
7. Requirements
for distributed

& outsourced projects*

169

*Part of the material is from our “Requirements Engineering” course

Requirements engineering

Essential in good software projects

Even more essential in oursourcing!

170

Statements about requirements: Brooks

The hardest single part of building a software system is
deciding precisely what to build.

No other part of the conceptual work is as difficult as
establishing the detailed technical requirements, including
all the interfaces to people, to machines, and to other
software systems. No other part of the work so cripples
the resulting system if done wrong. No other part is more
difficult to rectify later.

Source*: Brooks 87

*For sources cited, see bibliography

171

Statements about requirements: Boehm

Source: Boehm, Barry W. Software Engineering Economics. Englewood Cliffs, NJ: Prentice-Hall, 1981

0

10

20

30

40

50

60

70

Requirements Design Code Development
Testing

Acceptance
Testing

Operation

Relative cost to correct a defect

Source: Boehm 81

172

A definition

“A requirement” is a statement of desired behavior for a
system

“The requirements” for a system is the collection of all
such individual requirements

173

Goals of performing requirements

Understand problem or problems that the eventual
software system, if any, should solve

Prompt relevant questions about problem & system

Provide basis for answering questions about specific
properties of problem & system

Decide what system should do

Decide what system should not do

Ascertain that system will satisfy the needs of its
stakeholders

Provide basis for development of system

Provide basis for V & V* of system

*Validation & Verification, including testing

174

Source: OOSC

Another view

Requirements
document

Calls for tenders,
proposal evaluation

Contract Project work plan

Follow-up
directives

Software
architecture

Evolution
directives

Documentation, user manuals
Implementation
directives

QA check lists

Acceptance tests

Prototypes

Project estimations
(size, cost, schedules)

After: van Lamsweerde 08

affects

175

Benefits of a good requirements process

Fewer requirements defects

Reduced development rework

Fewer unnecessary features

Lower enhancement costs

Faster development

Fewer miscommunications

Less scope creep

Better project organization

More accurate testing estimates

Better testing process

Higher team satisfaction

After: Wiegers 03

176

Practical advice

177

 Do not forget that the
requirements also determine

the test plan

Possible requirements stakeholders

!!Clients (bespoke system)

!!Customers (product for

general sale)

!!Clients’ and customers’

customers

!!Users

!!Domain experts

!!Market analysts

!!Unions?

!!Legal experts

!!Purchasing agents

!!Software developers

!!Software project
managers

!!Software documenters

!!Software testers

!!Trainers

!!Consultants

178

15 quality goals for requirements

!! Justified

!! Correct

!! Complete

!! Consistent

!! Unambiguous

!! Feasible

!! Abstract

!! Traceable

!! Delimited

!! Interfaced

!! Readable

!! Modifiable

!! Verifiable

!! Prioritized*

!! Endorsed

Marked attributes are part of IEEE 830, see below
* “Ranked for importance and/or stability”

179

Difficulties of requirements

Natural language and its imprecision

Formal techniques and their abstraction

Users and their vagueness

Customers and their demands

The rest of the world and its complexity

180

The two constant pitfalls

Committing too early to an implementation

 Overspecification!

Missing parts of the problem

 Underspecification!

181

The requirements process

182

Source: Pfleeger & Atlee 05

A spiral model
From: van Lamsweerde 08

Alternative proposals

Consolidated
requirements

Agreed
requirements

Documented requirements

Domain understanding &
requirements elicitation Evaluation & negotiation

Specification &
documentation

Quality assurance

Start

183

Requirements elicitation: who?

Users/customers?

Software developers?

Requirements engineers (analysts)?

184

Requirements elicitation: what?

Example questions:

What will the system do?

What must happen if…?

What resources are available for…?

What kind of documentation is required?

What is the maximum response time for…?

What kind of training will be needed?

What precision is requested for…?

What are the security/privacy implications of …?

Is … an error?

What should the consequence be for a … error?

What is a criterion for success of a … operation?

185

Requirements elicitation: how?

Contract

User interviews

Requirements workshops

Study of existing non-computer processes

Study of existing computer systems

Study of comparable systems elsewhere

186

Stereotypes

How developers see users
"! Don't know what they want

"! Can't articulate what they
want

"! Have too many needs that are
politically motivated

"! Want everything right now.

