
Master’s Thesis

Automatic Version Control System for
Distributed Software Development

by

Sandra Weber

March 2012–September 2012

Supervised by

Prof. Bertrand Meyer, Dr. Martin Nordio, Hans-Christian Estler

Software Engineering Group, Department of Computer Science, ETH Zurich

2

Software engineering nowadays is distributed. The companies outsource
and the individual teams stretch over multiple countries. To be able to work
together it’s essential to be aware of the progress of the other project mem-
bers. Most software projects use version control systems although it is time
consuming and regularly introduces conflicts. Staying aware of the progress
and resolving conflicts is even more challenging in distributed software de-
velopment.

This thesis introduces an automatic version control system for CloudStu-
dio, a web-based IDE optimized for real-time collaboration. The goal is to
provide seamless and continuous change awareness as well as version control
without requiring any interaction, enabling the developer to fully focus on
the task at hand.

Committing, sharing and conflict resolution can be fully automated and
done without user interaction. Still, the user benefits from all advantages of a
version-controlled repository. The project repositories are exported to enable
the use of another IDE with a CloudStudio project.

The inconspicuous, real-time change awareness serves as a conflict de-
tection. Using a line-wise content model with a version tree for each line,
conflicts can be prevented and automatically resolved. The line-based model
is kept synchronized with the version-controlled file. Updates merged into
the repositories without using the web-based IDE are handled, too.

3

Contents

1 Introduction 6
1.1 Distributed Software Development 6
1.2 CloudStudio . 6
1.3 Version Control System . 7
1.4 Change Awareness & Conflict Detection 8
1.5 Motivation . 9
1.6 Goals . 9

2 Approach 12
2.1 Architecture . 12
2.2 Configuration Management . 13

2.2.1 Terms . 13
2.2.2 Distributed Version Control System 14
2.2.3 Architecture . 16
2.2.4 Functionality . 17
2.2.5 Access from the Outside of CloudStudio 18

2.3 Intermediate Representation 19
2.3.1 Tag . 20
2.3.2 File Content . 21
2.3.3 Folder Structure . 23
2.3.4 Conflict Detection and Resolution 23

2.4 Change Awareness . 24
2.4.1 Editor . 25
2.4.2 Explorer . 25

3 Implementation 26
3.1 Services and Events . 26
3.2 Models . 27

3.2.1 Tag Model . 27
3.2.2 Models of the File Content 28

4

CONTENTS 5

3.2.3 Models of the Folder Structure 31
3.2.4 Task Model . 33

3.3 Backend . 35
3.3.1 Interfaces . 35
3.3.2 Access over HTTP and Git 40
3.3.3 Git Hooks . 42

3.4 Synchronization of the Models 44
3.4.1 Update by Tags . 44
3.4.2 Update by Iteration over the Commit History 45

3.5 CloudStudio IDE . 49
3.5.1 Folder Structure in the Explorer 49
3.5.2 File Content in the Editor 49
3.5.3 Version Control . 51
3.5.4 Compile with Changes 52

4 Evaluation 54
4.1 Performance Analysis & Optimization 54
4.2 Analysis of Specific Use Cases 56

4.2.1 Use Case 1 . 56
4.2.2 Use Case 2 . 57

4.3 Case Study . 57

5 Conclusion & Future Work 60
5.1 Conclusion . 60
5.2 Future work . 61

5.2.1 Improvements of the CloudStudio IDE 61
5.2.2 EiffelStudio Plugin . 62
5.2.3 Version-controlled File Content Model 62

Bibliography 64

A Appendix: Case Study 68

Chapter 1

Introduction

1.1 Distributed Software Development
A successful software engineering company nowadays is often spread over
multiple locations or has an offshore software production. The teams have
to work across borders as well as the differences of cultures and face the
challenges of distributed software development.

In this situation communication and collaboration are of utmost impor-
tance [23, 11]. The design of a well defined API, for example using contracts
as discussed in the paper by Nordio et. al. [26], becomes essential.

The effect of distribution on software development have been researched
from different angles [15, 14, 23]. Espinosa et al. [14] looked at the impact
of time zones on the performance during software development. During the
DOSE [25, 24] university course, Nordio et al. [23] studied the effect of time
and cultural differences on the communication within the teams. Possible
tactical approaches to face global software development are discussed by
Carmel et al. [12].

1.2 CloudStudio
The most important tool for a developer is the Integrated Development En-
vironment (IDE). There are already several IDEs like EiffelStudio or Eclipse.
While they are optimized for software development, they lack the support
of communication and collaboration needed in distributed software develop-
ment. To fully collaborate the team members need to be able to work in a
common environment. The IDE no longer has to be a personal tool requir-
ing each developer to have his own installation. A common programming

6

1.3 Version Control System 7

environment is automatically adjusted and aligned with the one used by the
teammates.

CloudStudio [22] is a cloud-based IDE enabling collaboration in a team
using a common environment. All tools needed by a team member in a dis-
tributed software development team are provided.

CloudStudio not only offers the standard functionality of an IDE, but
also enhances collaboration during activities such as pair programming or a
code review. The new automated configuration management system and the
real-time change awareness enable a better compatibility between different
software components developed by different team members.

CloudStudio highlights the own modifications in the editor, as well as
makes the user aware of the changes of other team members, enabling in-
teraction at real time. This feature improves collaboration and anticipates
conflicts. The web-based IDE’s verification components offer static as well
as dynamic functionality. It is possible to automatically proof the Eiffel code
collaboratively programmed using AutoProof [29, 21]. During runtime the
CloudStudio project can be verified using AutoTest [20, 30]. The communi-
cation over CloudStudio is simplified by integrated tools like a chat box.

A further feature that will be added to the web-based IDE in the future
is AutoFix as researched by Pei et. al [27]. It’s also planned to integrate
the testing and proofing similar to the method described in the paper by
Tschannen et. al [28].

1.3 Version Control System
Version control systems (VCS) are used in almost any software project with
multiple team members. Teamwork requires sharing files. In software engi-
neering VCS are the approved solution for managing text files and releases.

During the last few years distributed VCS like Git or Mercurial became
increasingly more popular. With the ability to work independently of a server
and a centralized repository, the projects gain flexibility when branching and
merging.

Whether you choose a centralized or a distributed system, version con-
trol is a time-consuming, non-trivial activity. The cycle of sharing content
takes multiple operations, commit, pull, push, merge and resolve. This thesis
proposes a solution to reduce the time overhead introduced by the standard
version control systems. The version control activities are simplified and au-
tomatized while conflicts are avoided and resolved using change awareness.

CloudStudio will rely on a distributed version control system to manage
multiple repositories and will provide access to the project repositories us-

8 Introduction

ing a HTTP connection. Within the web-based IDE the user will have all
the benefits of a version control system as possible while all version control
operations can be performed automatically. The CloudStudio IDE also sup-
ports tasks, represented by branches, to enable separated development with
minimal sharing in between two different tasks. However using the change
awareness the developers will be implicitly in the loop about the changes on
the other tasks.

1.4 Change Awareness & Conflict Detection
Conflicts in the source code are part of the version control routine in any soft-
ware project. In distributed software development conflicts are even harder
to resolve. Awareness of the changes of the team members is crucial if the
developers do not meet face-to-face every day during the coffee break.

There has been extensive research in the area of change awareness and col-
laborative conflicts in version-controlled software engineering projects. Mul-
tiple papers present approaches how to resolve conflicts and be fully aware of
the work of other team members. The occurrences of conflicts and the per-
forming of speculative version control operations was discussed in the paper
by Brun et. all [9]. As described in their research, conflicts can be separated
into two categories, textual and higher-order. A higher-order conflict indi-
cates merging will lead to an error during building or testing, where as the
textual category refers to conflicts when merging the source code. In their
further work [10] a tool named Crystal is introduced, which provides aware-
ness to conflicts on the project level. The tool Syde [16] provides a direct
integration with Eclipse and uses the abstract syntax tree (AST) to detect
conflicts and apply change awareness on the syntax level. It was used to
investigate the conflict detection in a user study [17]. AST-level conflict de-
tection compared to the textual analysis requires a program to compile, at
least partially, before the analysis can start. The line-wise approach chosen
in this thesis can detect conflicts while the user is typing. The change aware-
ness remains independent of the language and the compiler. CollabVS [18]
is an extension of Visual Studio providing file-level awareness and a tool for
conflict resolution. Jazz [19] is implemented as Eclipse plugin and shows sim-
ple change awareness by highlighting changed lines without special means
of resolving conflicts. FASTDash [8] is a team dashboard providing file-level
awareness of the activities in Visual Studio project. Since it’s suggested the
team is assembled in a single room with the dashboard projected onto one
of the walls, it is not a suitable tool for distributed software development.

The focus of this thesis is on textual clashes. It will provide an approach

1.5 Motivation 9

on preventing and resolving textual conflicts using change awareness with
an underlying distributed VCS and additional meta data about the history
of changes. However using CloudStudio it will also be possible to detect a
higher-order conflict.

1.5 Motivation
The extended change awareness of the CloudStudio IDE will be able to detect
conflicts of both categories, textual as well as compiling or testing conflicts.
The history of versions of a line are saved in form of meta data and are
used to point the developer to potential conflicts while programming. This
additional information about how the changes are related plays a vital role
when resolving the conflicts automatically. A user of CloudStudio can see
the changes of other team members in real-time. Even if he chooses to hide
the changes of some users, the editor will indicate missing lines. Higher-level
conflicts can be avoided by manually compiling, proofing and testing with
changes of other users, without the need to share the modifications as well
as the resulting conflicts first with the project repository.

With the new automated version control of the web-based IDE the sharing
no longer is an effort. Using change awareness the developer will be able
to see the modification of other users and be alerted to possible conflicts
immediately. Thanks to the automation the collaboration will be improved
by regularly sharing the code of team members working on the same task
without any interaction on their part needed.

The underlying distributed version control system (DVCS) enables the
developer to work on CloudStudio projects using an IDE of his choice. Yet
in a situation like a code review or a pair programming session where tight
collaboration is needed, the team can still benefit from the collaborative tools
provided by the web-based IDE.

1.6 Goals
The goal of this thesis is to enhance CloudStudio with a new version control
system that allows connecting and working on projects using a native IDE.
The version control in the Cloud IDE will be mostly automated. All the same
the user benefits from the advantages of a VCS for example by rolling back,
going to a previous revision or consulting the revision log.

Using change awareness the user will be sensible to the changes of other
developers. He will see the modifications in real-time, if he wants to. But

10 Introduction

when compiling only the committed alterations of others are considered such
that no additional compilation errors will be introduced. This is further en-
dorsed by automatically committing the modifications if the user successfully
compiled.

To enable fine-grained version control and awareness, a line-wise approach
is chosen. Most programming languages rely on separation of lines to improve
readability and sometimes even for syntactical purposes. By choosing a line-
based model, the granularity and the benefits are maximized.

The server maintains meta data of the past versions of each line. This rep-
resentation is synchronized and kept up-to-date with the version-controlled
content. The conflicts within the web-based IDE will be resolved automati-
cally using the additional information provided by the intermediate model.

The version control system provides access to the CloudStudio projects
without using the web-based IDE. The user is authenticated with his account
and is able to clone the project repository on the CloudStudio server to use
it with a development environment of his choice. If a repository on the server
is updated from the outside, the changes will immediately be displayed to
the team members working with the web-based IDE. The adaption of the
meta data may not be as accurate as when using CloudStudio due to the
lack of information. However the changes will be applied iteratively for each
intermediate commit to ensure deriving a change history as fine-grained as
possible based on the limited information available.

To test and to analyze the implemented automatic version control system
and the change awareness a case study is planned and specific use cases are
conducted. The results are discussed in the section 4.

1.6 Goals 11

Chapter 2

Approach

To extend CloudStudio with an automated version control system, the exist-
ing backend had to be replaced.

In the previous deprecated design of CloudStudio the content of a file
as well as the folder structure have been saved in an SQL database. The
file content and all the changes of the users were saved in a simple, text-
based format in one of the database tables. This approach will be completely
abandoned and replaced by multiple repositories managing the files. The re-
placement was also a chance to refactor the code of CloudStudio and improve
the modularity.

