@ Chair of
! Software Engineering

Model-based Contracts for .NET Collections

Software Engineering Laboratory: Open Source
Eiffel Studio

By: Tobias Kiefer
Supervised by: Nadia Polikarpova
Prof. Dr. Bertrand Meyer

Eidgendssische Technische Hochschule Ziirich I n I I nfo rmati k R
Swiss Federal Institute of Technology Zurich Com p uter Science

Abstract

After the Mathematical Model Library had been ported from Eiffel to the
NET platform, a huge amount of software suddenly became available to prac-
tically test the usefulness of the Model Based Contracts software verification
approach on. As a continuation of the first attempts in that direction, this
project was aimed at extending the automatic testing experiments of MBC-
enhanced software to a more complex and probably more professionally devel-
oped piece of software: the generic collection classes of the Microsoft .NET
framework. As opposed to the previous efforts on the Eiffel and .NET plat-
forms, a special challenge inherent to this project was that the target code is
closed-source.

Contents

(1._Introduction

D Mode-Based C for NET G e Collection CI |

[2.1. Contract Development|
[2.2. Incomplete Contractsf
[2.3. Specification Overhead

[3. Automatic Testing of the MBC-Enhanced Collection Classes|

[3.1. The Testing Project|.
[3.2. The Testing Procedure and Results]

[4. Conclusion|

[A. List of Missing Contracts|

13
13
13

15
16

1. Introduction

After the Mathematical Model Library (MML) had been ported from Eiffel to
the .NET platform during a previous project[I], a huge amount of .NET soft-
ware suddenly became available to practically test the usefulness of the Model
Based Contracts (MBC)[2] software verification technique on. As a first ex-
periment, as part of the aforementioned porting project, the open source Data
Structures and Algorithms (DSA)[3] library had been tested using the MML
and the Pez[4] testing tool. These experiments yielded promising results: sev-
eral bugs as well as minor design faults were automatically detected.

As a continuation of these efforts this project was aimed at extending these
kinds of automatic testing experiments of MBC-enhanced software to a more
complex and probably more professionally developed piece of software: the
generic collection classes of the Microsoft .NET framework. Probably the most
notable difference in contrast to the previous, DSA related project is that the
NET framework is closed-source. How this additional challenge was handled
is (amongst other things) decribed in Section 2, which deals with the process
of contract development, while the rest of this section will briefly introduce the
relevant parts of the .NET framework that were targeted during this project.
Section |3 describes the actual testing experiments and their results, followed
by Section 4] which concludes this report.

Although the relevant classes of the collection framework are spread across
multiple libraries, they are all contained in the System.Collections.Generic
namespace. Figure provides an overview of all major collection classes in
this namespace, omitting smaller classes that were not considered relevant for
contract enhancement. Effective classesﬂ(blue) were grouped beneath the in-
terfaces (green) they implement. It is observable that the hierarchy is less
flat than in the DSA library. With the exception of Stack<T> and Queue<T>,
all classes implement the ICollection<T> interface, and therefore the hier-
archy levels below (and including) this interface were serving as a basis for
the structure of “contract-class” wrappers that will be described in the next
section.

! Non-abstract, non-interface classes

IEnumerable<T>
Generic Interface

= IEnumerable
o]

IEnumerable<T> IEnumerable<T>
ICollection ICollection
IEnumerable IEnumerable ICollection<T>
Generic Interface
Stack<T> ¥ Queue<T> ¥ -b IEnumerable<T>
Generic Class Generic Class = IEnumerable
3] -2
O ICollection<T>
IEnumerable<T>
ICollection
IEnumerable
ISerializable