"! Can't prioritize needs
"! Refuse to take responsibility

for the system

"! Unable to provide a usable
statement of needs

"! Not committed to system
development projects

"! Unwilling to compromise

"! Can't remain on schedule

How users see developers
"!Don't understand operational needs

"!Too much emphasis on technicalities.

"!Try to tell us how to do our jobs
"!Can't translate clearly stated needs

into a successful system

"!Say no all the time

"!Always over budget

"! Always late

"!Ask users for time and effort, even to
the detriment of users' primary duties

"!Set unrealistic standards for
requirements definition

"!Unable to respond quickly to
legitimately changing needs

187

Source: Scharer 90

The two parts of requirements

Purpose: to capture the user needs for
a “machine” to be built

Define success as

 machine specification ! domain properties

 " requirement

•! Domain properties : outside constraints (e.g. can only modify
account balance as a result of withdrawal or deposit)

•! Requirement : desired system behavior (e.g. withdrawal of n francs
decreases balance by n)

•! Machine specification : desired properties of the machine (e.g.
request for withdrawal will, if accepted, lead to update of balance)

188

Source: Michael Jackson

Components of requirements

1. Domain properties

2. Functional requirements

3. Non-functional requirements (reliability, security,
accuracy of results, time and space performance,
portability...)

4. Requirements on process and evolution

189

How to ensure good requirements?

Managerial aspects:

"! Involve all stakeholders

"! Establish procedures for controlled change

"! Establish mechanisms for traceability

"!Treat requirements document as one of the major
assets of the project; focus on clarity, precision,
completeness

Technical aspects: how to be precise?

"! Formal methods?

"!Design by Contract

190

IEEE 830-1998

”IEEE Recommended Practice for Software Requirements
Specifications”

Approved 25 June 1998 (revision of earlier standard)

Descriptions of the content and the qualities of a good
software requirements specification (SRS).

Goal: “The SRS should be correct, unambiguous, complete,
consistent, ranked for importance and/or stability,
verifiable, modifiable, traceable.”

191

IEEE Standard 830-1998

Recommended practice for Software Requirements Specifications

Recommended document structure:
1. Introduction

1.1 Purpose
1.2 Scope
1.3 Definitions, acronyms, and abbreviations # Glossary!
1.4 References
1.5 Overview

2. Overall description
2.1 Product perspective
2.2 Product functions
2.3 User characteristics
2.4 Constraints
2.5 Assumptions and dependencies

3. Specific requirements
Appendixes

Index

192

Use cases

One of the UML diagram types

A use case describes how to achieve a single business goal
or task through the interactions between external actors
and the system

A good use case must:

"!Describe a business task

"!Not be implementation-specific

"! Provide appropriate level of detail

"! Be short enough to implement by one developer in one
release

193

Use case example

Place an order:

Browse catalog & select items

Call sales representative

Supply shipping information

Supply payment information

Receive conformation number
from salesperson

May have precondition,
postcondition, invariant

194

Note on use cases

Use cases cannot suffice to define the requirements:

"!Not abstract enough

"!Too specific

"!Describe current processes

"!Do not support evolution

Use cases are to requirements what tests are to software
specification and design

Major application: for testing

195

Requirements: key lessons

Requirements are software

"!Subject to software engineering tools

"!Subject to standards

"!Subject to measurement

"! Part of quality enforcement

Requirements is both a lifecycle phase and a lifecycle-long
activity
Since requirements will change, seamless approach is
desirable

Distinguish domain properties from machine properties

"!Domain requirements should never refer to machine
requirements!

196

Key lessons (continued)

Identify & involve all stakeholders

Requirements determine not just development but tests

Use cases are good for test planning

Requirements should be abstract

Requirements should be traceable

Object technology helps

"!Modularization

"! Classifications

"! Contracts

"!Seamless transition to rest of lifecycle

197

Requirements in a distributed/outsourced setting

Special points to consider:

"! Include both customer and supplier in requirements process

"! Use distributed meeting techniques, centered on documents
(see discussion of weekly meeting and code review)

"! Enforce endorsement by all major stakeholder representatives
"! Pay special attention to document structure and configuration

management

"! Perform a special step of consistency checking between
requirements and legal documents (contract, supplier agreement
management)

"! Pay special attention to glossary, include translation if
appropriate

"! Pay special attention to the change process

"! Consider including a prototype implementation as a validation of
requirements

198

