
ETHZ D-INFK
Prof. Dr. B. Meyer

Introduction to programming – Assignments
Fall 2010

Assignment 2: Give me your feature name and I’ll call you

ETH Zurich

Hand-out: Friday, 24 September 2010
Due: Monday, 4 October 2010

Real Programmers c© Randall Munroe (xkcd.com)

Goals

• Write more feature calls.

• Write your first standalone program.

• Get used to EiffelStudio (editor, navigation and debugger).

• Learn to distinguish between queries and commands.

• Learn what makes up a valid feature call.

1 Adding more feature calls

Open the 02 objects system again and open the class PREVIEW in the editor area.

1

file:xkcd.com

ETHZ D-INFK
Prof. Dr. B. Meyer

Introduction to programming – Assignments
Fall 2010

Todo

1. In feature explore, add an additional feature call to revert the action of highlighting Line8
(use feature unhighlight). To make the highlight-unhighlight sequence noticeable, put a
wait instruction between the two calls and execute the system. The feature wait pauses
the application for a couple of seconds and updates the screen. Notice that wait is not
invoked as the other features, by using an object name and then a dot, but just as it is (it
is an unqualified call [Touch Of Class, page 134]).

2. Let us find out where the feature wait comes from. As it appears in an unqualified call,
it must be defined either in the same class or in an ancestor class. An ancestor class
for a class C is a class C inherits from. You may have noticed the inherit TOURISM
clause after class PREVIEW. It means that PREVIEW can use all the features defined
in TOURISM.

In PREVIEW there is no wait, so let us check TOURISM. Right-click on the label
TOURISM and choose the option “Retarget to class TOURISM”. You can also type
“tourism” in the drop down box on the top left (labeled “Class”).

Let us now check the features of class TOURISM. On the bottom of the right panel select
the tab labeled “Features”. You should now see a list of all the features defined in class
class TOURISM. Unfortunately, wait is not there yet, but there is still hope: TOURISM
inherits from TOUCH PARIS OBJECTS, so you can repeat what you have just done and
finally you should find the wanted feature.

Tip: there are two shorter ways to find wait. While in class PREVIEW, type “wait” in
the drop down box labeled “Feature” above the editor window. Alternatively, right-click
on wait in the program text and then select “Retarget to Feature wait”. This will bring
up the desired feature in class TOUCH PARIS OBJECTS.

3. Imagine you want to give a friend step-by-step directions how to get from one subway
station to another in Paris. You decided to do it by sequentially highlighting relevant
stations and line segments. For example, to show a way from “Trocadéro” to “Porte
Dauphine” (figure 1), you would first highlight the station “Trocadéro”, then (after a
short time) the segment of line 6 between “Trocadéro” and “Charles de Gaulle Étoile”,
then the station “Charles de Gaulle Étoile”, where he has to change lines, then the segment
of line 2 between “Charles de Gaulle Étoile” and “Porte Dauphine”, and finally the station
“Porte Dauphine”.

Modify the feature explore so that it shows your friend a way from “Invalides” to “Palais
Royal Musée du Louvre” (comment out the code that was in explore before, but leave
Paris.display as the first instruction, otherwise the program will fail).

Browse the class TOUCH PARIS OBJECTS to find the features you need. In particular
pay attention to:

• features that return specific stations and lines;

• feature line section that takes a line, a start station and an end station as arguments
[Touch Of Class, page 30] and returns a line segment between these two stations1;

• features wait and short wait.

Tip: To check the list of all available features, press “Ctrl + Space” while in the editor
window. To check the list of available features, whose names start with a certain prefix,
type this prefix and then press “Ctrl + Space” (figure 2).

1In order for highlighting to work properly the first station you pass to line section should be closer to the
south end of the line and the second one — to the north end.

2

ETHZ D-INFK
Prof. Dr. B. Meyer

Introduction to programming – Assignments
Fall 2010

Figure 1: Paris subway (fragment)

Figure 2: EiffelStudio auto-completion feature

To hand in

Hand in the code of feature explore.

2 Introducing yourself

In this task you will write your first standalone program (not based on traffic). The program
will introduce yourself to your assistant.

3

ETHZ D-INFK
Prof. Dr. B. Meyer

Introduction to programming – Assignments
Fall 2010

Todo

1. Download the project file “introduction.ecf” from http://se.inf.ethz.ch/teaching/2010-
H/eprog-0001/assignments/02/introduction.ecf and the source code file “application.e”
from http://se.inf.ethz.ch/teaching/2010-H/eprog-0001/assignments/02/application.e. Put
both files into the same directory.

Open the “introduction.ecf” file you just downloaded in EiffelStudio. In the “Groups” tool
on the right you can see that the whole project consists of a single class APPLICATION.
Open this class in the editor. You will see that it has a single feature, execute, whose body
is empty so far.

2. Modify the feature execute so that it prints the following text (replace the information
about John Smith with your personal data):

Name: John Smith
Age: 20
Mother tongue: English
Has a cat: True

You can also add any other information you like.