IDeserializationCallback

LinkedList<T>

Generic Class
3

IList<T> ISet<T> IDictionary<TKe... (¥
Generic Interface Generic Interface Generic Interface
= ICollection<T> = ICollection<T> =+ ICollection< KeyValuePai...
=+ IEnumerable<T> =+ IEnumerable<T> =+ IEnumerable<KeyValue...
=+ IEnumerable =+ IEnumerable =+ IEnumerable
2 o] o O IDictionary<TKey, TValue>
ISet<T> ICollection<KeyValuePair<TKey, TValue>>
O IList<T> ICollection<T> ISerializable O IDictionary<TKey, TValue> O IDictionary<TKey, TValue> IEnumerable <KeyValuePair<TKey, TValue>>
ICollection<T> IEnumerable<T> IDeserializationCallback ICollection<KeyValuePair<TKey, TValue>> ICollection<KeyValuePair<TKey, TValue>> IDictionary
IEnumerable<T> ICollection ISet<T> IEnumerable<KeyValuePair<TKey, TValue>> IEnumerable<KeyValuePair<TKey, TValue>> ICollection
IList IEnumerable ICollection<T> IDictionary IDictionary IEnumerable
ICollection ISerializable IEnumerable<T> ICollection ICollection ISerializable
IEnumerable IDeserializationCallback IEnumerable IEnumerable IEnumerable IDeserializationCallback

SortedList<TKey... Dictionary<TKe...

List<T> (SortedSet<T> ¥ HashSet<T> ¥ SortedDictionar...
Generic Class Generic Class Generic Class Generic Class
2 2 2 2

Generic Class
2

Generic Class
-2

Figure 1.1.: A class diagram of the System.Collections.Generic namespace

2. Model-Based Contracts for
.NET Generic Collection
Classes

2.1. Contract Development

Since the .NET framework is closed-source, there was no immediate way to
write the contracts directly into the original code. Although the .Net Reflec-
tor[5] decompilation software was used to take a look at the implementation
when necessary, the main approach was to write wrapper classes for the orig-
inal .NET collection classes. These wrapper classes contain all functions of
their “target classes”, except for functions that were not considered relevant
for enhancing them with contracts. Additionally, they contain a reference to
an instance of the target class, so that in every “wrapped” function the original
function can be called with the appropriate parameters.

Because the original function is the only code that is executed within a wrapper
function, contracts added to the wrapper functions have the same effect as if
they were directly added to the original function. Listing[2.1]illustrates this ap-
proach with a simple example. The target object in this case is m_ListTarget,
an object of type System.Collections.Generic.List. Target objects are
created in the constructors of the wrapper objects, so one can be sure that
there is always an instance available. Also, the target object references are not
changed throughout the lifetime of a wrapper object.

Another important aspect is that wrapper classes derived from another wrap-
per class have multiple target object references. It was decided that a wrap-
per class should only inherit another wrapper class if there is a similar re-
lation between their target classes. For example, ListContracts inherits
ICollectionContracts because List implements ICollection (see Figures
2.1 [1.1). So in addition to the m_ListTarget field that was already mentioned,
ListContracts also inherited the field m_IColTarget, which is a reference of
type ICollection to the same object. Listing shows an example of this
concept: The first constructor, which in its signature exactly resembles the

2

3

respective original List constructor, creates a new object of type List, then
passes it to the private constructor. The private constructor stores a reference
of type List and calls a similar constructor in the base class, where the same
object reference will be stored as a reference of type of the base type of List
(ICollection in this case).

This approach can naturally be extended to deeper hierarchies, and the costs
of having one additional field per hierarchy level are easily justified by the
practical usefulness of inheriting large amounts of contracts from base classes
using virtual functions. Figure [2.1] shows the inheritance structure of the
wrapper classes. The approach described above was used extensively through-
out all related classes, i.e., contracts for virtual functions were put as high
as possible in the inheritance tree, and were mostly only refined in derived
classes. For example, SortedDictionaryContracts uses the contracts already
defined in IDictionaryContracts, and adds an additional model query of type
MML.Sequence along with some contracts to check for the "sortedness” of the
data. A complete List of contract-enhanced classes along with their modeldTjs
shown in Table 211

Listing 2.1: A wrapper function for List.Exists in the ListContracts class
public bool Exists(Predicate<T> match)

