: INTEGER): INTEGER
2 require

3 int valid: int < 0

4 int_small: int < 100

5 int small: int < 10

6 local
7 x, y: INTEGER
8 do

9 Result := y

10 from

11 x := 1

12 until
13 x > int
14 loop
15 y := y * x
16 end
17 end

Destination code
factorial (int: INTEGER): INTEGER

require

i valid: int > 0

int_small: int < 100
local

x, y: INTEGER
do

from
x := 1

until
x > int

loop
y := y * x

x := x + 1

end

x := 1

Result := y

end

Figure A.1: Line-based diff.
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Source code
1 factorial (int: INTEGER): INTEGER
2 require

3 int_valid: int < 0

4 int_small: int < 100

5 int small: int < 10

6 local
7 x, y: INTEGER
8 do

9 Result := y

10 from

11 x := 1

12 until
13 x > int
14 loop
15 y := y * x
16 end
17 end

Destination code
factorial (int: INTEGER): INTEGER

require

int_valid: int > 0

int_small: int < 100
local

x, y: INTEGER
do

from
x := 1

until
x > int

loop
y := y * x

x := x + 1

end

x := 1

Result := y

end

Figure A.2: Word-based diff.

Source code
1 factorial (int: INTEGER): INTEGER
2 require
3 int_valid: int < 0

4 int_small: int < 100

5 int small: int < 10

6 local
7 x, y: INTEGER
8 do

9 Result := y

10 from

11 x := 1

12 until
13 x > int
14 loop
15 y := y * x
16 end
17 end

Destination code
factorial (int: INTEGER): INTEGER

require
int_valid: int > 0

int_small: int < 100
local

x, y: INTEGER
do

from
x := 1

until
x > int

loop
y := y * x

x := x + 1

end

x := 1

Result := y

end

Figure A.3: Character-based diff.
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Listings

B.1 Miller & Myers Algorithm

Listing B.1: Code for Miller & Myers Algorithm.
1 -- Algorithm is described in the paper of Webb Miller, Eugene, and W. Myers.
2 -- A file comparison program. Software: Practice and Experience,
3 -- 15:1025-1040, 1985.
4

5 m, n, lower, upper, d, k, row, col: INTEGER
6 last_d: ARRAY [INTEGER]
7 result_found: BOOLEAN
8 arr: ARRAY [LINKED_LIST [EDIT_OPERATION]]
9 edit_script: LINKED_LIST [EDIT_OPERATION]

10 edit_command: EDIT_OPERATION
11

12 result_found := False
13 create edit_script.make
14 create last_d.make_filled (0,0,0)
15 create arr.make_filled (edit_script,0,0)
16 m := source.count
17 n := destination.count
18 row := pref -- Identical prefixes, precomputed in preprocessing phase.
19 col := row
20 last_d.force (row,0)
21 -- 0 entries in table D lie on the main diagonal (last_d[0]).
22 -- They indicate identical prefixes.
23

24 if row = m then
25 lower := 1
26 else
27 lower := -1
28 end
29

30 if row = n then
31 upper := -1
32 else
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33 upper := 1
34 end
35

36 if lower > upper then
37 -- Files are identical.
38 result_found := True
39 end
40

41 -- Loop over all edit distances.
42 from
43 d := 1
44 until
45 d > max_length or
46 result_found
47 loop
48 -- Loop over all relevant diagonals.
49 from
50 k := lower
51 until
52 k > upper or
53 result_found
54 loop
55 if (k = -d or (k /= d and last_d[k+1] >= last_d[k-1])) then
56 -- Move down from diagonal k + 1.
57 row := last_d[k+1] + 1
58 edit_script := arr[k+1].twin
59 create {DELETE} edit_command.make (row, row, row + k, row + k)
60 edit_script.force (edit_command.twin)
61 arr.force (edit_script.twin,k)
62 else
63 -- Move right from diagonal k - 1.
64 row := last_d[k-1]
65 edit_script := arr[k-1].twin
66 create {ADD} edit_command.make (row, row, row + k, row + k)
67 edit_script.force (edit_command.twin)
68 arr.force (edit_script.twin,k)
69 end
70 col := row + k
71

72 -- Move down on diagonal k.
73 from
74 until
75 row >= m or
76 col >= n or
77 not source[row+1].is_equal (destination[col+1])
78 loop
79 row := row + 1
80 col := col + 1
81 end
82 last_d.force (row,k)
83

84 if row = m and col = n then
85 -- Arrived at southeast corner (m,n). Result found.
86 edit_script := arr[k]
87 result_found := True
88 end
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89

90 if row = m then
91 -- Arrived at last row. Don’t look to the left.
92 lower := k + 2
93 end
94

95 if col = n then
96 -- Arrived at last column. Don’t look up.
97 upper := k - 2
98 end
99 k := k + 2

100 end
101 lower := lower - 1
102 upper := upper + 1
103 d := d + 1
104 end

B.2 Zhang & Shasha’s Algorithm

Listing B.2: Code for Zhang & Shasha’s Algorithm.
1 -- Algorithm is described in the paper of K. Zhang and D. Shasha.
2 -- Simple fast algorithms for the editing distance between trees
3 -- and related problems. SIAM J. Comput., 18:1245-1262, 1989.
4

5 -- Compute lml_T1, lml_T2, keyroots_T1, keyroots_T2
6 -- lml: the leftmost leaf array holding for each node the corresponding
7 -- leftmost leaf.
8 -- keyroots: array holding the keyroots in increasing order.
9