Using version-controlled repositories will allow the users to program in
another IDE than CloudStudio. It has further advantages such as the pos-
sibility to use version control operations like rollback and having a back-up
and the history of each of the files. The downside is that CloudStudio has to
deal with multiple versions which requires merging to implement the change
awareness. How this problem is approached is described in detail in the sec-
tion 2.3.

2.1 Architecture
The CloudStudio server provides several services, which can be invoked asyn-
chronously by the the CloudStudio clients. Each service has multiple meth-
ods, the client can call. There is for example a project service with methods
to create a new project or to get all existing projects. Each service instance
on the server is user-specific and will interact directly with the backend of
the server or query the database to perform its purpose.

The backend is the connection to the file system and the distributed ver-
sion control system. To improve abstraction and modularity the backend is

12

2.2 Configuration Management 13

Services

Config Awareness Config Management

Distributed VCS (e.g. Git)File system

Figure 2.1: Architectural Overview

split into two parts as shown in the figure 2.1. The configuration manage-
ment connects CloudStudio to the version-controlled repositories. Its imple-
mentation depends on the distributed VCS used. Whereas the configuration
awareness interacts with the file system to save files and get the current file
version while being unaware of the version control system. It can only oper-
ate on the version of the file that currently is in the working directory of the
repository.

2.2 Configuration Management

2.2.1 Terms
Each VCS has its own terminology. Some of the terms used in this report are
adopted from the distributed version control system Git [7]. Other notions
are specific to CloudStudio’s simplified version control.

• Repository A repository is the folder of the VCS containing its meta
data and, if the repository is not bare, the working directory. The meta
data consists of all needed version control information like the different
revisions, the branches and the configuration.
The terms user repository and main repository are referring to the
architecture of the repositories as explained in section 2.2.3.

• Working directory The working directory contains the checked-out ver-
sion of the files. The files can be modified without using the VCS. They
also will be influenced by certain version control operations like a roll-
back.

• Staged changes The VCS is unaware of modifications made in the work-
ing directory without its help. By staging the changes, they are added
to the index of the VCS and they will be automatically included in the
next revision.

14 Approach

• Uncommitted changes The modifications that differ from the head revi-
sion of the working directory are denoted as uncommitted. This equals
the staged as well as the unstaged changes.

• Revision history The commits leading to the head revision make up
the commit history. A revision may have more than one parent if it’s
a result of a merger of multiple revisions. The revision history can
therefore be more complex than a linear list of revisions.

• Head revision The head revision is the last commit in the revision
history. Usually this will also be the most recent commit, unless the
head is moved by going to a different revision.

• Branch A repository can have multiple branches. Each branch has its
own head revision. When the repository is created, it already has one
branch denoted as the default or master branch.

• Current branch The current branch is the branch checked out in the
working directory.

• Commit By committing a new revision is created in the repository with
either all the modifications or only the staged changes depending on
the options used.

• Share changes Sharing refers to exchanging and merging revisions with
the main repository. Depending on the circumstances, sharing changes
includes a previous commit. The term is represented by a chain of
operations in Git and can also be compared to the notion of “update”
used by centralized VCS like SVN.

• Merge is used as a synonym for sharing changes in this report.

• Hook A hook is a script saved in the meta data folder of the repository.
It is executed by the VCS before or after a certain event happens, such
as committing or receiving a new revision

2.2.2 Distributed Version Control System
The distributed version control system (DVCS) are more flexible compared
to the centralized VCS and can be used independently of a central server.
Although having a server would not be a problem when integrating a VCS
into CloudStudio, the flexibility of DVCS would have been greatly missed.
With a DVCS it is possible to merge between any two repositories whereas

2.2 Configuration Management 15

a centralized VCS focuses on sharing with the central repository. The design
chosen, described in section 2.2.3, relies on this ability of the distributed
VCS.

Git and Mercurial are two commonly used distributed version control
systems in software development. To decide which DVCS is suited best for
the goals outlined in this thesis, multiple criteria were considered:

• Functionality

• Advanced features

• Integration with CloudStudio

• Installation

The functionality is similar for both distributed version control systems
especially when looking at the standard features. Qualitatively comparing
the two, Git’s functionality used to exceed Mercurial’s, but Git can also be
more difficult to use. Both systems provide hooks to add additional behavior,
for example after committing. As described in [6] Mercurial used to keep its
revision history immutable whereas Git provides functionality to rearrange
the revision graph, so called rebasing. The same article also comments on
the difference between their approaches on branching. However, during the
evolution of the systems the gap closed between their functionality.

To interact with the version control system, the CloudStudio server has to
be able to connect to the repository and perform operations. Also it would be
possible to use a connector in another language than Java, a Java API pro-
vides a tighter integration with the CloudStudio server and better support.
For both version control systems multiple APIs exist which allow interaction
with the repository. There even is an implementation of Git in Java named
JGit [5] which has been originally developed as part of the Eclipse plugin for
Git. JGit has the advantage of a full integration of Git in Java with an object-
oriented design. Operating on the repository is done by simply invoking a
method and the returned objects can be used without further transformation.
Additionally, concerning the third criteria, there is no supplementary effort
to install Git on the server. Only when using the Apache HTTP web server
to make the repositories directly available without using the web-based IDE,
an installation of Git is necessary.

Due to this analysis it was decided to implement the automatic version
control using JGit [5], the Git implementation in Java. However the design
has been kept modular, such that it is possible to add support of Mercurial
or another distributed VCS with little effort.

16 Approach

The integration of Git during the thesis has supported the results of this
analysis. JGit offers most of Git’s functionality. An implementation of Git
compared to a simple API offers the benefit of being able to debug deep into
the Git functionality. With thorough knowledge of Git and its objects [13],
JGit can be extended. Some features that Git has are missing in JGit. For
example stashing the uncommitted changes is not available. This influenced
some design decisions and the implementation. Furthermore JGit will not
call the hooks of the repository. Being aware of JGit specific behavior it was
possible to take it into account and adapt it where necessary.

2.2.3 Architecture
A CloudStudio project has multiple repositories, a bare main repository and
a repository for each user assigned to the project as shown in the figure 2.2.
The main repository is bare because its files do not need to be changed and
committed. It is the focal point of the architecture.

The user repositories aren’t bare. They have a working directory contain-
ing the checked-out files that can be altered using the configuration awareness
shown in figure 2.1 to access the file system. The user will share new revi-
sions with the main repository and not directly with other user repositories.
This architecture allows each user to have his own version of the project files.
There will be no need to synchronize the access to the files.

Lisa’s Repository

· Root task

Main Repository [bare]

· Root task

· Subtask 1

· Subtask 2

Peter’s Repository

· Root task

· Task 1

· Task 2

Adam’s Repository

· Root task

· Task 1

· Subtask 1.1

Figure 2.2: Example of the repositories in a project with three users

Additionally each project can have multiple tasks that are arranged in a
tree and can be assigned to one or more users.

The root task is created implicitly. Any user in the project is automatically
assigned to the root task. A new task can be create as a sub task of the root
or any existing task. The creator is automatically assigned to the new task.
Any assigned user of the task can add new users.

2.2 Configuration Management 17

The tasks are represented by branches in the repositories. The default
branch represents the root task and exists in every repository. By creating a
task, a new branch is added in the main repository and checked out by the
user repository. The repository of a newly assigned user will checkout the
branch lazily as soon as the user wants to work on the task.

Root task

Peter

Adam

Task 1 Task 2

Subtask 1.1

Adam

Peter

Figure 2.3: Example of a task tree (matching the example of figure 2.2)

If a user shares the changes, the modification will be merged into the main
repository and his current branch. Due to the automatic version control the
other user repositories are also updated, if the according option is enabled.

2.2.4 Functionality
The functionality of the CloudStudio configuration management is separated
into the manual and the automatic features. The following list shows the
manual features the user can access using the web-based IDE:

• Commit By performing a commit the user can select what files he wants
to commit and a new revision with the given commit message and the
modifications of the selected files is created.

• Share changes Sharing changes will merge the head revision of the user
and the main repository. If there are any uncommitted changes, they
will be committed before the merger. Any conflicts will be automati-
cally resolved.

• Rollback A rollback can be executed in two different modes, everything
or only uncommitted. If everything is rolled back, the working directory
will be reset to the head revision of the main repository. Otherwise only
the uncommitted modifications are reverted.

18 Approach

• Show Log Shows a log of the user repository with all its revisions.

• Go to revision Using the log it is possible to go back to a certain
revision. Any uncommitted changes as well as the revision in between
will be lost.

The automatic abilities of the CloudStudio configuration management are
triggered by certain events. The action they perform, is similar to the manual
features available. There are two automatic features:

• Automatic commit: If the user has successfully compiled the code in his
working directory, an automatic commit is triggered. All modifications
will be committed using a generated commit message. This feature can
not be disabled.

• Automatic share: Automatically sharing executes a merger between the
main and the selected user repository. There are two ways how it can
be triggered. In the first case when another user shares new changes.
The other team members working on the same task will be selected
for an automatic share. The second way to trigger the merger is by an
automatic commit.
The automatic sharing can be disabled by the user in the web-based
IDE. The setting is saved as part of the user information and not reset
when logging out.

2.2.5 Access from the Outside of CloudStudio
One of the goals of this thesis is to make CloudStudio projects accessible
without using the web-based IDE. The Apache web server fulfills this task
by making the Git repositories available over HTTP. It runs as a service
on a different port than the CloudStudio Java web server and forwards the
Git communication accordingly. The Apache server is configured such as to
restrict access to each project and require authentication. With the Cloud-
Studio password being SHA-1 encrypted it can be used to devise password
files without degrading the password security. The restriction of each repos-
itory is regulated separately. Only the user himself can create a copy of his
user repository whereas all project users are admitted to the main repository.

Access to the user repository is possible thanks to the properties of a
distributed VCS. With a centralized VCS only the main repository could be
used to create a copy of the repository on the user’s PC. However there are
additional points to consider when cloning a repository with working direc-
tory as it is the case for the user repositories. The working directory will not

2.3 Intermediate Representation 19

be updated automatically by Git when a new revision is pushed. Additionally
the version control system will not force the outside source to resolve conflicts
with uncommitted changes. These problems can be resolved by using hooks,
which are called before or after certain events occur like receiving an update.
The implementation of those hooks is explained in section 3.3.3.

The Apache server can not enforce access restriction of the branches.
The CloudStudio task represented by a branch can be assigned to users.
Yet when connecting from the outside all team members are able to access
any task by cloning the main repository. Although the risk could be avoided
by not allowing access to the main repository at all, there would be serious
disadvantages. It is beneficial to the use of the change awareness to push
changes from the outside to the main repository. Modifications pushed to
the user repository are still perceived as the user’s changes and presented
not very differently from the uncommitted modifications. The changes will
still be in the user repository and, even so they are visible to others, the
modifications are not shared with the team and the main repository. It is
recommended to clone the main repository when working on a project using
Git and another IDE like for example EiffelStudio.

The Apache’s access restrictions are part of the server configuration. For
a new configuration to take effect, a restart of the server is required. The
CloudStudio server will tell the Apache service to restart whenever the con-
figuration has changed. Since the restart command of the Apache HTTP
server is used, the availability of the server is hardly influenced. However it
may take a few minutes before the project will be available over Git. It is
further necessary to open the project first in CloudStudio.

2.3 Intermediate Representation
The information of the file system and the version-controlled repositories is
collected in a intermediate representation. This representation is sent to the
CloudStudio client which will use it to display the file content and the folder
structure.

The information provided by the VCS is limited. It is possible to get a
history of the file based on the commits. However for the fine, line-based
granularity targeted by this thesis the available information is not enough.
How is it possible to differentiate between a user changing an existing line
or him deleting it and adding another line instead? During the implemen-
tation of the change awareness and the automatic version control it became
imperative to have additional data concerning the past version of each line.
Knowing the detailed history for each line is the key to correctly display the

20 Approach

merged file content including the changes of other users. It enables the auto-
matic version control system of CloudStudio to find reasonable resolutions of
conflicts without any user interaction. It is a significant decision to have an
intermediate representation with more data than the VCS can provide. It has
made the design and implementation much more complex and error-prone.
However there is no way to offer the same functionality without it.