{
Contract.Ensures(Contract.Result<bool>()
== m_Sequence.Range.Exists(match));
Contract.Ensures(Contract.01ldValue(m_Sequence)
== m_Sequence) ;
return m_ListTarget.Exists(match);
}

Listing 2.2: Some constructors of ListContracts

public ListContracts(int capacity) : this(new List<T>(capacity))
{

Contract.Ensures(m_Sequence.IsEmpty());

}
private ListContracts(List<T> list) : base(list)
{
m_ListTarget = list;
}

ICollectionContracts<T> ¥ QueueContracts<T> ¥ StackContracts<T>
Generic Class Generic Class Generic Class

[«

f

HashSetContracts<T> ¥

Generic Class
—+ ISetContracts<T>

SortedListContracts<K, V>

- e f - . - = ~
ISetContracts<T> ¥ LinkedListContracts<T> ¥ ListContracts<T> [¥/ IDictionaryContracts<K, V> ¥
Generic Class Generic Class Generic Class Generic Class
=¥ ICollectionContracts<T> - ICollectionContracts<T> = ICollectionContracts<T>
-

SortedSetContracts<T> ¥ DictionaryContracts<K, V> ¥ SortedDictionaryContracts<K, V> ¥

Generic Class Generic Class Generic Class Generic Class

-+ ISetContracts<T> = IDictionaryContracts<K, V> = IDictionaryContracts<K, V> = IDictionaryContracts<K, V>

Figure 2.1.: A class diagram of the wrapper classes containing the contracts

A
v

Table 2.1.: Contract-enhanced collection classes and their models
Class | Model
Dictionary | public MML.Map<K, V> m_Map
HashSet | public MML.Set<T> m_Set
ICollection | public MML.Bag<T> m_Bag
IDictionary | public MML.Map<K, V> m_Map
ISet | public MML.Set<T> m_Set
LinkedList | public MML.Sequence<T> m_Sequence
List | public MML.Sequence<T> m_Sequence
Queue | public MML.Sequence<T> m_Sequence
SortedDictionary | public MML.Sequence<K> m_Sequence
public MML.Map<K, V> m_Map
SortedList | public MML.Sequence<K> m_Sequence
public MML.Map<K, V> m_Map
SortedSet | public MML.Sequence<T> m_Sequence
public MML.Set<T> m_Set
Stack | public MML.Sequence<T> m_Sequence

2.2. Incomplete Contracts

A contract is incomplete if it does not fully capture the effect of a method in
regard to the chosen model and the return value of a function[2]. When, in
cases like this, the software has not been developed with model-based contracts
in mind, it often can’t be avoided that a certain amount of contracts remains
incomplete. Below is a list of all methods with incomplete contractsE]:

e In class LinkedList:
— public LinkedListNode<T> First
— public LinkedListNode<T> Last

— public void AddAfter(LinkedListNode<T> node, LinkedListNode<T>
newNode)

— public LinkedListNode<T> AddAfter (LinkedListNode<T> node,
T value)

!Note that in this table and throughout the remaining document for readability reasons
the original class names are used, although in a strict sense the contract-enhancements
are only present in the wrapper classes (suffixed with “Contracts”). In a similar manner,
generic parameters will often be omitted.

— public void AddBefore(LinkedListNode<T> node, LinkedListNode<T>
newNode)

— public LinkedListNode<T> AddBefore(LinkedListNode<T> node,
T value)

— public void AddFirst(LinkedListNode<T> node)
— public void AddLast(LinkedListNode<T> node)

e The TrimExcess() functions as well as all constructors taking an int
capacity parameter in the following classes:

— Dictionary
— HashSet

— List

— Queue

— SortedlList
— Stack

Similar to the DSA linked list classes, the interface functions of the
LinkedList collection class expose the internal node structure of the list
by accepting and returning objects of type LinkedListNode<T>. These
implementation-specific details are not captured by the MML.Sequence
model that was chosen for this class, therefore the functions listed above
remain incomplete. Another implementation related detail that was cho-
sen not to be modeled is the capacity property that some classes use.
This causes some constructors and functions to be incomplete as seen
above.

