
ETHZ D-INFK
Prof. Dr. B. Meyer

Introduction to programming – Assignments
Fall 2010

Solution 5: References and assignments

ETH Zurich

1 City building

Listing 1: Class CITY BUILDING

class CITY BUILDING

inherit

TOURISM

feature −− City creation

explore is
−− Create the city, central station and other needed objects.

local
t: TIME

do
create city.make (”New Zurich”)
main window.canvas.set city (city)

create t.make now
create random.set seed (t.milli second)
random.start

create central station.make with location (”Central”, 0, 0)
city.put station (central station)
add line

ensure
city exists: city /= Void
line exists: line /= Void
central station exists: central station /= Void
random exists: random /= Void

end

city: TRAFFIC CITY
−− City under construction.

central station: TRAFFIC STATION
−− Central tram station.

line: TRAFFIC LINE
−− Most recently added line.

1



ETHZ D-INFK
Prof. Dr. B. Meyer

Introduction to programming – Assignments
Fall 2010

random: RANDOM
−− Random sequence.

add line
−− Add new line and store it in ‘line’.

require
city exists: city /= Void
central station exists: central station /= Void

local
tram type: TRAFFIC TYPE TRAM
name: STRING

do
name := ”Line ” + (city.lines.count + 1).out −− relies on city exists
create tram type.make
create line.make with terminal (name, tram type, central station) −− relies on

central station exists
line.set color (random color)
city.put line (line)
Console.show (name + ” added”)

ensure
line exists: line /= Void

end

add station (x, y: INTEGER)
−− Extend ‘line’ with a new station at coordinate (‘x’, ‘y’).

require
city exists: city /= Void
line exists: line /= Void

local
s: TRAFFIC STATION

do
create s.make with location (”Station ” + city.stations.count.out, x, y) −− relies on

city exists
city.put station (s)
line.extend (s) −− relies on line exists

end

random color: TRAFFIC COLOR
−− Random color.

require
random exists: random /= Void

local
r, g, b: INTEGER

do
random.forth −− relies on random exists
r := random.item \\ 256
random.forth
g := random.item \\ 256
random.forth
b := random.item \\ 256
create Result.make with rgb (r, g, b)

ensure

2



ETHZ D-INFK
Prof. Dr. B. Meyer

Introduction to programming – Assignments
Fall 2010

Result exists: Result /= Void
end

end

6. The simplest way to avoid the problem is to add a call to add line to the end of explore,
which is executed immediately when the application starts (that is, before any double left
clicks are processed).

8. Local variables vs. attributes. We want add line and add station, every time they are
called, to be able to access the very same city object that was created once by explore. If
more than one feature needs access to an object, it must be stored in an attribute (because
local variables are only accessible within a single feature). Similar reasoning applies to
other attributes.

Note that it’s technically possible to make random a local variable of random color and
create a new random sequence every time random color is called. However, this is not how
random number generators are generally used: as a rule a random sequence is initialized
just once and used throughout the program execution. There are two main reasons:

– Random number generation algorithms usually provide several useful properties, e.g.
that subsequent numbers are sufficiently far away from each other, that the sequence
is sufficiently uniformly distributed over the whole range, etc. If instead of relying
on the random number generator you use current time every time you need another
random number, you are loosing these properties. For example, if your program needs
random numbers very often they might turn out all the same.

– Sometimes you want to control the random numbers: for example, you would like to
repeat exactly the same program execution to reproduce a fault. If you initialize the
random sequence just once, the only thing you need to do to regenerate the same
sequence in a future execution is to save a single seed. If you are using time, you
have to save the whole sequence in order for the execution to be reproducible.

9. Contracts. Here is an informal argument on why the preconditions of add line,
add station and random color will always be satisfied at runtime.