It would have been possible to implement a line-based approach only con-
sidering the commit history of the file. By iterating over each commit the
modifications of a user can be shown in a certain granularity depending on
the frequency of the commits. However the difference between two revisions
of a file still doesn’t yield the accuracy of a editor designed to maintain a line-
wise version model. Only if committed regularly and not just once a day the
repository can provide a fine-grained history. The intermediate representation
is a merged version of the content of the main and the user repositories. It in-
tegrates all the branches as well as the uncommitted changes. The merging is
no longer a problem as the assembled and merged model is constantly main-
tained and kept up-to-date. To recreate the full abstraction out of the version
control system and the file system would be time consuming since it would
be necessary to iterate over all past revisions. Nevertheless in some cases this
approach is used in this thesis. When there is only limited information and
no better precision available, it’s best to iterate over the commits to create
a change history. This is for example the case when receiving changes from
the outside sent by a user using the HTTP connection to the Git repository
instead of the web-based IDE. It is also applied when manually switching to a
previous revision, because the intermediate model itself is not under version
control.

2.3.1 Tag
The folder structure as well as the content of each file may differ for the
repositories and their branches. The different version have to be merged
together to provide the user with awareness of the modifications of other
users. To denote whether a file, a folder or a line exists for a certain user and
task a tag is used. As a file can exist for multiple users and tasks, it will also
have multiple tags.

It proved to be useful to add information about whether a line is com-
mitted and if it has already compiled, which will be further referred to as
version control status of a tag. The version control status is used during
compiling with changes of other users. To prevent introducing further com-
pilation errors the CloudStudio server will only consider modifications that
are committed or have compiled previously.

2.3 Intermediate Representation 21

In this thesis often when talking about tags it will only be mentioned
whether the item exists for the user or the main repository. If not mentioned
otherwise the notion of the main repository means the main repository and
the root task. Since the main repository has no working directory, a tag of
the main repository is always committed. When talking about the user’s tag
without mentioning a specific task, we usually refer to the user repository
and the current task. The version control state in the user repository can be
uncommitted, committed or committed and compiling.

2.3.2 File Content

HelloWorld.e

 i := 0
 i := 1

 i := 5

make

do

...

end

File Model

Line Model

Line Version Model

Legend:

Figure 2.4: Example of a file with multiple lines and line versions

As reasoned before, the new CloudStudio editor will keep track of the
file content using a fine-grained model based on lines. To represent the file
content of one specific file, the text of the file is split into lines. Each line
has a content and can exist for one or more tags, where each tag represent a
different version of that file. To identify a line, a randomly generated integer is
assigned as unique identifier. This has the advantage that the client can create
new lines and send them as an update to the server. The unique identifier are
a convenient way to avoid complicated synchronization. The lines are aligned
in a list, where each line points to its predecessor and its successor using the
unique identifier. If a new line is inserted, the pointers are relinked to add
the line in between. All the lines together make up the combined abstraction
of all versions of the file. The combined file model is serialized and persisted.
It has to be continuously synchronized with the content in the repositories.

22 Approach

Lines will be regularly changed. To detect conflicts and merge the content
of different versions of the file successfully a representation with multiple
line versions is required. This approach will allow the editor to still be aware
which line versions belong to the same line. In the editor as well as the merged
content, at most one version of each line will be included and displayed.

The line versions are arranged as a tree as shown in figure 2.5. Each
line has a root line version. All other versions are children of the root. The
line version of the main repository and the root task is denoted as main line
version. A line version has two attributes, its content and its tags. The version
can be associated with zero or more tags, meaning the content of the given
user and task is equal to the content of the line version model. A deleted
line will be represented as a line version without content. This way deletion
and absence are distinguishable. Two empty line version with no tags in the
line version tree will cause one of them to be removed to keep the tree from
growing indefinitely.

 i := 1

 i := 5

 Main repo, root task

 UserA, root task
 i := 0

Root Line Version

 Main repo, task 1

 i := i + 1

 UserA, task 1

Main Line Version

 i := 47

 UserB, root task

 i := i + 1

 UserC, root task

Leaves

Figure 2.5: Example of a line version tree with the associated tags

Keeping the line versions in a tree instead of a simple set improves the
conflict detection. The line is in a conflict if there is more than one leaf. If
there are multiple leaves, the editor will always prefer displaying the own
version before displaying other ones. In case the own line version is not a leaf
it will display one of its children. When editing a line in the editor, even one
displaying another version than your own, it will create a new version with
the displayed version as parent. This allows multiple users to interactively
alter the same line without introducing a conflict assuming all users enabled
seeing the changes of the other team members. It also requires the period

2.3 Intermediate Representation 23

between edits to be long enough to allow each client to send and receive the
update from the server.

The web-based IDE allows the user to choose which users and tasks he
wants to see in the editor. By doing so, some line versions in the tree are
no longer considered since no tag of the version matches the chosen users
and tasks. It will change which nodes are leaves in the version tree and
accordingly a different line version is displayed in the editor. The conflict
detection is independent of the displayed tags. It will always consider all
users and tasks to alert the developer to potential conflicts.

2.3.3 Folder Structure
The folder structure consists of a tree of folders with files as leaves. Equivalent
to the lines in the file, the files and folders are annotated with tags to identify
for which users and tasks they exist. Additionally a flag for each file and
folder indicates whether the file has been deleted somewhere. Using this flag
tells the automatic conflict resolution to delete the file, if the file has been
removed in one of the two revisions to merge. The user will be automatically
warned if he is working on a file with the deletion flag set to prevent conflicts.
CloudStudio can not exactly differentiate between deletion and absence of a
file for each revision like it is possible for lines as described in the previous
section. However the deletion flag provides the ability to know if a file has
been deleted. When the flag is set, sooner or later the deletion will be shared
and the file will be removed for each team member. The user is alerted to this
conflict and can restore the file to prevent its deletion. Restoring will remove
the deletion flag and prevent the file from being deleted during a merger.

Keeping a history of the folder structure is not as crucial as maintaining
the intermediate model of the file content. It is possible to scan the reposi-
tories and each of their branches for all files and folders. However experience
and performance tests proved it to be too time consuming. The scanning
can take up to several seconds for small projects and will scale linearly to
the amount of files. Additionally to keep track of deleted files the commit
history has to be iterated. To solve this performance issue and to implement
supplementary functionality to restore deleted files, the folder structure is
persisted as well.

2.3.4 Conflict Detection and Resolution
Based on the described intermediate models and the change awareness it is
possible to resolve all conflicts automatically. The resolution strategy used
during sharing with the main repository is the same as the one used in the

24 Approach

editor or when compiling with the changes of other team members. Due to
this uniformity the merged code can be compiled, tested and proofed. It
also helps the user to implicitly understand how conflicts are resolved during
development. The web-based IDE provides tools to alter the result of the
merge. Additionally the user can simply edit the line, if the current merged
content doesn’t provide the result he hoped for.

The advantage of the automatic conflict resolution lies the fact that the
user does not have to interact to merge the changes. The implemented au-
tomatic share feature depends on this, as it will automatically merge new
changes of the main repository into the user repository as well as the other
way around. With the goal to ease the usage of the version control, such a
process should not depend on the interaction of the developer.

Conflicts are resolved by analyzing the two revisions of the source and
the destination. In case of the folder structure, if the file is deleted for one
version, it will be deleted in the merged version as well. The only way to
prevent this is to restore the file.

The merger of the file content is done by merging all the lines. If a new line
has been created, it will also be added in the merged content. A deleted line
will be removed, unless it is a conflict. Conflicts in a line can be dealt with
automatically using the line version tree as shown in figure 2.5. If one of the
line versions is a child of the other, the conflict is resolved by taking the most
recent version. If the line versions are not directly related, the user’s version
is returned rather than the version of the main repository. This approach
enforces the merger of new content into the main repository. The user can
influence the outcome of the share proactively by using the functionality of
the web-based IDE. It is possible to switch to the main revision or to a con-
flicted version in the tree. This strategy of conflict resolution is based on the
assumption, that the user will use the change awareness. If the user chooses
to disable all change awareness and ignore the conflict annotations described
in the section 2.4.1, the automatic conflict resolution may not provide the
expected result.

2.4 Change Awareness
The automatic version control system is implemented based on change aware-
ness, which makes the awareness one of the main goals of this thesis as well as
a means to the end. Without the change awareness it is not possible to imple-
ment automatic conflict resolution as described in the previous section 2.3.4,
which is essential to an automatic configuration management. The user has
to be aware of possible conflicts and be able to compare his own revision to

2.4 Change Awareness 25

the versions of others. This approach is already used by the standard version
control system. However the intent of this thesis to make the user contin-
uously aware and help him to proactively resolve conflicts is new. It is the
logical step when trying to automate and ease the time consuming version
control activities.

Both, the editor and the explorer, use change awareness to help the user
be unobtrusively conscious of the modifications of other team members. Their
content is updated in real-time with updates from the server if another user
changed something.

2.4.1 Editor
The editor used in CloudStudio is based on the Ajax.org Cloud9 Editor [2],
short ACE. It comes with support of multiple languages and was extended
and integrated into CloudStudio during a semester project taking place si-
multaneously with the first half of the thesis. By adapting the displayed
gutters, a color notation has been added. A hover text will display for whom
the line exists and what other versions there are.

The user may not always want to see all the changes from other developers
and tasks. He can disable them and they will no longer be directly visible.
However an arrow in between two lines will indicate hidden lines. It also
won’t affect the conflict detection. A line marked as conflict, will still be
marked red, whether the conflicting version would be displayed or not.

If the user changes the file content, the intermediate file model is updated
by interpreting the delta provided by the ACE editor to adapt the line ver-
sions. The updated lines are sent to the server and the server redistributes
them to the other clients. All users will see the updated file within seconds.

2.4.2 Explorer
The old file explorer of CloudStudio didn’t include any change awareness.
Using refactoring the modularity of the explorer has been improved to make
it almost language-independent.

The files and folders displayed are colored according to their tags. More
information about the file is supplied in an extra dialog. The message box
shows whether the file exists for the user and the main repository.

The folder structure displayed in the explorer will be updated automati-
cally, for example if another user adds a class. Similar to the update of the file
content, the added file will be redistributed over the server to all CloudStudio
clients.

Chapter 3

Implementation

CloudStudio is implemented in Java and runs on a Tomcat server. The au-
tomatic version control uses JGit [5] to interact with the Git repositories. To
allow users to connect without a CloudStudio client, an Apache web server
provides access to the repositories via HTTP. The CloudStudio server saves
the user and the project information in a MySQL database accessed using
the Java database connectivity (JDBC).

The web client is programmed in Java using the Google Web Toolkit [3]
and is then compiled to JavaScript. The client communicates with the server
asynchronously. The data passed is represented as models which are serialized
for transmission. An event-based approach is used for the server to commu-
nication with the client using a long-polling server push. The editor of the
client is based on the ACE [2], Ajax.org Cloud9 Editor. It is integrated into
GWT using the AceGWT library [1]. The CloudStudio client is optimized
for the browser Google Chrome.

The UML diagrams displayed in this chapter may be simplified compared
to the actual implementation to improve the comprehensibility.

3.1 Services and Events
The old version of CloudStudio already included several services handling
each a specific area, such as the user, the project or the file management.
There is one instance of each service for each logged in user. Most services
had to be refactored and adapted to the new backend, but their functionality
remained the same.

Two new services have been added. The ConfigManagementService offers
the client the ability to interact with the version control system. The change
awareness and the combined file models integrating all versions of a file

26

3.2 Models 27

can be accessed using the ChangeAwarenessService. When a service needs to
invoke a method of the backend, the ConfigManagementFactory is called to
get a backend controller encapsulated by the ConfigAwarenessSystem or the
ConfigManagementSystem interface.