10 from
11 i’ := 1
12 until
13 i’ > keyroots_T1.count
14 loop
15 from
16 j’ := 1
17 until
18 j’ > keyroots_T2.count
19 loop
20 i := keyroots_T1[i’]
21 j := keyroots_T2[j’]
22 forestdist(∅,∅) := 0
23

24 from
25 i1 := lml_T1[i]
26 until
27 i1 > i
28 loop

29 forestdist(T1[lml_T1[i]..i1],∅) =
i1∑

k=lmlT 1[i]

γ(T1[k] → λ)

30 i1 := i1 + 1
31 end
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32

33 from
34 j1 := lml_T2[j]
35 until
36 j1 > j
37 loop

38 forestdist(∅,T2[lml_T2[j]..j1]) =
j1∑

k=lmlT 2[j]

γ(λ→ T2[k])

39 j1 := j1 + 1
40 end
41

42 from
43 i1 := lml_T1[i]
44 until
45 i1 > i
46 loop
47 from
48 j1 := lml_T2[j]
49 until
50 j1 > j
51 loop
52 if lml_T1(i1) = lml_T1(i) and lml_T2(j1) = lml_T2(j) then
53 forestdist(T1[lml_T1(i)..i1],T2[lml_T2(j)..j1]) := min(
54 forestdist(T1[lml_T1(i)..i1-1],T2[lml_T2(j)..j1])
55 + γ(T1[i1] → λ),
56 forestdist(T1[lml_T1(i)..i1],T2[lml_T2(j)..j1-1])
57 + γ(λ→ T2[j1]),
58 forestdist(T1[lml_T1(i)..i1-1],T2[lml_T2(j)..j1-1])
59 + γ(T1[i1]→ T2[j1]))
60

61 -- Put in permanent tree distance array.
62 treedist(i1,j1) := forestdist(T1[lml_T1(i)..i1],
63 T2[lml_T2(j)..j1])
64 else
65 forestdist(T1[lml_T1(i)..i1],T2[lml_T2(j)..j1]) := min(
66 forestdist(T1[lml_T1(i)..i1-1],T2[lml_T2(j)..j1])
67 + γ(T1[i1] → λ),
68 forestdist(T1[lml_T1(i)..i1],T2[lml_T2(j)..j1-1])
69 + γ(λ→ T2[j1]),
70 forestdist(T1[lml_T1(i)..lml_T1(i1)-1],
71 T2[lml_T2(j)..lml_T2(j1)-1]) + treedist(i1,j1))
72 end
73 j1 := j1 + 1
74 end
75 i1 := i1 + 1
76 end
77 j’ := j’ + 1
78 end
79 i’ := i’ + 1
80 end
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Internal Data Representation

Listing C.1: XML file representing the AST of the code in Listing 4.1.
<?xml version="1.0" encoding="UTF-8"?>
<ast:eiffel xmlns:ast="http://se.inf.ethz.ch/east/xsd/core">
<ast:feature_as>
<ast:feature_names>
<ast:eiffel_list_of_feature_name>
<ast:feat_name_id_as>
<ast:feature_name>
<ast:id_as name="prune_first">prune_first</ast:id_as>

</ast:feature_name>
</ast:feat_name_id_as>

</ast:eiffel_list_of_feature_name>
</ast:feature_names>
<ast:body>
<ast:body_as>
(
<ast:arguments>
<ast:type_dec_list_as>
<ast:type_dec_as>
n:
<ast:type>
<ast:class_type_as>
<ast:class_name>
<ast:id_as name="INTEGER">INTEGER</ast:id_as>

</ast:class_name>
</ast:class_type_as>

</ast:type>
</ast:type_dec_as>

</ast:type_dec_list_as>
</ast:arguments>
)
<ast:content>
<ast:routine_as>
<ast:routine_body>
<ast:do_as>
do%N
<ast:compound>
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<ast:eiffel_list_of_instruction_as>
<ast:instr_call_as>
<ast:call>
<ast:access_id_as name="prune">
prune (
<ast:eiffel_list_of_expr_as>
<ast:expr_call_as>
<ast:call>
<ast:access_id_as name="n">n
</ast:access_id_as>

</ast:call>
</ast:expr_call_as>
,
<ast:integer_constant>1
</ast:integer_constant>

</ast:eiffel_list_of_expr_as>
)%N

</ast:access_id_as>
</ast:call>

%N
</ast:instr_call_as>

</ast:eiffel_list_of_instruction_as>
</ast:compound>

</ast:do_as>
</ast:routine_body>
end%N

</ast:routine_as>
</ast:content>

</ast:body_as>
</ast:body>

</ast:feature_as>
</ast:eiffel>
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eiffel
43

feature as42

feature names
6

eiffel list of feature name5

feature name id as4

feature name3

id as2

name = ”prune first”

prune first1

body
41

body as40

(
7

arguments
16

type dec list as15

type dec as14

n:
8

type
13

class type as12

class name11

id as10

name = ”INTEGER”

INTEGER9

)%N
17

content
39

routine as38

routine body
36

do as35

do%N
18

compound
34

eiffel list of instruction as33

instr call as32

call
30

access id as29

name = ”prune”

prune (
19

eiffel list of expr as24

expr call as
23

call22

access id as21

name = ”n”

n20

,25 integer constant
27

126

)
28

%N
31

end%N
37

Figure C.1: A DOM-tree generated from the XML file in Listing C.1.
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