To do the printing you will use the predefined object called Io (input-output). The features
you can call on Io are defined in the class STD FILES. Browse this class to find the features
you need. In particular pay attention to:

• feature put string that takes a text string (e.g. "Hello, world!") as an argument
and prints it;

• feature put integer that takes an integer number (e.g. 5) as an argument and prints
it;

• feature put boolean that takes a boolean value (True or False) as an argument and
prints it;

• feature new line that moves to the next line.

3. Until now you have compiled and executed a program without having the possibility to
check what happened after each single instruction was executed. Now let us see how to use
EiffelStudio in debug mode [Touch Of Class, page 170]. Being in debug mode means being
able to observe the application execution instruction by instruction, therefore increasing
the chances to discover errors (“bugs”).

Right-click on the feature name execute in the program text and choose “Pick feature
execute”. Now right-click in the context tool (the area below the editor). The code of
execute should now appear in the context tool, with gray circles on the left (see an example
on figure 3). These circles identify instructions that will be executed. Click on the first
gray circle; it should become red. You have just set a breakpoint, at which the program
will pause execution.

Now click on the green full arrow (or press “F5”): the program will start, but almost
immediately it will pause its execution at your breakpoint. Now you can observe the
program behavior step by step by clicking on the button to the right of the one with a red
square (or pressing “F10”). To resume the normal execution click on the green full arrow
again (or pressing “F5”).

To hand in

Hand in the code of feature execute.

4

http://se.inf.ethz.ch/teaching/2010-H/eprog-0001/assignments/02/introduction.ecf
http://se.inf.ethz.ch/teaching/2010-H/eprog-0001/assignments/02/introduction.ecf
http://se.inf.ethz.ch/teaching/2010-H/eprog-0001/assignments/02/application.e

ETHZ D-INFK
Prof. Dr. B. Meyer

Introduction to programming – Assignments
Fall 2010

Figure 3: Setting a breakpoint

3 Command or Query?

Todo

The features listed below can be found in class TRAFFIC STATION, representing stations in
the city. We want to find out which features are commands and which features are queries
[Touch Of Class, page 29]. Let us have a look at the feature definition. If it appears in the form:

feature name: CLASS NAME or feature name (...) : CLASS NAME,

then it is a query. If it appears in the form:

feature name or feature name (...) ,

then it is a command.
Now for each of the following features in TRAFFIC STATION, figure out whether it is a

command or a query:

1. Feature is exchange, like in Station balard .is exchange.

2. Feature set location , like in Station balard . set location (a point).

3. Feature outgoing line connections , like in Station balard . outgoing line connections .

4. Feature name, like in Station balard .name.

5. Feature highlight , like in Station balard . highlight .

6. Feature has stop, like in Station balard .has stop (Line7).

5

ETHZ D-INFK
Prof. Dr. B. Meyer

Introduction to programming – Assignments
Fall 2010

To hand in

Hand in your answers.

4 Valid feature call instructions

A feature call instruction is composed of an optional target (the object to which an operation
is applied), exactly one command (the operation to apply), and possibly some arguments. A
feature call instruction is valid only if:

• The target and the arguments are expressions, which contain only query calls (possibly
with arguments).

• There is exactly one command call in a feature call instruction. It appears after the
optional target and may be followed only by its arguments.

Below you find examples of feature call instructions where queries are marked in yellow

and commands are marked in red. The first six instructions are valid (i.e. they compile) and
the others are invalid instructions. For the invalid instructions an explanation is given in square
brackets. Make sure you understand these examples.

√
Station Balard . highlight

√
Line1 . south end . location . left by (Line1 . south end . width)

√
Line7 a . set color (Line3 . color)

√
wait

√
Paris . station at location (Station Balard . location). unhighlight

√
Console . show (Line3 . south end . has stop (Line7 a))

χ Station Balard . is highlighted [no command in instruction]

χ Paris . station at location (Station Balard . unhighlight) [command in argument]

χ Line7 a . set color (Line3 . set color (Line8 . color)) [command in argument]

χ Line1 [no command in instruction]

χ Console . show (Line3). Station Balard [query after command]

Todo

Assume that highlight , show, set color , set radius and set location are commands and all
other feature names denote queries. Which of the following instructions are valid? Explain your
decision. Note that you do not need your computer to answer these questions!

1. Console.show.Station Balard

2. Station Balard. set location (Station Issy . location)

3. Line2. set color (Line8. highlight)

4. Line2.city . set radius (Line3.city .radius)

5. Console.show (Paris. station at location (Station Balard. location))

6

ETHZ D-INFK
Prof. Dr. B. Meyer

Introduction to programming – Assignments
Fall 2010

6. Console.show (Paris. station at location (Station Balard. location) .name)

7. Line8.north end. set location (Route1.city . station at location (Station Balard. location)
. set location)

To hand in

Hand in your answers.

7

	Adding more feature calls
	Introducing yourself
	Command or Query?
	Valid feature call instructions