To inform the CloudStudio clients about any updates from the server,
events are sent using long-polling to implement a server push. The client will
open up a request which the server will not answer immediately but wait
until there are events to push. If the request closes with a timeout, the client
will just reopen another one. This method is often used in web applications,
since not all browsers fully support new substituting technologies like Web
Sockets.

Three new events are introduced with the new backend to send updates
to the client, the ChangedModelsEvent, the UpdatedCombinedFileModelEvent and
the ReloadFolderStructureEvent. Those events are used to provide the Cloud-
Studio user with real-time updates of the progress of his team members and
continuous change awareness. The ChangedModelsEvent is triggered, if some
intermediate models have been changed. The event will send the modified
models to the client. It is used when multiple files and folders are affected,
for example when performing a version control operation such as a commit.
The UpdatedCombinedFileModelEvent refers to one changed file and is used when
user is typing in the editor. The event will include the set of modified lines to
enable the CloudStudio client to update its file model. The third event is the
ReloadFolderStructureEvent. It is rarely used and helps when it isn’t possible
to tell which folder structure entries have been changed. When triggered, the
client will reload the whole folder structure of the IDE explorer.

3.2 Models

3.2.1 Tag Model
The tag model is used to uniquely identify the revision the line version or the
file is associated with. To accomplish this it contains the information about
the user and the task. Based on the user the repository can be identified. null
refers to the main repository. The task name of the tag equals the branch
name in the repository.

Additionally the tag has a VersionControlStatus with one of the following
three values:

• UNCOMMITTED The item has been changed, but not committed.

• COMMITTED The item has been manually committed.

28 Implementation

• COMPILING The item has been automatically committed when the user
compiled successfully.

The values of the VersionControlStatus can be ordered by recency as shown
in equation 3.1. If an item is annotated as COMMITTED, but has no other tags
of the same user and task, it implicitly exists for the more recent value
UNCOMMITTED as well. To check whether an item exists for a specific tag, the
tags of the item are iterated. First the loop will look for a tag model with
the according VersionControlStatus and then if it can’t be found, it will check
for any less recent values. This approach is based on the assumption that
deleting an item can be denoted by a specific value such that deletion will
result in an entry with a more recent tag similar to a change.

Recency : UNCOMMITTED > COMMITTED > COMPILING (3.1)

To find an exact match between two TagModel instances the user, the task
name and the VersionControlStatus have to be compared. In many situations
it’s enough to look at the user and the task as for example to check if the
line exists for the logged-in person and his current task.

The tag model appears in both, the class diagram of the file content in
figure 3.1 and the diagram of the folder structure in figure 3.2.

3.2.2 Models of the File Content
The file content is modelled by three classes as shown in the figure 3.1.
The file specified by its path is represented by a CombinedFileModel instance
containing a map of lines. Each line is a LineModel object with a randomly
generated integer as a unique identifier. Using this identifier the line points
to its predecessor and its successor. A line has multiple line version arranged
in a tree. Each line version represented by the LineVersionModel class has a
content and a list of tags for which this content applies.

The CombinedFileModel is, as its name says, a combination of all versions
of the file. It assembles the file content of each repository and each branch
and differentiates between whether the content was committed or not. The
model is persisted by saving the serialized object in the project folder. The
CombinedFileModel is initialized when the file is first opened in the web-based
IDE or if it is altered in a commit from an external repository. The initial-
ization is based on the fact that when initialing the file contents are all the
same for all versions of the file. As the model is persisted the challenge is
no longer the initialization, but to keep it synchronized to the content in the
version-controlled repositories as discussed in section 3.4.

3.2
M

odels
29

int uniqueId
String content

LineVersionModel

tags

0..*

UserMiniModel user
String taskName

TagModel

UNCOMMITTED,
COMMITTED,
COMPILING

<<enumeration>>

VersionControlStatus

0..1

status

int uniqueId
int mainVersionId
Int rootVersionId

LineModel

String filePath
int firstLineId
Set<LineModel> changedLines

CombinedFileModel

lineVersions

1..*

0..1

previousVersion

0..1

nextVersion

lines

1..*

TagModel ownTag
Set<TagModel> shownTags
boolean showLiveChanges
boolean hideDeletedLines

DisplayOptionsModeldisplayOptions

0..1

parent

0..1

Figure 3.1: Class diagram of the models of the file content

30 Implementation

The CombinedFileModel has contains an DisplayOptionsModel instance. It is
used to assemble all options and settings of the CloudStudio editor and is
also used in other contexts. The attributes of the DisplayOptionsModel are:

• ownTag: The own tag identifies which line version has priority and is
displayed, if there are multiple versions in a conflict.

• shownTags: The shown tags restrict what content is displayed.

• showLiveChanges: If the live changes are disabled, only tags with a sta-
tus of value VersionControlStatus.COMMITTED or COMPILING are displayed.
Uncommitted changes are ignored for everybody, except the user and
his current task represented by ownTag.

• hideDeletedLines: Hiding deleted lines will prevent lines from being dis-
played, if the content of the displayed version is null meaning the line
has been deleted. By disabling it, the line versions with content null
are ignored.

Using those options, the CombinedFileModel can determine the content to
display in the editor. The same method is also used when saving back the
own content into the working directory of the user or when compiling with
the modifications of the other users. Using the file model and its options it
is also possible to translate a LineModel to a line number and vice-versa. All
those methods related to the displayed content depend on the options. Lines
added by another user may or may not be displayed depending on the setting
of the DisplayOptionsModel and whether the user is part of the shown tags.

The CombinedFileModel keeps a map of the lines of the file indexed by their
unique identifier as well as the unique id of the first line. It declares methods
to insert lines or to delete them which can be used by the CloudStudio server
as well as the client. By inserting a line the new LineModel will be added
to the map of lines of the CombinedFileModel. If a line has been completely
deleted for each and every version of the file, the LineModel is removed from
the map. During insertion as well as deletion the pointer of the line and its
neighbor are updated such that the lines will form a bidirectional list. The
line directly affected by the modification will be added to the set of changed
lines of the CombinedFileModel.

On the client side when the user is editing, the CombinedFileModel is kept
up-to-date by listening for the on-change event of the ACE editor. The trig-
gered method will receive a delta of the editor as a parameter. The delta
contains all information needed to recreate the modification in the file model.
The delta is interpreted and the modified lines are added to the set of changed

3.2 Models 31

lines maintained by the CombinedFileModel. After adapting the file model, the
text of the editor as well as the change awareness notations are updated if
necessary.

Each modification in the client triggers the timer for sending an update
to the server if it’s not already started. The use of the timer prevents up-
dates to be more frequent than each second, which would be inefficient. To
inform the server about the modifications in the client the set of changed
lines maintained by the CombinedFileModel are used as parameter to invoke
the update method on the ChangeAwarenessServer. The server processes the
update and redistributes it to the other users as well. By making use of the
unique identifier of the LineModel it is possible to insert the new line correctly.
It is first identified by its predecessor and if the previous line was not found,
the server will try to find its successor to place the new line before it. This
allows multiple users to synchronously change a file without content being
lost.

3.2.3 Models of the Folder Structure
The folder structure is a tree where the files are arranged as leaves. The files
are represented by FileMiniModel instances and the folders by FolderModel
objects. Each item of the folder structure, as shown in the class diagram in
figure 3.2, has a path and a name. The existence tags associated with the
item determine for which version the file or folder exists, whereas the deletion
tags indicate an item has been deleted in the repository for the given branch.

The explorer of the web-based IDE may not only show existing files and
folders. Depending on the programming language used it will also list artifi-
cial entries which have no respective item in the project folder, for example
the libraries in Eiffel. Additionally some folders are immutable and can’t be
deleted. For the Eiffel projects the IDE explorer uses on additional classes
like the ClusterModel, the LibraryModel and the PrecompModel to represent the
folder structure.

Based on the type of the file or folder and its other attributes, the icon dis-
played in the CloudStudio IDE can be determined, as well as the operations
the user can perform on the item like deleting or adding a new class.

The items of the folder structure, all inheriting from FileSystemModel,
further have a change type. By using the folder structure annotated with the
change type, the commit dialog in the CloudStudio IDE can display which
files have been added, modified or deleted.

Just like the model of the file content, the folder structure is persisted.
It could be reconstructed and initialized from scratch whenever a user opens
the project, but the process would be too time consuming.

32
Im

plem
entation

String name
String path
boolean isArtifical

FileSystemModel

children

0..*

existenceTags

0..*

deletionTags

0..*

FileMiniModel

boolean isImmutable

FolderModel

UserMiniModel user
String taskName

TagModel

UNCOMMITTED,
COMMITTED,
COMPILING

<<enumeration>>

VersionControlStatus

0..1

status

ADDED,
MODIFIED,
DELETED

<<enumeration>>

VersionChangeType 0..1

changeType

FOLDER,
PACKAGE,
PRECOMP,
LIBRARY

<<enumeration>>

FolderModel.Type 1

type

CLASS,
TEXT,
BINARY

<<enumeration>>

FileMiniModel.Type1
type

LibraryModel PrecompModel

boolean isRecursive

ClusterModel

Figure 3.2: Class diagram of the models of the folder structure

3.2 Models 33

3.2.4 Task Model
The task model is a representation of all branches of the project repositories
as a tree. Each task has one or more users assigned to it as shown in figure 3.3.
Those users are allowed to switch to the task, create new sub tasks, add
another user to the task or even delete the task for everyone. As the branches
representing the tasks are an unstructured list and not a tree, it’s essential
the tree of TaskModel objects is persisted. The model is serialized and saved
in the project folder.

String taskName
boolean isCurrent

TaskModel UserMiniModel
children

0..*

users

0..*

Figure 3.3: Class diagram of the task model

The tasks can be managed using the web-based IDE. Each project has its
own task tree. Using the dialog to manage the tasks, as shown in figure 3.4,
the user can easily create new tasks and switch to another. Creating a new
task will add a new branch to the user repository starting with the revision of
the parent task. The created branch will be merged into the main repository.

Figure 3.4: Screenshot of the task management in CloudStudio

34
Im

plem
entation

<<interface>>

ConfigManagementSystem

<<interface>>

ConfigAwarenessSystem

<<interface>>

InnerConfigManagementSystem

GitConfigManagement GeneralConfigAwareness

GenericConfigManagement

FolderStructureWrapper CombinedFileModelWrapper TaskWrapper

ConfigManagementFactory

0..*

mapProjectToCMS

 <<project id>>
0..*

mapProjectToCAS

 <<project id>>

<<interface>>

TaggedModelWrapperInterface
GenericPersistentModelWrapper

Figure 3.5: Class diagram of the backend

3.3 Backend 35

3.3 Backend
The backend can be accessed using one of the two interfaces as shown in fig-
ure 3.5. The ConfigManagementSystem provides a connection to the underlying
version control system. The implementation of this interface depends on the
distributed VCS used. The ConfigAwarenessSystem is the access point to the
file system. Its implementation is independent of the version control system.
Designed using the factory pattern, a project-specific instance implementing
either interface can be acquired using the ConfigManagementFactory.

To improve the modularity of the code, wrappers are used providing
special functionality to both the configuration management as well as the
configuration awareness. The TaskWrapper is used to manage the tasks. To
adapt the model of the folder structure the FolderStructureWrapper is called.
The CombinedFileModelWrapper is responsible for the combined file models with
their lines and line versions.

All wrappers extend the class GenericPersistentModelWrapper to manage
their persistent models. The persistent data will be read lazily and the loaded
model is kept per reference in the wrapper. The FolderStructureWrapper and
the TaskWrapper keep only a single reference to the root of the tree whereas
the CombinedFileModelWrapper has a map of models, potentially one for each
file in the project. The wrapper of the folder structure and the wrapper of
the file content additionally inherit the TaggedModelWrapperInterface which
specifies the methods to keep the models synchronized with the version-
controlled repository using the tags. The approach is explained in more detail
in section 3.4.1.

3.3.1 Interfaces
The ConfigManagementSystem interface is the larger of the two interfaces. It
can be split into two parts, the task management and the version control
management. The implementation of the task methods operates on the task
tree using the TaskWrapper. The following method signature are part of the
task management in the interface:

• addUserToProject(UserMiniModel user)
The user is assigned to the project. A new repository is created by
cloning the main repository.

