
Concurrency Patterns in SCOOP

Master Thesis – Project Plan

Project period: 10. March to 8. September 2014
Student name: Roman Schmocker, 09-911-215
Status: 4. semester, Msc in Computer Science
Email address: romasch@student.ethz.ch
Supervisor name: Alexey Kolesnichenko and Prof. Dr. Bertrand Meyer

1 Project Description

1.1 Overview

The SCOOP [14] [5] mechanism in Eiffel [1] [13] is a language extension for con-
currency. Many important concurrency problems, such as the Dining Philoso-
phers, can be solved in a simple and elegant way [4].

In practice programmers have learned to avoid tricky concurrency issues
in most cases. In order to make use of modern multi-core machines, most
applications use thread-safe data structures and some well-known patterns, like
a worker pool.

In the case of Eiffel primitive operations like individual method calls are
thread-safe thanks to SCOOP. There is little experience in constructing higher-
level concurrency patterns however. As a consequence, whenever a programmer
wants to use a pattern to solve a specific problem he or she needs to figure out
a way to do it in SCOOP.

The goal of the project is therefore to determine how some interesting con-
currency problems, for which a well-known pattern exists in other languages,
can be solved in Eiffel with the SCOOP extension.

An example is the idea that when two threads proceed concurrently and need
to update each other, as in the case of a user interface thread and a downloading
thread, where the UI should be updated regularly to show the progress of the
download. The standard solution is for the download process to trigger a repaint
operation in the UI thread and to store the progress value in a synchronized
shared object. With SCOOP however it is useful to introduce a third processor
with which they both communicate to avoid undue waiting or even deadlock
[11].

The result of the previous analysis is a new set of SCOOP specific patterns
that each solve a typical concurrency problem. As a last step, those patterns
should be turned into reusable library components.

1.2 Scope of the work

The project consists of four main tasks:

1



1. A survey of popular concurrency problems and the standard patterns used
to solve them. The goal of the survey is to have a broad overview over
widely used concurrency patterns and to determine if the underlying prob-
lem they are solving is valid as well in a SCOOP context.

2. An analysis of several selected patterns. In this task the goal is to inves-
tigate if it’s possible to devise a new pattern in Eiffel and SCOOP solving
the same problem.

3. The design and implementation of a new library which provides the new
SCOOP patterns as reusable components wherever possible.

4. A written report with descriptions about the patterns and the problems
that may have occurred.

1.3 Written Report

The report should cover the following topics:

• A short introduction to SCOOP and how it differs from other concurrency
mechanisms.

• A section about concurrency patterns and an overview over all patterns
collected in the survey.

• A detailed description of all analyzed patterns. For each pattern this part
should answer the following questions:

– What is it used for?

– What is the general architecture?

– Is it possible to efficiently implement it with SCOOP, and if not,
why?

– Is it possible to provide the pattern in a library, and if not, why?

– What were the problems that occurred and how could they be solved?

– What is the difference in implementation between Eiffel and other
languages?

• A description (manual) of the new concurrency pattern library.

1.4 Intended results

The result of the project should be an Eiffel library with the analyzed concur-
rency patterns and a written report describing the patterns and the library. If a
specific pattern can not be turned into a library component, the report should
provide a reason why it’s not possible.

2



2 Background Material

2.1 Reading list

• P. Nienaltowski. Practical Framework for Contract-based Concurrent
Object-oriented Programming. PhD thesis, ETH Zürich, 2007

• J. Bloch J. Dowbeer D. Holmes D. Lea B. Goetz, T. Peierls. Java
concurrency in practice. Addison-Wesley, 2006

• J. Reinders M. McCool, A. Robison. Structured Parallel Programming:
Patterns for Efficient Computation. Morgan Kaufmann, 2012

• H. Rohnert . Buschmann D. Schmidt, M. Stal. Pattern-Oriented
Software Architecture, Volume 2, Patterns for Concurrent and
Networked Objects. Wiley, 2000

• M. Grand. Patterns in Java, Volume 1: A Catalog of Reusable Design
Patterns Illustrated with UML. Wiley, 2002

