
 

 

Rule-based code analysis 

 

PROJECT PLAN 

 

Master Thesis 

Period:  1. October 2013 – 1. April 2014 

Student name:  Stefan Zurfluh 

Email:  zurfluhs@student.ethz.ch 

Supervisor name:  Julian Tschannen 

1. PROJECT DESCRIPTION 

Overview 

Static code analysis is a powerful means to improving code quality in different contexts 

and on different levels. Its ultimate goal is – using an automated (but often 

customizable) analysis tool – to help the programmer write better programs. Be it due 

to just a typing error (i. e. one that does not lead to a syntactic error), some other form 

of incautiousness, or perhaps a lack of knowledge, – a code analysis framework will be 

capable of issueing warnings, errors, and even correctional suggestions each referring to 

a part of the source code. Code analysis is a useful part in the world of software quality 

improving concepts1. 

In addition to the already established theoretical background in program analysis, 

implementations of rule-based code analysis tools exist for several programming 

languages and environments2. 

The task in this project is to implement a rule-based code analysis for Eiffel. These rules 

can for example be about coding style, code structure, or API usage. A basic set of rules 

helps to enforce a standard coding style, and users can change or extend the existing 

rules to fit their needs. 

Scope of the work 

                                                           

1 Other such concepts are (automated) testing, formal verification and Design by Contract, etc. 

2 See section 2, related software. 

REV. DATE CHANGES 

3 03.10.2013 Rule sets removed (i. e. moved to 

other document) 

2 27.09.2013 References; minor plan changes 

1 25.09.2013 (initial version) 



A tool for rule-based Eiffel code analysis will be implemented. The set of rules will be 

designed in a manner that allows extensibility and customizability (such as possibility of 

enabling/disabling rules or setting the warning level). The tool shall analyze an Eiffel 

System (in this context a project, respectively) and output a list of rule violations found 

in the code. 

The tool will be designed as a semi-independent module. It will get the syntactic 

structure of the source code from the Eiffel compiler, which will be used for the analysis. 

The analysis result will then be output to the user. Further steps include a smooth and 

easy-to-use integration into the EiffelStudio UI, and integrating other verification tools 

(AutoTest, AutoProof; integration of code analysis into EVE) in order to be able to run a 

series of tools automatically on every compilation. 

Intended results 

The resulting software is intended to be fully usable, working, and well-integrated in its 

environment. It should also be a basis for further extensions and improvements. 

 

2. BACKGROUND MATERIAL 

Reading list 

 [1], Good programming style and practices 

 [1,10], Eiffel as a language 

 [2,3,4], Compiler design in general 

 [5,6,8], program analysis 

Related Software 

 PMD, http://pmd.sourceforge.net/. 

 JetBrains ReSharper, http://www.jetbrains.com/resharper/. 

 Microsoft FxCop, http://www.microsoft.com/en-

us/download/details.aspx?id=6544. 

 

 

3. PROJECT MANAGEMENT 

Objectives and priorities 

 Design and implementation of a rule-based code analysis module 

 Command line functionality 

 User interface / EiffelStudio integration 

http://pmd.sourceforge.net/
http://www.jetbrains.com/resharper/
http://www.microsoft.com/en-us/download/details.aspx?id=6544
http://www.microsoft.com/en-us/download/details.aspx?id=6544


 EVE integration 

 Complete documentation and report 

Criteria for success 

Minimum quality requirements 

 Command line usage and output 

 All predefined test cases working 

 Rules according to rule set 11 implemented 

Expected requirements 

 Integration into EiffelStudio user interface 

 Two thirds of the rules according to rule set 2 implemented 

Requirements for a result that significantly exceeds expectations 

 Integration into EVE 

 All rules according to rule set 2 implemented 

 All rules according to rule set 3 implemented 

 Hints / enforcement of naming conventions 

Quality management 

Documentation 

The comprehensive documentation will be part of the report. In addition, the source 

code will be commented briefly. 

Validation steps 

 In the weekly meetings, the current status will be observed and evaluated. 

 Partial test-driven development: Test cases that cover at least the most 

important features will be run regularly during development. 

 Optionally, alpha testing by users outside the project. 

4. PLAN WITH MILESTONES 

Project steps 

1. Getting acquainted with the EVE and EiffelStudio source code 

2. General literature study of program analysis and rule-based code analysis 

3. Object-oriented design of analysis and rules 

4. Basic implementation including command line usage and output 

5. Complete Implementation of rule set 1 

                                                           

1 The rule sets will be precisely defined at a later date. 



6. EiffelStudio user interface integration 

7. Implementation of rule set 2 

8. EVE integration 

9. *Implementation of rule set 3 

10. *Implementation of naming convention rules 

11. Testing 

12. Write documentation 

13. Write master thesis report 

* optional 

 

Deadline 

1st April 2014 

Tentative schedule 

(corresponds to project steps above) 

Milestone / Week 40 41 42 43 44 45 46 47 48 49 50 51 52 1 2 3 4 5 6 7 8 9 10 11 12 13 

1 Source code study                           

2 General literature study                           

3 Design                           

4 Basic implementation                           

5 Rule set 1 implementation                           

6 UI integration                           

7 Rule set 2 implementation                           

8 EVE integration                           

9 Naming conventions                           

10 Rule set 3 implementation                           

11 Testing                           

12 Write documentation                           

13 Write thesis report                           

 

 

A. REFERENCES 

[1] Bertrand Meyer: Object-Oriented Software Construction, 2nd edition, Prentice Hall, 1997. 

[2] Alfred V. Aho, Ravi Sethi, Jeffrey D. Ullman, Compilerbau, Teil 1, Oldenbourg, 1999. 

[3] Alfred V. Aho, Monica Lam, Ravi Sethi, Jeffrey D. Ullman, Compilers: Principles, 

Techniques, and Tools (2nd Edition), Addison-Wesley, 2007. 

[4] Steven Muchnick, Advanced Compiler Design and Implementation, Morgan Kaufmann 

Publishers, 1997. 



[5] Data-flow analysis, Wikipedia, http://en.wikipedia.org/wiki/Data-flow_analysis. 

[6] Static program analysis, Wikipedia, http://en.wikipedia.org/wiki/Static_program_analysis. 

[7] Eiffel Verification Environment (EVE), http://se.inf.ethz.ch/research/eve/. 

[8] Flemming Nielson, Hanne Riis Nielson, Chris Hankin: Principles of Program Analysis, 

Springer, 1999. 

[9] EiffelStudio Developer Wiki, http://dev.eiffel.com. 

[10] Eiffel Documentation, http://docs.eiffel.com.  

 

http://en.wikipedia.org/wiki/Data-flow_analysis
http://en.wikipedia.org/wiki/Static_program_analysis
http://se.inf.ethz.ch/research/eve/
http://dev.eiffel.com/
http://docs.eiffel.com/