• createTask(UserMiniModel user, String task, String taskParent)
A sub task is created as a child to the given parent task. If the user
is not a member the parent task, he is not allowed to create a sub

36 Implementation

task. The creator will be automatically assigned and switched to the
newly added task. All content as well as the history is inherited from
the parent task. Any uncommitted changes of the user repository will
be lost.

• addUserToTask(UserMiniModel user, String task, UserMiniModel newUser)
By invoking this method a member of the project will be assigned to
an existing task. The user invoking the operation must already be part
of the task to be allowed to add a new user. The branch will not be
immediately added to the user repository, it will lazily be copied from
the main repository when switchToTask is called by the new user.

• switchToTask(UserMiniModel user, String task)
The user switches to the given task. Any uncommitted changes of his
repository are discarded and the named task is being checked out in
the working directory. If the user didn’t work on the task before, he
will pull it from the main repository.

• deleteTask(UserMiniModel user, String task)
The task is being deleted for all the team members. A user is only
allowed to delete a task, if he is assigned to it. Deletion will remove the
branch from the main repository as well as from every user repository.
Any changes not shared with another task will be lost.

• String getCurrentTask(UserMiniModel user)
Get the current task of the user. When assigned to the project each
team member starts working on the root task. The current task is
changed by using switchToTask.

• TaskModel getTask(String task)
Find and return the task model with the given name.

• TaskModel getTasksByUser(UserMiniModel user)
Return the task tree and annotate the current task of the user as such.

• boolean isValidTaskName(String task)
Check if the task name is valid and can be created. It will control
if the name contains no illegal symbols and make sure there is no task
with the same name.

The second part of the interface offers functionality of the version control
system. The methods and return values are kept independently of the ver-
sion control system used. There is certain advanced functionality that is not

3.3 Backend 37

listed here, that is available for the Git implementation GitConfigManagement.
Currently it’s possible to just cast the object and then access the Git-specific
functionality. When an additional distributed VCS as for example Mercurial
were to be added, it would make sense to add the methods in the general
interface ConfigManagementSystem. This would require that the result types
that currently are part of JGit are abstracted to conform any DVCS. The
following functionality can be found in the interface currently:

• commit(UserMiniModel user, String msg, List<FileSystemModel> files)
Commits the changes of the user repository with the given message.
The methods accepts a selection of files as argument. It is recommended
to use getUncommittedFiles to obtain them as the models have to be
annotated with the VersionChangeType. If no files are selected and the
argument is null, all changes are committed. Committing will change
the tags with VersionControlStatus.UNCOMMITTED into tags with status
COMMITTED.

• autoCommit(UserMiniModel user)
Automatically commits the changes of the user with an generated com-
mit message. This method will be invoked, if the user compiled the con-
tent of the working directory successfully. The tag with status COMMITTED
or UNCOMMITED will be modified into VersionControlStatus.COMPILING.

• shareWithCurrentTask(UserMiniModel user)
By clicking on share changes the user invokes this method. It performs
a list of operations. First the user repository will pull new revisions
from the main repository. Any conflicts will be automatically resolved
and committed. Then the content of the user repository is pushed to
the main repository. It will trigger automatic sharing for any user that
has the option enabled.

• shareWithTasks(UserMiniModel user, String targetTask)
Sharing between tasks will iteratively merge the revisions of the cur-
rent task to its parent until reaching the targeted task and return in
the other direction back. To do this, the repository will switch to the
intermediate tasks, which will cause any uncommitted changes to be
lost. The automatic sharing is triggered by this method as well.

• FolderModel getUncommittedFiles(UserMiniModel user)
Get the tree of uncommitted files and folders. The files are annotated
with the change type VersionChangeType, which can be either added,
modified or deleted.

38 Implementation

• initialShareAndCommit(UserMiniModel user)
The initial share and commit is used to initiate a new project with
its preexisting files. It will automatically add all files in the working
directory to the version control system and commit them with a gen-
erated message. The new files are shared with the main repository.

• rollback(UserMiniModel user, boolean everything)
Rolling back will reset the working directory of the user’s repository.
The option everything lets the user choose whether to get back to the
last committed state or to reset to the latest revision of the main reposi-
tory. Depending on the choice, the intermediate models will be updated.
By just returning to the committed state, any tags of the user and his
current task with the status VersionControlStatus.UNCOMMITTED will be
deleted. If everything is rolled back, the tags of the main repository are
copied to replace any tag of the user and his current task. This way
when rolling back the meta data can be updated accurately, unlike
when using goToRevision.

• goToRevision(UserMiniModel user, String revision)
By going to specific revision the user can do even more than just
rollback. It’s possible to select any revision and switch the repository
to its state. However the intermediate models can’t switch their state,
since they are not version-controlled. As such it is not possible to revert
their state to just any revision. The solution is to undo each commit in
between iteratively as explained in section 3.4.2. The accuracy depends
on the size of the commits.

• processExternalPush(UserMiniModel user, String task, String oldRev,
String newRev)

This method is invoked by the RMI Listener when an external source
is pushing new changes into the main or a user repository. The method
parameters tell us which repository and which task are affected as well
as the old revision and the new revision. The intermediate models are
updated by iterating over the newly added commits as described in
section 3.4.2.

• List<RevisionModel> showLog(UserMiniModel user)
The method returns a linear list of revisions which represent the com-
mit history of the user. Each revision contains a time stamp and a
commit message. It can be uniquely identified by the revision hash.

3.3 Backend 39

Any method of the ConfigManagementSystem implementation affecting the
intermediate models will trigger an ChangedModelsEvent sent to the CloudStu-
dio clients to update their folder structure and files.

The additional interface InnerConfigManagementSystem provides methods to
the backend classes that are not exported to the services of CloudStudio. It
extends the standard functionality of the configuration management. The
GitConfigManagement is the Git implementation of the ConfigManagementSystem
interface. The VCS independent code as for example the updating the models
is inherited from the class GeneralConfigManagement.

The ConfigAwarenessSystem, the second of the two main backend interfaces,
is used to connect to the file system and operates on the working directory of
the user repository. It contains methods to retrieve the folder structure and
the combined file models. The following list shows most of its functionality,
neglecting methods without significance:

• List<FolderModel> getFolderStructure(UserMiniModel user)
Returns the folder structure, containing all folders and files annotated
with their type. The tree is directly displayed in the explorer of the
CloudStudio IDE.

• String getFile(String filePath, UserMiniModel user, String task,
boolean isUncommitted)

Get the file content of the user repository, or the main repository if
the user is null, and the given task. The last parameter of the method
determines whether the uncommitted content in the working directory
or the content of the head revision is retrieved. The implementation will
call the ConfigManagmentSystem interface to get the committed content.

• saveFile(UserMiniModel user, String filePath, String content)
Saves the file with the given content. If the file doesn’t exist, it will
be created.

• deleteFile(UserMiniModel user, String filePath)
Deletes the file identified by its path.

• restoreFile(FileSystemModel file, UserMiniModel userMiniModel)
Restores the file, such that it will not be removed during merger.
This method will not influence the working directory unless the file
has just been deleted and the deletion has not been committed yet. It
will change the way the file is merged. The restoring has an effect on
all project members.

40 Implementation

• createFolder(UserMiniModel user, String path)
Creates a new folder.

• deleteFolder(UserMiniModel user, String path)
Deletes an existing folder denoted by its path and all its sub folders
and files.

• existsPath(UserMiniModel user, String filePath)
Checks if the file specified by the path exists.

• String prepareCompile(UserMiniModel user)
Prepares compilation of the user’s content. The method will return
the path to the working directory.

• String prepareCompileWithChanges(UserMiniModel user, List<TagModel>
userTags, List<TagModel> taskTags)

Prepares compilation with the changes of other users and returns the
path to the merged files. The list of users and tasks shown are passed
as a parameter. A temporary folder will be created and the merged
content of the files, similar to the content displayed in the editor, will
be saved into the folder. Only tags with status COMMITTED or COMPILING
will be considered, such as to avoid compilation errors introduced by
the live changes of the other users.

• CombinedFileModel getCombinedFileModel(String path, UserMiniModel u)
Returns the file model identified by its path.

• updateCombinedFileModel(String filePath, Set<LineModel> changedLines,
UserMiniModel user)

Updates the file model with the changed lines. The method will also
save the changed content of the file to the file system and trigger the
UpdatedCombinedFileModelEvent to send the update to the other users.

3.3.2 Access over HTTP and Git
The Apache HTTP web server enables the user to work on CloudStudio
projects with an IDE of his choice. It runs as a service. The CloudStudio
server will restart the Apache server when the configuration has changed, for
example when a new project has been created. The Apache server is optional
and not required when running the CloudStudio server. It’s also possible to
add the access over HTTP later for an existing CloudStudio without any
additional effort.

3.3 Backend 41

The configuration of the Apache web server required in order to integrate
it with CloudStudio is kept as simple as possible. It’s enough to insert a single
line into the configuration file of the httpd process to include the generated
CloudStudio configuration file. The CloudStudio Apache configuration will
then again include the configuration of each project. All configuration files
for the Apache are generated by the ApacheAccessManager class. To configure
CloudStudio with Apache the CLOUDSTUDIO_APACHE environmental variable in
the Tomcat context needs to be set to the path of the Apache installation.
Further it’s recommend to specify the HTTP address and the port of Apache
in the CLOUDSTUDIO_HTTP context variable.

Listing 3.1: Configuration of the access to a CloudStudio Git repository

1 # Connection using git with login to the main repository
2 <LocationMatch "/ ExampleProject /main /.*(git -(receive |

upload)-pack)?">
3 AuthType Basic
4 AuthName " Access to the CloudStudio project "
5 AuthUserFile "C:/ path/to/ cloudstudio /
6 ExampleProject /. config /main.users"
7 require valid -user
8 </ LocationMatch >
9

10 #HTTP access with login to the main repository
11 <Directory "C:/ path/to/ cloudstudio / ExampleProject /main">
12 Options FollowSymLinks Indexes
13 AuthType Basic
14 AuthName " Access to the CloudStudio project "
15 AuthUserFile "C:/ path/to/ cloudstudio /
16 ExampleProject /. config /main.users"
17 require valid -user
18 </Directory >

In the generated configuration file of a CloudStudio project the main
repository and each user repository is listed. The block LocationMatch redirects
Git calls. The Directory tag enables viewing the project directory and its
files with a web browser. Both access methods are restricted by a repository-
specific password file. The password file is generated using the user name and
the password of the CloudStudio user.

The Apache HTTP server offers other modular approaches to extend the
configuration which don’t require a server restart. However the Git config-
uration uses the tag LocationMatch as shown in listing 3.1 and LocationMatch
can only be used in the global configuration file.

A detailed description of how to setup the Apache server in Windows to
export the CloudStudio projects can be found in the CloudStudio wiki.

42 Implementation

CloudStudio offers the user the possibility to download a batch file to
simplify the use of Git. The user can choose how long the script will wait
between sharing with the CloudStudio server and whether to share automat-
ically at all. If the automatic sharing is disabled, the user will have to hit
enter when he wants to share and he is asked to enter a commit message.

Figure 3.6: Screenshot of the dialog to export the Git batch script

Once downloaded the script can be started and will ask the user for his
password. All other information like the project name, the user name and
the HTTP address of the CloudStudio server are included in the script. If
the user supplied the correct password the main repository of the project
will be cloned. After the copy of the repository has been created the script
will start a loop to share the modifications after the specified time period
with the CloudStudio server. Instead of a regular update the user can also
manually initiate one by hitting enter.

3.3.3 Git Hooks
Git hooks [13] are scripts that will be called when a certain event occurs.
JGit, the Git implementation in Java, ignores these hooks. They will not
be invoked if for example a commit is done using JGit. The CloudStudio
implementation utilizes this fact to its advantage. Usually it’s not needed
to trigger the hooks if the CloudStudio server executed the operation using
JGit. The only case where it’s necessary, is after a commit. The CloudStudio
server will manually execute the post-commit hook.