• S. Toub. Patterns for parallel programming, 2010. Microsoft Corporation

• Karine Arnout. From Pattern to Components. PhD thesis, ETH Zürich,
2004

• K. Arnout B. Meyer. Componentization: The visitor example.
Computer, 39(7):23–30, 2006

2.2 Software Libraries

• Microsoft task parallel library.
http://msdn.microsoft.com/en-us/library/dd460717(v=vs.110).aspx

• Oracle java concurrency package.
http://docs.oracle.com/javase/7/docs/api/java/util/concurrent/package-
summary.html

3 Project Management

3.1 Objectives and priorities

Due to the nature of the project prioritization on the individual tasks doesn’t
make a lot of sense. Instead the amount of work can be measured by the number
of analyzed concurrency problems.

There is one optional low priority task, which is to analyze existing Eiffel
/ SCOOP applications and libraries and checking if they can be refactored to
using the new pattern library.

3



3.2 Criteria for success

At least five concurrency problems are analyzed and the report is finished. For
each analyzed problem there should be an Eiffel pattern solving the problem
and either a fully tested library component or a written statement with the
reason why it’s not possible to turn the pattern into a library. The report is
complete when all points in Section 1.3 are covered.

3.3 Method of work

There will be regular meetings and email communication. Important design
decisions or project plan changes will be discussed in advance.

3.4 Quality management

3.4.1 Documentation

The written report should give a detailed description about the patterns. For
the source code, a header comment for each class and feature is required. All
SVN commits have a meaningful commit message. The source code will be
code-reviewed.

3.4.2 Validation steps

The concurrency pattern library should be tested and equipped with some ex-
ample applications. If possible, performance tests should be included.

4 Plan with Milestones

Date Duration
(weeks)

Milestone

31. March 3 Literature study and initial survey complete.

afterwards - Selection of relevant concurrency problems
and patterns to be implemented in SCOOP.

9. June 10 Analysis of selected patterns and experimental
implementations in Eiffel. If there’s enough
time: analysis of more patterns or optional
tasks.

14. July 5 Design and implementation of the new pat-
tern library, including testing, example appli-
cations and a code review at the end.

28. July 2 Implementation of code review suggestions
and finalization of the pattern library.

25. August 4 The final report is written and ready for sub-
mission.

8. September 2 Submission of thesis. Last two weeks are re-
served for delays.

4



4.1 Deadline

8. September 2014

References

[1] Eiffel ECMA-367 Standard. http://www.ecma-
international.org/publications/standards/Ecma-367.htm.

[2] Microsoft task parallel library.
http://msdn.microsoft.com/en-us/library/dd460717(v=vs.110).aspx.

[3] Oracle java concurrency package.
http://docs.oracle.com/javase/7/docs/api/java/util/concurrent/package-
summary.html.

[4] Scoop examples. http://docs.eiffel.com/book/solutions/scoop-examples.

[5] Scoop official website.
http://docs.eiffel.com/book/solutions/concurrent-eiffel-scoop.

[6] Karine Arnout. From Pattern to Components. PhD thesis, ETH Zürich,
2004.

[7] J. Bloch J. Dowbeer D. Holmes D. Lea B. Goetz, T. Peierls. Java
concurrency in practice. Addison-Wesley, 2006.

[8] K. Arnout B. Meyer. Componentization: The visitor example. Computer,
39(7):23–30, 2006.

[9] H. Rohnert . Buschmann D. Schmidt, M. Stal. Pattern-Oriented Software
Architecture, Volume 2, Patterns for Concurrent and Networked Objects.
Wiley, 2000.

[10] M. Grand. Patterns in Java, Volume 1: A Catalog of Reusable Design
Patterns Illustrated with UML. Wiley, 2002.

[11] Alexey Kolesnichenko, Sebastian Nanz, and Bertrand Meyer. How to
cancel a task. 2013. To appear.

[12] J. Reinders M. McCool, A. Robison. Structured Parallel Programming:
Patterns for Efficient Computation. Morgan Kaufmann, 2012.

[13] B. Meyer. Touch of Class. Springer, 2009.

[14] P. Nienaltowski. Practical Framework for Contract-based Concurrent
Object-oriented Programming. PhD thesis, ETH Zürich, 2007.

[15] S. Toub. Patterns for parallel programming, 2010. Microsoft Corporation.

5