Because the System.Collections.Generic namespace is part of a com-
plex software framework, there were a lot of methods contained in the
classes that were not considered relevant for their collection-specific func-
tionality. Thus there is a relatively long list of methods that were not
enhanced by contracts provided in Appendix [A]

2Unless not noted otherwise, during this section a method listed as having incomplete
contracts in a base class (see Figure implies that the corresponding method in a
derived class also has incomplete contracts. This applies analogously to methods being
listed as having no contracts.

10

2.3. Specification Overhead

The specification overhead measured in working-time and the amount of
additional code is a very important factor for reasoning about the useful-
ness of a specific approach. The time needed for developing the models
and writing the specifications (contracts) for the collection classes men-
tioned in the earlier sections was about 60 person-hours for a person who
previously had not been familiar with that code.

A detailed summary of the specification overhead in terms of source code
is given in Table The first column describes the size of the original
code, i.e. without any contracts, measured in lines of code (LOC). These
values were obtained using the .NET Reflector decompilation software.
In the second column the amount of code added during the contract-
writing process is given. This includes code for pre- and postconditions,
invariants, model queries, and additional helper functions, but not the
additional code that was needed to create the wrapper classes for the con-
tracts. Therefore these values can be seen as the overhead that would
occur if the contracts were written directly into the implementation code.
It should be noted that for obtaining the LOC values, empty lines as well
as comments and lines containing only brackets were not counted.

The third column gives the amount of additional helper routines that
were added during the contract development phase, and the remaining
columns describe in detail the numbers of contracts that were added.
It can be seen that there is a large amount of postconditions, which
constitute the main component of the model-based contracts technique.
Preconditions were not newly added during this project, but only re-
tained from an earlier approach to write contracts for the collection
classes. Because the List class is the only implementation of the IList
interface, contracts for both classes were merged in the wrapper class
ListContracts. Thus the overhead values of List cover both the origi-
nal interface and implementation classes.

11

Table 2.2.: Specification overhead for the .NET collection classes

Class LOC source | LOC contracts | Routines added | Preconditions added | Postconditions added | Invariants added
Dictionary 509 8 0 0 8 0
HashSet 595 7 0 0 7 0
ICollection 16 35 3 1 5 2
IDictionary 16 41 2 0 20 1
ISet 24 37 0 11 18 3
LinkedList 399 46 1 0 29 2
List 559 83 1 0 70 2
Queue 235 23 1 0 14 1
SortedDictionary || 299 20 1 0 6 3
SortedList 367 29 1 0 15 3
SortedSet 903 28 1 0 15 2
Stack 200 23 1 0 14 1
Total [4122 | 380 12 12 221 20

12

3. Automatic Testing of the
MBC-Enhanced Collection
Classes

3.1. The Testing Project

Just like during the previous, DSA related, testing experiments the Pex[4]
testing tool was used. The first version of the testing project was auto-
generated by Pex and then modified manually. For example, test classes
generated for wrappers of interface classes (e.g. ISetContracts) were
removed, and the testing functions were copied directly into the test
classes of all relevant effective classes. Therefore there are only nine test
classes as opposed to 12 contract classes. In addition to these changes,
factory classes had to be added to the test project in order to help Pex in
instantiating most of the types. Also, like in the DSA project, the tests
were manually restricted to generic parameters of type int for the sake
of simplicity.