The hooks are created dynamically by the GitHooksCreator, one set of
hooks for each repository. There are three types of hooks used:

• Post-commit hook The post-commit event is triggered after a successful
commit. The hook performs an update of the server information, such

3.3 Backend 43

that the information published using the HTTP server is up-to-date.
The post-commit hook, unlike the other hooks, will be invoke manually
by the server after a commit in CloudStudio.

• Pre-receive hook The pre-receive hook is called before receiving a new
revision, meaning somebody pushed into the repository. Since JGit will
not call the hooks, the pre-receive event is only triggered when a user
using Git instead of the web-based IDE pushes commits over the HTTP
connection into the repository.
The pre-receive hook is only used in the user repositories. It automati-
cally commits any changes. This forces the external source invoking the
push to resolve any conflicts; even those with the uncommitted changes.
It also enables the post-receive hook to include the new modifications
into the working directory without needing to stash the commits which
is currently not supported in JGit.

Listing 3.2: Post-receive hook for project id 12 and user id 5

1 #!/ bin/sh
2 echo "Post - Receive Hook"
3 unset GIT_DIR
4 # Only in a user repository : Reset the working directory
5 git reset --hard
6 git update -server -info
7

8 # Call the PostUpdateHook to invoke the RMI method
9 cd C:/ path/to/ cloudstudio /. config /hooks/

10 while read oldrev newrev ref
11 do
12 java com. cloudstudio . server . configMngm .hooks.

PostUpdateHook 12 $oldrev $newrev $ref 5
13 done

• Post-receive hook The post-receive hook is triggered after the pre-
receive hook and the receive event. The hook will be called after the
new revisions have been received and only if the push was successful.
The goal of the post-receive hook is to update the models on the server.
Additionally in case of a user repository the working directory needs to
be reset to the newest revision as described in line 4 and 5 in listing 3.2.
Thanks to the pre-receive hook there will be no uncommitted changes
lost when resetting.

44 Implementation

To inform the CloudStudio server about the new revisions Java remote
method invocation (RMI) is used. The server creates and registers an
RMI listener which then again will be called by the post-receive hook.
The project id and the user id if it’s a user repository will be passed as
arguments. Additionally the method takes the new and the old revision
identifier as well as the reference which can be used to calculate the
branch name as parameters. The server will update the intermediate
models by iterating over all commits as described in section 3.4.2.

3.4 Synchronization of the Models

3.4.1 Update by Tags
In most cases the models of the folder structure and the file content can be
updated relative to a different revision.

There are four operations used to update the persistent models by tags
summarized in the TaggedModelWrapperInterface. Except for deletion which
has only one parameter, all other methods take two arguments, the source
and the destination TagModel. It’s important to differentiate whether the op-
eration will be applied to all tags with the same user and task or if the
VersionControlStatus also has to match. This is referred to as exact match-
ing. If not mentioned otherwise, only exactly matching tags are considered
in the operation.

• Copying will simply duplicate the appearance of the source tag for the
destination tag. The destination tag is added if the source tag exists
and the destination tag is deleted if the source tag does not exist.

• Copying passively is similar to copying. However it will not delete the
destination tag if the source tag doesn’t exist. It is used when commit-
ting.

• Deleting will remove any occurrences of the given tag. If the parameter
for only exactly matching is enabled, the VersionControlStatus of the
tag has to match as well in order to be deleted.

• Merging is the most complex one of the four methods. The content of
the source tag will be merged into the destination tag. To do so, only the
source respectively destination tag with the most recent, but committed
VersionControlStatus is considered. The tags with status UNCOMMITTED are
ignored, since the version control system will not share uncommitted
changes during a merge between two repositories. How the content is

3.4 Synchronization of the Models 45

merged depends on the implementation of the interface. The method
will only affect the destination tag; the source tag remains unchanged.

The method to copy is for example used when a user is added to the
project. He will start with the content of the main repository. To update the
models all tags of the main repository are copied with the user’s own tag as
destination. Copying passively is used during a commit. For example when
committing manually the tags with VersionControlStatus.UNCOMMITTED will be
copied passively to COMMITTED. The existing COMMITTED tags will not be deleted,
if there is no UNCOMMITTED tag. The method to merge is applied when sharing
with the main repository. The committed tags of the user are merged with
the tags of the main repository.

In most cases the implementation of the ConfigManagementSystem will use
the methods of the TaggedModelWrapperInterface to keep the models of the
file content and the folder structure synchronized with the version-controlled
repository. Section 3.4.2 describes situations and the approach if a relative
update is not possible.

3.4.2 Update by Iteration over the Commit History
There are cases where the new head revision is not related to the previous
commit or the revision of the main repository. It’s not possible to update
the models by tags as described in the previous section. When only the
information of the version control system is available, an update by iteration
over the commit history is applied.

Currently only two situations require an update based on the commit
history. The first case is when going to a different revision which is not the
predecessor of the current one. The second situation is when new modifica-
tions are pushed from an external source directly to the Git repository. When
switching the revision all commits in between the old and the new head re-
vision have to be undone. The undoing is similar to processing the revisions
backwards instead of forward as during the update after a external push.

Both folder structure and file contents are persistent and need to be syn-
chronized to the state of the repositories.

The model of the file content is line-based. As there is no additional
information in the VCS about which line has been deleted or which line
has been changed, it is best to keep the commits as small as possible to
reproduce the actions of the user. Instead of calculating the direct difference
between the new and the old head revision the procedure will iterate over
each intermediate commit as described in listing 3.3. The iteration of the
commit will interpret each commit as a single packaged user interaction. All

46 Implementation

changes are integrated into the model and the accumulation of all applied
deviations will result in the new head revision.

The folder structure does not require fine granularity as the line-wise file
content does. It isn’t updated iteratively, but by calculating the direct differ-
ence between the new and the older head revision as described in listing 3.4.

Listing 3.3: Java Pseudo Code: Update of the file content

1 // Iterate over each intermediate commit
2 for (Commit previousCommit : commitHistory) {
3

4 for (Diff diff : getDiff (previousCommit , nextCommit)) {
5

6 if (diff. getChangeType () == ChangeType . MODIFY) {
7

8 for (i = 0; i < diffOutput . length ; i++) {
9 String line = diffOutput [i];

10

11 // Prefix ’-’: The line has been removed
12 if (line. startsWith ("-")) {
13 int a = findNextAddedLine (diffOutput , index);
14 if (a != -1) {
15 cfm. changeLine (rowNr , ownTag , diffOutput [a])
16 diffOutput [a] = null;
17 rowNr ++;
18 } else
19 cfm. deleteLine (rowNr , ownTag);
20 }
21

22 // Prefix ’+’: The line has been added
23 else if (line. startsWith ("+"))
24 cfm. insertLine (rowNr , ownTag , line);
25

26 // No prefix
27 else
28 rowNr ++;
29 }
30 cfmWrapper . saveModel (cfm);
31 }
32 }
33 nextCommit = previousCommit ;
34 }
35 }

3.4 Synchronization of the Models 47

Listing 3.4: Java Pseudo Code: Update of the folder structure

1 // Only consider the diff between source and destination
2 for (DiffEntry diff : getDiff (user , srcCmt , destCmt)) {
3

4 switch (diff. getChangeType ()) {
5

6 // New , renamed or copied file
7 case ADD , RENAME , COPY:
8 folderWrapper . addFile (newPath , ownTag);
9

10 // Deleted or renamed file
11 case DELETE , RENAME :
12 folderWrapper . removeFile (oldPath , ownTag);
13

14 if (! folderWrapper . existsSomewhere (oldPath))
15 cfmWrapper . removeCFM (oldPath);
16 else
17 cfmWrapper . deleteTags (oldPath , ownTag);
18

19 // Changed File
20 case MODIFY :
21 if (isEiffelProjectSettingFile (path))
22 triggerReloadFolderStructureEvent ();
23 }
24 }

Listing 3.3 and 3.4 simplify certain aspects and are written in pseudo
code which will not compile. They capture the structure and the approach of
the actual implementation. However the implementation may slightly differ
from it and the pseudo code neglects some special cases.

48
Im

plem
entationFigure 3.7: Screenshot of the CloudStudio IDE

3.5 CloudStudio IDE 49

3.5 CloudStudio IDE

3.5.1 Folder Structure in the Explorer
The explorer of the CloudStudio IDE enables the user to be aware of the
changes of his team members. A specific color schema will highlight the
added and deleted files as well as the files that don’t yet exist in the user’s
repository. More information on where the file exists can be accessed using
the information button in the right-click menu.

Figure 3.8: Screenshot of the CloudStudio explorer

The color schema consists of four settings with the following meaning:

• blue The file has been newly added. It doesn’t exist in the main repos-
itory, most likely because the user hasn’t shared his modifications yet.

• grey The file doesn’t exist for the user and his current task.

• red The file has been deleted by somebody and hasn’t been restored.

• none (black) The file exists for the user and his current task as well as
in the root task of the main repository.

3.5.2 File Content in the Editor
The change awareness of the editor is much more complex than the awareness
of the explorer. It enables the user to see the changes of other team members.
As shown in figure 3.7 the file content displayed is the merged version of all
the users and tasks that are currently viewed. Each line is annotated with

50 Implementation

a color to implicitly inform the user about where the line came from. By
hovering over the line number additional information about the line and the
currently displayed content is displayed.

The user interface of the CloudStudio IDE enables the user to decide
how much change awareness he wants. It’s possible to select the displayed
users and tasks. Per default all users respectively the root task and the user’s
current task are selected. If the developer selects a further task, it will auto-
matically add any users of the task as well. For a tag to be considered, its
task and user must be selected. The shown tags, calculated as the Cartesian
product of the selected tasks and users, are saved in the DisplayOptionsModel.
The content displayed depends on the shown tags.

As described in chapter 3.2.2 each line model has multiple line versions
assembled in a tree. One of the leaves of the tree is displayed. By not showing
all tags some nodes are ignored because they have no tag that would be
displayed as well as no children with shown tags. This will change the leaves
of the tree. Accordingly a different line version will be displayed in the editor.
To find out whether the line is in conflict all tags are considered to warn the
developer about conflicts.

The user is informed about missing lines by an orange arrow as in the
example in figure 3.7. A line can be either missing because its displayed
content is null indicating it has been deleted or there is no line version with
a tag that would be displayed. By hovering over the adjacent lines the user
can find out for whom the line exists. A line will only be fully removed and
no longer indicated by an arrow if it has been deleted completely for every
tag.

A color scheme is used to annotate the line in the CloudStudio editor
to tell the user whether it has been changed by himself or by another team
member:

• blue The line has been changed by the user. If the line has been com-
mitted, manually or automatically, it changes to light blue.

• orange The line has been changed by somebody else.

• dark grey The line exists for the main repository and the root task. If
the line exists for a task different to the root task, it is annotated as
dark grey-blue.

• red The line is in conflict. There are multiple leaves in the line version
tree. The first conflicting version, preferably the one of the current user,
is displayed.

3.5 CloudStudio IDE 51

• none (grey) The line exists for the user as well as for the root task and
the main repository.

The status bar just below the editor visible in figure 3.7 enables the
user to perform additional actions. He can add multiple lines to his own
repository. By doing so, his tag will be attached to the line version currently
displayed. Another button enables the user to go back to the version of the
main repository. In this case, the tag is not just switched to the main version.
Most likely the main version is not a leaf and just switching the tag would
not result in the main version to be displayed. To enforce that the content
of the main version is chosen over the other line versions, a new line version
is created. The third status bar button is only enabled when the cursor is on
a conflicting line indicated by a red color annotation. It allows the user to
switch to a different conflicted line version. By doing so the user can resolve
simple conflicts. After switching it’s possible to further adapt the line content.
This enables further conflict resolution as the new line version will be a child
of the conflicted line version and will overwrite it in case of a merger.

3.5.3 Version Control
During the software development the CloudStudio IDE will automatically
commit the changes if the user compiled successfully. Whether the new re-
vision should also be automatically shared with the main repository, can be
selected in the options. Additionally it’s possible to select whether another
user sharing with the main repository should trigger an automatic share.

