
ETHZ D-INFK
Prof. Dr. B. Meyer

Introduction to programming – Assignments
Fall 2010

Assignment 5: References and assignments

ETH Zurich

Hand-out: 15 October 2010
Due: 26 October 2010

Zealous Autoconfig c© Randall Munroe (xkcd.com)

Goals

• Test your knowledge about assignments.

• Write more contracts.

• Start to work on a more complex application.

1 City building

We have prepared a traffic project that contains a class CITY BUILDING. In this class you
will find four features: explore, add station, add line, and random color. The application is
programmed to call add station when you double click with the left mouse button into the
city canvas (the white area where the map is usually displayed), and feature add line when
you double click with the right mouse button. At the moment, double clicking will result in
a message in the Console area, but no station or line is created. In this assignment, you will
complete these features to do what their comments promise.

To do

1. Download
http://se.inf.ethz.ch/teaching/2010-H/eprog-0001/assignments/05/assignment 5.zip and
extract it in traffic/example. You should now have a new directory traffic/example/
assignment 5 with assignment 5.ecf directly in it.

1

file:xkcd.com
http://se.inf.ethz.ch/teaching/2010-H/eprog-0001/assignments/05/assignment_5.zip


ETHZ D-INFK
Prof. Dr. B. Meyer

Introduction to programming – Assignments
Fall 2010

2. Open and compile this new project. Open class CITY BUILDING and follow the sugges-
tions given below.

3. In feature explore, create a new city. To display this city on the screen, use feature
set city of TRAFFIC CITY CANVAS. You can get the canvas you need from the feature
main window.

Add a station called “Central” at coordinate (0, 0) to the city.

We have modified the application to automatically call explore at startup, but you can
still call it by clicking the “Run example” button.

4. Implement feature add line to add a new line to the city. The line should be of tram type
and have the central station (created in step 3) as its starting terminal. The names of the
newly added lines should be “Line 1”, “Line 2” and so on (incrementing the number every
time a new line is added). Adding a new line doesn’t change the map immediately, so
show a message “Line n added” in the Console area to let the user know that something
happened.

5. Implement feature add station to add a new station to the city and extend the most
recently added line with this station. The position of the new station is given through the
arguments of add station. The names of the newly added stations should be “Station 1”,
“Station 2” and so on (incrementing the number every time a new station is added).

6. If you run the program now and try to create a station with a left double-click, the program
will fail because there is no line that the new station can be added to. Modify the program
in such a way that this failure doesn’t occur.

7. Since all the created lines have the same default color, it is difficult to distinguish them.
Implement the feature random color and use it to assign a new color to each created line.
To achieve this, use the class RANDOM that generates random numbers for you. The
following code illustrates its usage:

local
t: TIME
random: RANDOM
n, m: INTEGER

do
create t.make now −− Create a time object for the seed.
create random.set seed (t.milli second) −− Create a random number sequence.
random.start −− Go to the beginning of the sequence.
n := random.item \\ 100 −− Access the first random number;
−− take modulo 100 to get a number between 0 and 99.
random.forth −− Go to the next number in the sequence.
m := random.item \\ 100 −− Access the second random number.
random.forth −− Go to the next number in the sequence.

end

The seed in the example above is a number used to initialize the algorithm that generates
a pseudo-random sequence. A fixed seed always produces the same sequence. We are
using the current time (more precisely, the number of milliseconds in the current time) as
a seed, so that running this program at two different times will most likely produce two
different sequences.

8. In your solution you probably used both local variables and attributes. For the attributes
of CITY BUILDING, explain why you have chosen to make them attributes rather than
locals.

2



ETHZ D-INFK
Prof. Dr. B. Meyer

Introduction to programming – Assignments
Fall 2010

9. Are there features in your solution that rely on some attributes not being Void? If so,
express these properties as preconditions and mark (using comments) at least one line in
each feature body that relies on each precondition clause.

Will these preconditions always be satisfied when running your program? Provide an
informal argument on why this is or isn’t true; if possible, support your argument by
adding postconditions and/or class invariants.

To hand in

Hand in the code of CITY BUILDING and answers to the questions 8 and 9.

2 Assignments

In this assignment you can test your understanding of assignment instructions. Consider the
following class:

class PERSON
create make
feature −− Initialization

make (s: STRING)
−− Set ‘name’ to ‘s’.

require
s non empty: s /= Void and then not s.is empty

do
name := s

ensure
name set: name = s

end

feature −− Access
name: STRING
−− Person’s name.

loved one: PERSON
−− Person’s loved one.

feature −− Basic operations
set loved one (p: PERSON)
−− Set ‘loved one’ to ‘p’.

do
loved one := p

ensure
loved one set: loved one = p

end

invariant
has name: name /= Void and then not name.is empty

end

Below is the code of the feature tryout. It contains a number of declarations and creation
instructions, and it is defined in a class different from PERSON. All features of class PERSON
as shown above are accessible by feature tryout.