3.2. The Testing Procedure and Results

The approach used in testing the System.Collections.Generic classes
was similar to the previous experiments involving Pex and model-based
contracts: The testing tool was run until either it found an error or
reached one of the limiting parameter values. In the latter case, the
limit was increased and the Pex exploration process was started again.
In addition to MaxBranches, which has been the main limiting parameter
during the DSA test runs, several other parameters had to be significantly
increased as well during the experiments. The MaxConstraintSolverTime
parameter had to be increased from 2 to 24 in most classes, and MaxRuns
was raised from a default value of 100 to 1500. In addition to that, the

13

Table 3.1.: Contract-enhanced collection classes and their testing paramters

Class Max Branches | Constr. Solver | Max Runs | Testing Time
Dictionary 40000 24 1500 0:19:20
HashSet 40000 24 1500 3:20:15
LinkedList 40000 24 1500 2:53:06
List 40000 24 1500 7:55:18
Queue 20000 12 100 1:10:36
SortedDictionary | 40000 24 1500 0:54:19
SortedList 40000 24 1500 1:29:50
SortedSet 40000 24 1500 3:32:56
Stack 40000 24 1500 1:58:29
Total 40000 24 1500 23:39:09

timeout property was set to 800 (default: 120). Table shows some
of these parameters including the length of the test runs for every test
class. It is notable that the total testing time was about twice as long as
the one from the DSA testing experiments [1]

During the tests a lot of warnings and exceptions showed up, but unfor-
tunately none of these revealed a real bug in the target code. Some of
the functions were especially problematic to test since they were taking a
delegate function as an argument, and the delegate functions that were
generated by Pex proved to be unsuitable for verification with model
based contracts. That was because these functions basically return dif-
ferent values in two subsequent calls, regardless of the input. So when
they had been called the first time by the actual function-under-test,
their return value differed from the second time they were invoked by
the MML code, and thus the contract assertion could never evaluate to
true. Although the scope of this project did not permit for finding a
workaround or solution for this problem, the discovery of this previously
unknown correlation between Pex delegates and the MBC approach can
be seen as a result of the experiments.
In addition to that, the testing phase revealed bugs regarding the
Sequence.ButLast and the Map.Removed functions in the C# version
of the Mathematical Model Library which have been fixed during this
project. Therefore the improvement of the C# MML code could be seen
at least as a positive side effect of the testing experiments.

112:07:11, see []

14

4. Conclusion

Unlike the previous C# experiments, this verification project was tar-
geted at very professionally developed software, so it was almost to be
expected not to find any issues in the code. On the other hand, testing
can never reveal the absence of bugs, and besides that, Pex works in a
probabilistic way. So there is, at least theoretically, a chance to still find
some bugs in these classes using the MBC approach and probably even
larger amounts of contracts and testing time. If this is worth the effort
is questionable at least though. Like with most experiments there were
brought up some additional unexpected things: some MML related bugs
were fixed, and issues regarding model-based contracts and Pex delegates
were discovered. In the end, that there haven’t been any bugs revealed
in one of the most widely used and approved piece of software infrastruc-
ture should not blur the fact that during this project the C# version of
the Mathematical Model Library and the MBC approach in general have
proven to be practically applicable even to larger, more complex .NET
software structures and APIs.

15

A. List of Missing Contracts

The following list provides an overview of functions from classes in the
System.Collections.Generic namespace that were not considered rel-
evant for enhancement with model-based contracts. If a function was
already listed in a parent class, it is not listed again in derived classes
(See Figure [1.1). If a class is not listed, it means that it contains no
additional functions with missing contracts.

16

e In class Dictionary

All CopyTo () methods

protected Dictionary(SerializationInfo info, StreamingContext
context)

public IEqualityComparer<TKey> Comparer { get; }
public virtual bool Equals(Object obj)
protected virtual void Finalize()

public virtual int GetHashCode ()

public virtual void GetObjectData(SerializationInfo info, StreamingConte
context)

public Type GetType()
protected Object MemberwiseClone()
public virtual void OnDeserialization(Object sender)

public virtual string ToString()

e In class HashSet

All CopyTo () methods

protected HashSet(SerializationInfo info, StreamingContext context)
public IEqualityComparer<T> Comparer { get; }

public virtual bool Equals(Object obj)

protected virtual void Finalize()

public virtual int GetHashCode ()

public virtual void GetObjectData(SerializationInfo info, StreamingConte
context)

public Type GetType()
protected Object MemberwiseClone()
public virtual void OnDeserialization(Object sender)

public virtual string ToString()

e In class ICollection:

bool IsReadOnly { get; }
void CopyTo(T[] array, int arrayIndex)