Figure 3.9: Screenshot of the CloudStudio editor

Although this thesis focuses on an automatic version control system, the
user still has the ability to manually share or commit. The commit dialog as

52 Implementation

shown in figure 3.9 allows the user to specify a commit message and select
the modifications he wants to commit. The developer can also look at the
commit history using the “Show Log” button, rollback or go to a previous
revision.

3.5.4 Compile with Changes
When compiling in CloudStudio the developer can choose whether to just
compile his own modifications or whether to include the user and tasks he
has currently displayed in the editor. The compilation will only consider
committed or compiling changes as not to further introduce compilation er-
rors. The possibility to compile the result of a possible merge with the main
repository and the selected users and tasks enables the developer to detect
higher-level conflicts. The same functionality can be used when running, test-
ing or proofing a CloudStudio project.

3.5 CloudStudio IDE 53

Chapter 4

Evaluation

The automatic version control and change awareness integrated into Cloud-
Studio during this thesis has been evaluated based on different aspects.

The performance in CloudStudio has been investigated. In section 4.2
several typical use cases during collaborative software development have been
run through and analyzed.

A case study has been designed and prepared. Due to the time limits of
the thesis, the case study was only performed with a very limited number
of participants. The task setting has been improved based on the received
feedback. Further and more wide-spread trials were not possible due to time
constraints, therefore not yielding results mature enough for publication.

4.1 Performance Analysis & Optimization
The performance analysis focuses on the efficiency and properties of the new
editor in the CloudStudio client as well as the communication between the
server and the client. In the unoptimized version the complex line-based
model of the file content requires the client to calculate the merged content
each time the editor is updated which happens on almost every keystroke. The
CloudStudio client sends frequent requests to the server. It also continuously
keeps a long-polling request open required to enabled the server to push
events to the client.

The performance has been evaluated using the Google Chrome browser.
The measurements are conducted using the developer tools of Chrome and
the Speed Tracer [4] to analyze the browser’s performance and the network
requests sent to the server. The tests are performed in a new CloudStudio
project within the automatically created Eiffel class file. The measuring is
started when the file is opened. Since the goal was to investigate the perfor-

54

4.1 Performance Analysis & Optimization 55

mance during development the test setting was to program a simple method
with a literal integer as a result value. To simulate common developer activ-
ity the code was written without premeditation and with naturally occurring
typos in the code which were immediately corrected.

The ACE editor which the CloudStudio editor is built on sends frequent
change events. The ACE change event contains a delta with the users modi-
fications. The file content model needs to be updated with this delta. If the
file model changes, it’s sometimes necessary to reload the change awareness
annotations and the content of the editor. The deltas received are small. Even
for a user typing fast, it contains most likely only one or two letters.

(a) Unoptimized CloudStudio editor

(b) Optimized CloudStudio editor with minimized reloading on keystroke

Figure 4.1: Performance measured by the Speed Tracer [4]

Captured performance data of the unoptimized CloudStudio editor is
shown in figure 4.1(a). The violet filled area indicates the responsiveness of
the user interface of the CloudStudio IDE. Typing in the editor results in lags
handicapping the developer. The text is only updated and displayed after the
user almost finished typing the line, which encourages typos and errors in the
code. The lags considerable degraded usability of the IDE.

Analyzing the JavaScript CPU utilization using profiling showed that
the browser spent a lot of effort calculating the line version to display. The
CloudStudio editor reloads the content and the change awareness after each
change event to override the ACE editor’s own interpretation of the changes.
However reloading of the content theoretically is only necessary when deleting
lines and also only when having the option to hide deleted lines disabled.
Although during the development of the editor the complete content reload
helped to discover any wrong adaption of the model, there is a lot of potential
for optimization in minimizing the reloading. The colors and the hover text

56 Evaluation

of the change awareness have to be updated more frequently, but it can be
neglected during editing on a single line. While inserting or removing text on
the same line which is already annotated as newly changed by the user, the
optimized editor will only update the model and trigger the timer to send
aggregated updates to the server.

The performance of the optimized version of the editor measured by the
Speed Tracer tool is shown in figure 4.1(b). Compared to the results of the
unoptimized version it is noticeable that the browser no longer is overloaded
with events to process. The spikes shown in figure 4.1(a) are results of each
change event received. In figure 4.1(b) there are only a few spikes. By ana-
lyzing the log it is possible to determine their cause. The spikes result from
entering new lines. As expected adding a new line will require reloading the
colors and hover texts of the change awareness and will result in more calcu-
lation than events without any reloading at all.

In both performance measurements in figure 4.1 it’s possible to observe
the regular calls to the server to update the file model. They are indicated
by the light blue filled areas. The updates of the model sent to the server
occur as expected more or less each second.

4.2 Analysis of Specific Use Cases
During the second part of the evaluation two use cases with a high level of
collaboration are conducted. The results are evaluated based on the ability
of CloudStudio to operate in those situations. All use cases first describe the
setup and the steps. If not mentioned otherwise the CloudStudio editor of
each user applies the default setting which will display content of all other
users working on the same task.

4.2.1 Use Case 1
• UserA programs a feature square in the main class of the project.

• UserB calls the feature square and compiles with the changes of UserA.

• UserB adds the feature square to his own repository and compiles with-
out the changes of others.

• UserA notices a bug and fixes it.

During UserA programming the feature, UserB can instantly observe his
progress in the CloudStudio editor. For UserA the feature square is annotated

4.3 Case Study 57

with blue. UserB’s editor displays the lines with the change awareness color
orange. UserB includes a call to the newly programed square feature. When
compiling with the changes of UserA no errors occur. UserB adds the feature
to his own code by using the status bar button “Add to own repository”. The
lines change from orange to blue. For UserA the color of the lines remains
unchanged. If UserB compiles without the changes of others no errors are
introduced by the call to square. UserA changes a line in the feature, probably
to fix a bug. UserB will see the changed line highlighted in orange. When
compiling with the changes of UserA the bug fix will apply.

The users benefit from the advantages of having a version tree for each
line. When UserB adds the lines to his repository, he will switch to the same
version as UserA. If UserA changes a line, this will not introduce a conflict,
but be recognized by the editor as a successor of UserB’s version.

4.2.2 Use Case 2
• UserA alters a line.

• UserB also changes the same line.

• UserA also modifies the line.

When UserA changes the line, its change awareness color will change to
blue for UserA and orange for UserB. UserB can see the changes of UserA and
can alter them. If UserB changes the line, the new line version is displayed
to UserA in orange. Again UserA changes the content of the line, which will
switch the color back to blue for UserA respectively orange for UserB.

With full change awareness enabled no conflicts are introduced during
collaborative activities like pair programming. This use case is an example
for that. UserB can change the same line without creating a conflict because
the latest version of UserA is displayed. The new line version will be a child
of the displayed version and overrule it. However it will only work if both
UserA and UserB can see each others changes using the change awareness of
the CloudStudio editor.

4.3 Case Study
The case study is designed to analyze the usability of CloudStudo as well
as the advantages of the new automatic version control system and change
awareness. During this thesis the case study has only been performed on a

58 Evaluation

trial basis to refine the task setting and further improve the integration of
the new backend into CloudStudio.

The case study can be performed in four settings with a team of two
developers working on the same task set:

1. CloudStudio: Fully automatized version control with AutoShare

2. CloudStudio: Partially automatized version control without AutoShare

3. EiffelStudio with the batch script: Partially automatized version control

4. EiffelStudio with Git: Standard version control

Depending on the setting the participants either use CloudStudio, the
web-based IDE with change awareness, or Git and EiffelStudio, the IDE
for Eiffel. The options of the CloudStudio IDE allows to further influence
the level of automation of the version control by enabling or disabling the
automatic share. Also when using EiffelStudio the programming experience
can be changed by using the batch script provided by CloudStudio to simplify
the use of Git.

The tasks designed for the case study require a lot of collaboration and
coordination. To be able to fully evaluate the communication the participants
are only allowed to use Skype to communicate. The CloudStudio server will
log events like commit or share as well as the automatic version control
operations. Further the log will highlight if a conflict has been detected in
the model of the file content.

The questionnaire of the case study will help to analyze the usability of
automatic version control and change awareness. It also gives the participant
the chance to post feedback and suggestions.

To improve the task setting and check if the backend integrated dur-
ing this thesis is ready for productive deployment, the case study has been
performed in a small trial. The performance issues described in section 4.1
proofed to considerable degrade usability and had to be solved first. It fur-
ther was noticed that the usability of CloudStudio is strongly influenced by
the absence of tools like replace or automatic completion.

The task description and the questionnaire can be found in appendix A.

4.3 Case Study 59

Chapter 5

Conclusion & Future Work

5.1 Conclusion
This thesis introduces an automatic version control system with proactive
conflict detection and resolution based on change awareness and integrates it
into CloudStudio, a web-based IDE. Using change awareness the developer
sees the modifications of his team members in the editor in real-time. The
chosen line-based model of the file content and the version tree for each
line allow a detailed apprehension of the line versions and their relation. No
false-positive conflicts are introduced when multiple users edit the same line
while being aware of the changes of the others. Furthermore real conflicts are
highlighted in the CloudStudio editor and only occur if the user ignores the
change awareness annotations. The integration in CloudStudio also allows the
detection of higher-order compilation conflicts by compiling with committed
changes of the main repository and other users.

The line-based model is optimized for text strongly structured by line
breaks. This is the case for the source code of most programming languages.
However the editor is not ideal for standard text editing, especially if the line
breaks are frequently rearranged. Compared to a syntax-aware file model the
advantages of the line-based approach overweight the disadvantages. The
code is not required to be able to compile to construct the model of the file
content. The line-based editor is implemented completely independent of the
language and the compiler.

The automatic version control system introduces by this thesis works
without user interaction. Although the manual functionality of a VCS is
still available, the developer can work in CloudStudio without performing a
single version control activity. To achieve this any conflicts occurring will be
resolved automatically. The CloudStudio configuration management does not

60

5.2 Future work 61

offer any additional tool to resolve conflicts. Although it would be possible
to implement such a tool, it is not necessary. The change-aware editor shows
the user the result of the conflict resolution and offers multiple possibilities to
influence it. CloudStudio continuously helps the user to anticipate conflicts
and resolve them on the fly.

It’s also possible to use CloudStudio projects without using the web-based
IDE. The repositories can be cloned using Git. CloudStudio even offers a
script to simplify the process. When pushing new revisions from the outside,
the CloudStudio server will update the models automatically with as much
accuracy as possible.

5.2 Future work
The functionality integrated by this thesis can be easily extended. It is possi-
ble to further enhance the automatic version control system of CloudStudio
and even widen its use to another IDE like EiffelStudio. Some of those pos-
sibilities are explained below.

5.2.1 Improvements of the CloudStudio IDE

A highly recommended extension of the CloudStudio IDE is to adapt the
commit dialog to enable adding a message to a previous automatic commit.
By being able to retroactively replace the generated message of the automatic
commit, one of the few drawbacks of having an automatic version control sys-
tem can be resolved. This could be implemented using the rebase command
of Git to rewrite the commit history.

CloudStudio already enables the developer to detect compilation conflicts
by compiling with the changes of others. It would be possible to further en-
hance the detection of higher-level conflicts as well as to automatize it. For
example the project could be automatically tested after successful compila-
tion using AutoTest [30, 20] while including the modifications of the other
team members.

Currently the CloudStudio editor does not specifically support copying
of lines. Copying may result in conflicts if a user edits the deleted lines.
The model of the file content allows further optimization by rearranging the
order of the lines instead of deleting and then adding them somewhere else.
As rearranging lines can frequently occur in object-oriented programming, it
may be a valuable feature although the copy&paste functionality is hard to
adapt in the browser.

62 Conclusion & Future Work

The choice of a line-based approach over a syntax-aware solution has
many advantages. But there is also a lot of potential to integrate syntax
awareness. Using change awareness the feature list and auto-completion can
be complemented with the new features of other users.