3



ETHZ D-INFK
Prof. Dr. B. Meyer

Introduction to programming – Assignments
Fall 2010

tryout
−− Tryout assignments

local
i, j: INTEGER
a, b, c: PERSON

do
create a.make (”Anna”)
create b.make (”Ben”)
create c.make (”Chloe”)
a.set loved one (b)
b.set loved one (c)
−− Here the code snippets from below are added

end

To do

You will find a number of subtasks. Each contains a code snippet and statements. Assume that
the code snippet is inserted at the location indicated in feature tryout above.

If the code snippet produces, in your opinion, a compiler error, choose option (a). If it
doesn’t produce a compiler error, decide for each statement whether it is correct or incorrect
after the code snippet has been fully executed. This means that you can have more than one
correct statement (provided the compilation went fine!). To make the answers easier to read,
we call Anna the object whose name attribute is set to “Anna”, and accordingly Ben and Chloe
for subtasks 6 – 9.

4



ETHZ D-INFK
Prof. Dr. B. Meyer

Introduction to programming – Assignments
Fall 2010

1.
j := 3
i := j
2 := i

(a) The compiler reports an error.
(b) i has value 2, j has value 3.
(c) i and j have both value 2.
(d) i and j have both value 3.

2.
i := 7
j := 2
i := i + 3

(a) The compiler reports an error.
(b) i has value 7 and j has value 2.
(c) i has value 5 and j has value 2.
(d) i has value 10 and j has value 2.

3.

i := −7
j := 5
i := j
j := i

(a) The compiler reports an error.
(b) i has value -7 and j has value 5.
(c) i and j have both value -7.
(d) i and j have both value 5.

4.
j := 8
i := 19
j := i

(a) The compiler reports an error.
(b) i and j have both value 19.
(c) j has value 19 and i holds no value any more.
(d) i and j have both value 8.
(e) i has value 8 and j has value 19.

5.
i := 5
j := i + 7
i := 8

(a) The compiler reports an error.
(b) i and j have both value 8.
(c) i has value 8 and j has value 12.
(d) i has value 8 and j has value 15.

6. b := a
a := b

(a) The compiler reports an error.
(b) a and b are both attached to Ben.
(c) a is a void reference and b is attached to Anna.
(d) b is attached to Anna and a to Ben.
(e) a and b are both attached to Anna.

7.
b := a.loved one
b.set loved one (a.loved one)
a.set loved one (c)

(a) The compiler reports an error.
(b) The attribute loved one of Ben references Ben.
(c) b is attached to Chloe.
(d) a is attached to Anna and b to Ben.
(e) b is attached to Anna and a to Chloe.

8. b := c
b.loved one := a.loved one

(a) The compiler reports an error.
(b) b is attached to Chloe and its attribute loved one references
Ben.
(c) The attribute loved one of Chloe references Ben.
(d) b is attached to Ben and c to Chloe.

9. b := b.loved one.loved one
a.set loved one (c)

(a) The compiler reports an error.
(b) b is attached to Chloe.
(c) b is Void and the attribute loved one of a is attached to Chloe.
(d) a is attached to Anna and b to Ben.
(e) The object with name Ben is not reachable any more.

To hand in

Hand in your answers to the questions above.

3 Phone contracts

In this task you will practice reasoning about code using contracts.
The following class models a cell phone with a touch screen. If you put the phone to sleep,

the screen is off and locked. To unlock the screen you first have to turn it on (to wake the phone

5



ETHZ D-INFK
Prof. Dr. B. Meyer

Introduction to programming – Assignments
Fall 2010

up). The phone also stores a list of contacts; you can add and remove contacts once the screen
in unlocked.

class
PHONE

feature −− Power saving, locking
screen on: BOOLEAN
−− Is the screen on?

is locked: BOOLEAN
−− Is the touch screen locked?

is ready: BOOLEAN
−− Is the phone is ready for use?

do ...
ensure

on and unlocked: Result = (screen on and not is locked)
end

unlock
−− Unlock the touch screen.

require
on: screen on

do ...
ensure

ready: is ready
end

sleep
−− Put the phone to sleep.

do ...
ensure

off: not screen on
locked: is locked

end

wake
−− Wake the phone up.

do ...
ensure

on: screen on
locked unchanged: locked = old locked

end

feature −− Contacts
contact count: INTEGER
−− Number of contacts in the phone.

has (name: STRING): BOOLEAN
−− Is ‘name’ present in the contacts?
−− (Uses value equality).