17

— IEnumerator GetEnumerator()

e In class ISet:

— All CopyTo () methods

e In class LinkedList:
— All CopyTo () methods

— protected LinkedList(SerializationInfo info, StreamingContext
context)

— public virtual bool Equals(Object obj)
— protected virtual void Finalize()
— public virtual int GetHashCode ()

— public virtual void GetObjectData(SerializationInfo info, StreamingConte
context)

— public Type GetType()
— protected Object MemberwiseClone()
— public virtual void OnDeserialization(Object sender)

— public virtual string ToString()

e In class List:
— All CopyTo() methods
— public int Capacity { get; set; }
— public ReadOnlyCollection<T> AsReadOnly()
— public virtual bool Equals(Object obj)
— protected virtual void Finalize()
— public virtual int GetHashCode()
— public List<T> GetRange(int index, int count)
— public Type GetType()
— protected Object MemberwiseClone()
— public virtual string ToString()

e In classes Queue and Stack

— All CopyTo () methods

18

— public virtual bool Equals(Object obj)
— protected virtual void Finalize()

— public virtual int GetHashCode()

— public Type GetType()

— protected Object MemberwiseClone()

— public virtual string ToString()

e In class SortedDictionary
— All CopyTo () methods
— public IComparer<TKey> Comparer { get; }
— public virtual bool Equals(Object obj)
— protected virtual void Finalize()
— public virtual int GetHashCode ()
— public Type GetType()
— protected Object MemberwiseClone()
— public virtual string ToString()

e In class SortedList
— All CopyTo () methods
— public int Capacity { get; set; }
— public IComparer<TKey> Comparer { get; }
— public virtual bool Equals(Object obj)
— protected virtual void Finalize()
— public virtual int GetHashCode()
— public Type GetType()
— protected Object MemberwiseClone()
— public virtual string ToString()

e In class SortedSet
— All CopyTo () methods
— protected SortedSet(SerializationInfo info, StreamingContext context)

— public IEqualityComparer<T> Comparer { get; }

19

public virtual bool Equals(Object obj)
protected virtual void Finalize()
public virtual int GetHashCode ()

public virtual void GetObjectData(SerializationInfo info, StreamingConte
context)

public Type GetType()
protected Object MemberwiseClone()
public virtual void OnDeserialization(Object sender)

public virtual string ToString()

20

Bibliography

[1] https://code.vis.ethz.ch/svn/mbc/Documents/Report/. [Online;
accessed 10-June-2013].

[2] N. Polikarpova, C. A. Furia, and B. Meyer, “Specifying Reusable
Components,” in Proceedings of the 3rd International Conference on
Verified Software: Theories, Tools, and Experiments (VSTTE’10), G. T.
Leavens, P. O’'Hearn, and S. Rajamani, eds., vol. 6217 of Lecture Notes in
Computer Science, pp. 127-141. Springer, August, 2010.

[3] http://dsa.codeplex.com. [Online; accessed 10-June-2013].

[4] http://research.microsoft.com/en-us/projects/pex/. [Online;
accessed 10-June-2013].

[5] http:
//www.red-gate.com/products/dotnet-development/reflector/.
[Online; accessed 10-June-2013].

21

https://code.vis.ethz.ch/svn/mbc/Documents/Report/
http://dsa.codeplex.com
http://research.microsoft.com/en-us/projects/pex/
http://www.red-gate.com/products/dotnet-development/reflector/
http://www.red-gate.com/products/dotnet-development/reflector/

	Introduction
	Model-Based Contracts for .NET Generic Collection Classes
	Contract Development
	Incomplete Contracts
	Specification Overhead

	Automatic Testing of the MBC-Enhanced Collection Classes
	The Testing Project
	The Testing Procedure and Results

	Conclusion
	List of Missing Contracts