The feature add line requires that the city and the central station exist. add line is first
called from the end of explore, where both objects have already been created. Afterwards
it is only called after the (first) execution of explore has finished and has created both
objects (this can be reflected in the postcondition of explore). There is no other feature
in CITY BUILDING that sets these attributes back to void, thus they remain non-void
throughout the rest of the program execution.

The second part of the reasoning above can also be applied to the precondition of
add station.

The feature random color requires that random exist. random color is only called from
add line, which is always called after random was first created by explore.

If we consider not only attributes, but expressions in general, our implementation relies
on more of them being non-void. For example the call city.stations.count in add station
relies on city.stations /= Void. If you check out the class invariant of TRAFFIC CITY
you will see that this is true for every city, that is why add station does not have to state
it in the precondition.

Look at the call line.set color (random color) in add line. The feature set color requires
that its argument be non-void. We can make the reasoning about the correctness of this
call more clear is we add Result /= Void to the postcondition of random color.

3



ETHZ D-INFK
Prof. Dr. B. Meyer

Introduction to programming – Assignments
Fall 2010

2 Assignments

The solution lists the correct statements for each of the subtasks.

1. (a)

2. (d)

3. (d)

4. (b)

5. (c)

6. (e)

7. (b) (d)

8. (a)

9. (c) (e)

3 Phone contracts

1. The postcondition for sleep states not screen on; this immediately contradicts screen on
(the precondition of unlock).

2. The precondition of sleep is empty, meaning that it can be invoked at any time.

3. The postcondition of remove (”Jen”) guarantees not has (”Jen”) and is ready, which is
exactly what is needed to satisfy the precondition of add (”Jen”) (together with ”Jen”
/= Void, which is trivially true).

4. The precondition should be extended with

phone /= Void
phone.is ready
phone.has (”Ulrich”)

to satisfy the precondition of the call to remove. Once the precondition is extended,
we can successfully deduce the postcondition of use from “two contacts” in the original
precondition of use and “one less contact” in the postcondition of remove.

5. This routine does not require any additional preconditions to complete successfully. The
precondition of the call to add is satisfied because not phone.has (”Ulrich”) follows from
phone.contact count = 0 (see the postcondition of has). To show that the postcondition
of use holds we apply the same reasoning as in the previous point.

6. The precondition should be extended with

not phone.has (”Ulrich”)

The postcondition follows from the class invariant and the postcondition of add.

4



ETHZ D-INFK
Prof. Dr. B. Meyer

Introduction to programming – Assignments
Fall 2010

4 Board game: Part 1

There are several possible solution; we discuss two that are most reasonable in our opinion.
A simpler solution includes only three classes:

• GAME: encapsulates the logic of the game (start state, the structure of a round, ending
conditions).

• DIE: provides random numbers in the required range.

• PLAYER: stores the state of each player in the game and performs a turn.

We discarded ROUND and TURN: we consider them parts of behavior of GAME and
PLAYER respectively, rather than separate abstractions. Additionally PLAYER and TOKEN
represent the same abstraction for now.

In the simpler solution we don’t introduce classes for SQUARE and BOARD. The only
information associated with squares in the current version of the game is their index, thus a
square can be easily represented with an integer. Also the board in the current version doesn’t
have any specific structure (square arrangement); the only property of the board is the number
of squares, which probably does not deserve a separate class and instead can be stored in GAME.

A more flexible solution additionally includes classes SQUARE and BOARD. Though
SQUARE doesn’t contain enough behavior for now, we anticipate that in the future versions of
the game there might be squares with special properties and behavior (this anticipation is based
on our knowledge of the problem domain, namely that interesting boardgames have squares of
different types with different properties).

Introducing class BOARD makes the solution more flexible with respect to the arrangement
of squares on the board. In the simple version the knowledge about “on which square does a
token land if it moves n steps starting from square x” is located in class PLAYER. Once it
becomes more complicated than just x + n, it is better to encapsulate such knowledge in class
BOARD.

5


	City building
	Assignments
	Phone contracts
	Board game: Part 1