6



ETHZ D-INFK
Prof. Dr. B. Meyer

Introduction to programming – Assignments
Fall 2010

require
ready: is ready
name exists: name /= Void

do ...
ensure

no contacts: (contact count = 0) implies not Result
end

add (name: STRING)
−− Add ‘name’ to the contacts.

require
ready: is ready
name exists: name /= Void
fresh name: not has (name)

do ...
ensure

entered: has (name)
one more contact: contact count = old contact count + 1
still ready: is ready

end

remove (name: STRING)
−− Remove ‘name’ from the contacts.

require
ready: is ready
name exists: name /= Void
already there: has (name)

do ...
ensure

removed: not has (name)
one less contact: contact count = old contact count − 1
still ready: is ready

end

invariant
contact count non negative: contact count >= 0

end

The bodies of functions have been removed, this is deliberate! Your reasoning should be
based entirely on the pre- and post-conditions and the class invariant.

To do

Answer the following questions, and include justification for your answer.

1. Given that the command sleep has just been completed successfully, does its post-condition
allow us to run unlock?

2. Given that the command add (”Fred”) has just been completed successfully, does its
post-condition allow us to run sleep?

3. Given that the command remove (”Jen”) has just been completed successfully, does its
post-condition allow us to run add (”Jen”)?

7



ETHZ D-INFK
Prof. Dr. B. Meyer

Introduction to programming – Assignments
Fall 2010

For the following features in a client of PHONE, does the precondition allow the body to
execute successfully, and also guarantee the postcondition to be satisfied? If the precondition
is not strong enough to ensure the correct completion of the routine, then propose another
precondition, which can ensure this.

4. use (phone: PHONE)
require

two contacts: phone.contact count = 2
do

phone.remove (”Ulrich”)
ensure

one contact: phone.contact count = 1
end

5. use (phone: PHONE)
require

phone exists: phone /= Void
ready: phone.is ready
no contacts: phone.contact count = 0

do
phone.add (”Ulrich”)

ensure
one contact: phone.contact count = 1
has ulrich: phone.has (”Ulrich”)

end

6. use (phone: PHONE)
require

phone exists: phone /= Void
ready: phone.is ready

do
phone.add (”Ulrich”)

ensure
positive contacts: phone.contact count > 0

end

To hand in

Hand in your answers to the questions above.

4 Board game: Part 1

In this task you will start a small project from scratch. We will proceed in iterations, starting
with a simplified problem and then progressively enriching it. This first part will focus on
choosing the right classes.

The idea is to program a prototype of a board-game1. It comes with a board, divided into
40 squares, a pair of dice, and can accommodate 2 to 6 players. It works as follows:

• All players start from the first square.
1We draw inspiration from a case study in the excellent book by Craig Larman “Applying UML and Patterns:

An Introduction to Object-Oriented Analysis and Design and Iterative Development (3rd Edition)”.

8



ETHZ D-INFK
Prof. Dr. B. Meyer

Introduction to programming – Assignments
Fall 2010

• One at the time, players take a turn: roll the dice and advance their respective tokens on
the board.

• A round consists of all players taking their turns once.

• The winner will be the player that first advances beyond the 40th square.

To do

Make up a list of classes that you would use to model the board game.

Choosing right abstractions

To suggest classes, you have to ask yourself: What are the relevant abstractions in the problem
domain? A good source of abstractions is the problem description: names (nouns) in the
description often identify important concepts in the problem domain.

Unfortunately, some names in the problem description might not deserve to become classes
(like “idea” or “program”); also there might be relevant abstractions that are not expressed as
names in the specific text we are looking at.

Whether an entity in the problem domain deserves its own class, depends on its relevant
properties and behavior. If you are modeling a door, whose only relevant property is being
open or closed, use a boolean variable. If you are programming a game with trapdoors and
magic doors that trigger special behavior, then you might need a class for it. Thus the second
question you should ask yourself about each candidate abstraction is: Is there any meaningful
data (attributes) and behavior (routines) associated with the abstraction?

Finally, you should take into account that the problem description (the requirements) is
almost never final. When reading the description think about things that are likely to change
and new functionality that is likely to be added. Sometimes a concept doesn’t have enough
associated behavior in the present version of the requirements, but if you think it is likely to
gain more in the future, it might still deserve its own class.

To hand in

Hand in your candidate list of class names together with short descriptions of their associated
properties and behavior.

9


	City building
	Assignments
	Phone contracts
	Board game: Part 1