5.2.2 EiffelStudio Plugin
As part of the thesis a simple batch script to export the project using Git
has been added enabling the developer to use EiffelStudio or another IDE.
To further extend the ability to work on the own IDE, EiffelStudio could
be extended with a Git plugin. The plugin would simplify the use of Git for
the developers and could also include some automation of the version control
system.

Improving the support of working with EiffelStudio even further, it would
be possible to export the models of the file content to enhance the plugin with
functionality equal to the CloudStudio editor concerning conflict detection.

5.2.3 Version-controlled File Content Model
Currently the models of the file content are persisted but not version-controlled.
This introduces a lack of information when switching to a different revision as
stated in section 3.4.2. A solution to this problem would be to put the inter-
mediate models under version control. This approach could further be useful
for an EiffelStudio plugin working with the copy of a CloudStudio repository.
However the models have to be treated carefully and merged correctly when
a new revision is push into the repository.

5.2 Future work 63

Bibliography

[1] AceGWT - An integration of the Ajax.org Code Editor (ACE) into
GWT. http://github.com/daveho/AceGWT.

[2] Ajax.org Cloud9 Editor. http://ace.ajax.org/.

[3] Google Web Toolkit (GWT). http://developers.google.com/
web-toolkit/.

[4] Google Web Toolkit (GWT) - Speed Tracer. http://developers.
google.com/web-toolkit/speedtracer/.

[5] JGit. http://eclipse.org/jgit/.

[6] Analysis of Git and Mercurial. http://code.google.com/p/support/
wiki/DVCSAnalysis, Sept. 2012.

[7] Wikipedia - Git (Software). http://en.wikipedia.org/wiki/Git_
(software), Sept. 2012.

[8] J. Biehl, M. Czerwinski, G. Smith, and G. Robertson. Fastdash: a visual
dashboard for fostering awareness in software teams. In Proceedings of
the SIGCHI conference on Human factors in computing systems, CHI
’07, pages 1313–1322, New York, NY, USA, 2007. ACM.

[9] Y. Brun, R. Holmes, M. Ernst, and D. Notkin. Speculative identification
of merge conflicts and non-conflicts. Technical Report UW-CSE-10-03-
01, University of Washington, 2010.

[10] Y. Brun, R. Holmes, M. Ernst, and D. Notkin. Proactive detection of
collaboration conflicts. ESEC FSE, Szeged, Hungary, 2011.

[11] E. Carmel. Global software teams: collaborating across borders and time
zones. Prentice Hall PTR, Upper Saddle River, NJ, USA, 1999.

64

http://github.com/daveho/AceGWT
http://ace.ajax.org/
http://developers.google.com/web-toolkit/
http://developers.google.com/web-toolkit/
http://developers.google.com/web-toolkit/speedtracer/
http://developers.google.com/web-toolkit/speedtracer/
http://eclipse.org/jgit/
http://code.google.com/p/support/wiki/DVCSAnalysis
http://code.google.com/p/support/wiki/DVCSAnalysis
http://en.wikipedia.org/wiki/Git_(software)
http://en.wikipedia.org/wiki/Git_(software)

BIBLIOGRAPHY 65

[12] E. Carmel and R. Agarwal. Tactical approaches for alleviating distance
in global software development. IEEE Softw., 18:22–29, March 2001.

[13] S. Chacon. Pro Git. http://git-scm.com/book.

[14] J. A. Espinosa, N. Nan, and E. Carmel. Do gradations of time zone
separation make a difference in performance? A first laboratory study.
In Proceedings of the IEEE International Conference on Global Software
Engineering (ICGSE 2007), pages 12–22. IEEE, Aug. 2007.

[15] H.-C. Estler, M. Nordio, C. A. Furia, B. Meyer, and J. Schneider. Ag-
ile vs. structured distributed software development: A case study. In
Proceedings of the 7th International Conference on Global Software En-
gineering. IEEE, 2012.

[16] L. Hattori and M. Lanza. Syde: A tool for collaborative software develop-
ment. In Proceedings of the 32nd ACM/IEEE International Conference
on Software Engineering, pages 235–238. ACM Press, 2010.

[17] L. Hattori, M. Lanza, and M. D’Ambros. A qualitative analysis of
preemptive conflict detection. Technical Report 2011/05, University of
Lugano, Sept. 2011.

[18] R. Hegde and P. Dewan. Connecting programming environments to
support ad-hoc collaboration. In Proceedings of the Automated Software
Engineering, 2008. ASE 2008. 23rd IEEE/ACM International Confer-
ence on, pages 178–187, 2008.

[19] S. Hupfer, L.-T. Cheng, S. Ross, and J. Patterson. Introducing collab-
oration into an application development environment. In Proceedings
of the 2004 ACM conference on Computer supported cooperative work,
CSCW ’04, pages 21–24. ACM, 2004.

[20] B. Meyer, A. Fiva, I. Ciupa, A. Leitner, Y. Wei, and E. Stapf. Programs
that test themselves. IEEE Computer, 42(9):46–55, 2009.

[21] M. Nordio, C. Calcagno, B. Meyer, P. Müller, and J. Tschannen. Rea-
soning about Function Objects. In J. Vitek, editor, TOOLS-EUROPE,
LNCS. Springer-Verlag, 2010.

[22] M. Nordio, H.-C. Estler, C. A. Furia, and B. Meyer. Collaborative soft-
ware development on the web, 2011. arXiv:1105.0768v3.

http://git-scm.com/book

66 BIBLIOGRAPHY

[23] M. Nordio, H.-C. Estler, B. Meyer, J. Tschannen, C. Ghezzi, and E. D.
Nitto. How do distribution and time zones affect software development?
A case study on communication. In Proceedings of the IEEE Interna-
tional Conference on Global Software Engineering (ICGSE 2011). IEEE,
2011.

[24] M. Nordio, C. Ghezzi, B. Meyer, E. D. Nitto, G. Tamburrelli, J. Tschan-
nen, N. Aguirre, and V. Kulkarni. Teaching software engineering using
globally distributed projects: the DOSE course. In Collaborative Teach-
ing of Globally Distributed Software Development - Community Building
Workshop (CTGDSD), New York, USA, 2011. ACM.

[25] M. Nordio, R. Mitin, and B. Meyer. Advanced hands-on training for dis-
tributed and outsourced software engineering. In Proceedings of the 32nd
ACM/IEEE International Conference on Software Engineering (ICSE),
pages 555–558. IEEE, 2010.

[26] M. Nordio, R. Mitin, B. Meyer, C. Ghezzi, E. D. Nitto, and G. Tambur-
relli. The role of contracts in distributed development. In Proceedings
of Software Engineering Approaches for Offshore and Outsourced Devel-
opment, 2009.

[27] Y. Pei, Y. Wei, C. A. Furia, M. Nordio, and B. Meyer. Code-based au-
tomated program fixing. In Proceedings of the 26th IEEE/ACM Inter-
national Conference on Automated Software Engineering (ASE), pages
392–395. IEEE, 2011.

[28] J. Tschannen, C. A. Furia, M. Nordio, and B. Meyer. Usable verifica-
tion of object-oriented programs by combining static and dynamic tech-
niques. In Proceedings of the 9th International Conference on Software
Engineering and Formal Methods, SEFM ’11. Springer, 2011.

[29] J. Tschannen, C. A. Furia, M. Nordio, and B. Meyer. Verifying Eiffel
Programs with Boogie. In First International Workshop on Intermediate
Verification Languages (BOOGIE 2011), 2011.

[30] Y. Wei, H. Roth, C. A. Furia, Y. Pei, A. Horton, M. Steindorfer, M. Nor-
dio, and B. Meyer. Stateful Testing: Finding more errors in code and
contracts. In Proceedings of the 26th IEEE/ACM International Confer-
ence on Automated Software Engineering (ASE), pages 440–443. IEEE,
2011.

BIBLIOGRAPHY 67

Appendix A

Appendix: Case Study

68

69

T A S K DES C RI PT I O N

WHAT YOU NEED TO KNOW

The tasks are performed on an existing project containing several classes modelling a library. A
short description will help you get started. Your team partner received the same task sheet.
Together you try to complete the tasks. Since CloudStudio offers no possibility to run the
program, it’s enough if you solved the task and it compiles.

The LIBRARY has a lot of books. Everybody can register for a LIBRARY_CARD which is needed to

borrow an item. To do this, you can talk to a LIBRARIAN. With your LIBRARY_CARD you can

reserve a book using one of the four LIBRARY_PCs. Once reserved the book can be picked up.

isbn: STRING
title: STRING
author: STRING
description: STRING

BOOK

RESERVATION

LIBRARY
book

1

books

*

card_number: INTEGER
person_name: STRING
person_address: STRING

LIBRARY_CARD

reservations

0..*

reserve(...)
search_by_isbn(STRING): …
search_by_title(STRING): ...

LIBRARY_PC

register(...): LIBRARY_CARD
pickup_book(...): BOOK
return_book(BOOK)

LIBRARIAN

4

1

library

library_pcs

2

1

library

librarians

cards *

FIGURE 1 CLASS DIAGRAM

WHAT YOU NEED TO DO

TASK 1 - EXTENDING LIBRARY

The library plans to extend their selection of books with DVDs and games.

O Create a super class ITEM.

O A DVD has a title and a description as well as an actor. It possible to search for

actors on the LIBRARY_PC.

O A GAME has a title as well and a description.

TASK 2 - REFACTORING

Refactor the existing code.

O Check the contracts and class invariants

O Use the super class ITEM where it makes sense.

QU E ST I O N NA I R E
Thank you for participating in the case study. Please answer the following questions and help us
to further evaluate CloudStudio.

User Name:

Project Name:

EXPERIENCE

I'm experienced in developing with Eiffel.

 strongly disagree disagree neutral agree strongly agree

I'm experienced in using distributed version control system like Git or Mercurial.

 strongly disagree disagree neutral agree strongly agree

I'm experienced in using centralized version control system like SVN.

 strongly disagree disagree neutral agree strongly agree

CLOUDSTUDIO

You can skip this section, if you didn't use CloudStudio.

What properties apply for the change awareness (seeing the changes of your partner in the
editor)?

 helpful great confusing I ignored it

Which feature of the change awareness did you notice and find useful during programming?

 hover text (over line numbers)

 colour in the explorer marking the files

 colour in the editor marking the lines

What properties apply for the automatic version control (automatic committing and automatic
sharing)?

 helpful great confusing I ignored it

Did conflicts occur during the case study?

 none sometimes often all the time

If so, how would you describe the conflicts?

 textual compiling (*) CloudStudio didn't behave as expected

 others:

(*) Compiling conflicts means the compilation fails when compiling with changes of your partner or when
compiling after sharing.

How did you resolve the conflicts?

 manually - editing the line in the editor yourself

 automatic - the conflicts resolved themselves

 by comparing to the conflicted version (hovering over the line number)

 by deleting the line

 by using the status bar buttons (revert, add to own repo. and switch to conflict)

COMMENTS

If you have any comments or suggestions, you can tell us now.

Send as Mail

	Introduction
	Distributed Software Development
	CloudStudio
	Version Control System
	Change Awareness & Conflict Detection
	Motivation
	Goals

	Approach
	Architecture
	Configuration Management
	Terms
	Distributed Version Control System
	Architecture
	Functionality
	Access from the Outside of CloudStudio

	Intermediate Representation
	Tag
	File Content
	Folder Structure
	Conflict Detection and Resolution

	Change Awareness
	Editor
	Explorer

	Implementation
	Services and Events
	Models
	Tag Model
	Models of the File Content
	Models of the Folder Structure
	Task Model

	Backend
	Interfaces
	Access over HTTP and Git
	Git Hooks

	Synchronization of the Models
	Update by Tags
	Update by Iteration over the Commit History

	CloudStudio IDE
	Folder Structure in the Explorer
	File Content in the Editor
	Version Control
	Compile with Changes

	Evaluation
	Performance Analysis & Optimization
	Analysis of Specific Use Cases
	Use Case 1
	Use Case 2

	Case Study

	Conclusion & Future Work
	Conclusion
	Future work
	Improvements of the CloudStudio IDE
	EiffelStudio Plugin
	Version-controlled File Content Model

	Bibliography
	Appendix: Case Study

