
ETHZ D-INFK
Prof. Dr. B. Meyer

Introduction to programming – Assignments
Fall 2010

Assignment 9: Recursion

ETH Zurich

Hand-out: 19. November 2010
Due: 30. November 2010

Dependencies c© Randall Munroe (xkcd.com)

Goals

• Test your understanding of recursion.

• Implement recursive algorithms.

1 An infectious task

You are the boss of a company concerned about health of your employees (especially in winter
- the time of flu epidemics). To take a better decision about the company health policy, you
decide to simulate the spreading of the flu in a program. For this you assume the following
model: if a person has a flu, he spreads the infection to only one coworker, who then spreads it
to another coworker, and so on.

The following class PERSON models coworkers. The class APPLICATION creates PERSON
objects and sets up the coworker structure. The coworker relation is asymmetric.

Listing 1: Class PERSON

class
PERSON

create
make

feature −− Initialization
make (a name: STRING)

−− Create a person named ‘a name’.

1

file:xkcd.com

ETHZ D-INFK
Prof. Dr. B. Meyer

Introduction to programming – Assignments
Fall 2010

require
a name valid: a name /= Void and then not a name.is empty

do
name := a name

ensure
name set: name = a name

end

feature −− Access
name: STRING

coworker: PERSON

has flu: BOOLEAN

feature −− Element change
set coworker (p: PERSON)

−− Set ‘coworker’ to ‘p’.
require

p exists: p /= Void
p different: p /= Current

do
coworker := p

ensure
coworker set: coworker = p

end

set flu
−− Set ‘has flu’ to True.

do
has flu := True

ensure
has flu: has flu

end

invariant
name valid: name /= Void and then not name.is empty

end

Listing 2: Class APPLICATION

class
APPLICATION

create
make

feature −− Initialization
make

−− Simulate flu epidemic.
local

joe, mary, tim, sarah, bill, cara, adam: PERSON
do

2

ETHZ D-INFK
Prof. Dr. B. Meyer

Introduction to programming – Assignments
Fall 2010

create joe.make (”Joe”)
create mary.make (”Mary”)
create tim.make (”Tim”)
create sarah.make (”Sarah”)
create bill.make (”Bill”)
create cara.make (”Cara”)
create adam.make (”Adam”)
joe.set coworker (sarah)
adam.set coworker (joe)
tim.set coworker (sarah)
sarah.set coworker (cara)
bill.set coworker (tim)
cara.set coworker (mary)
mary.set coworker (bill)
infect (bill)

end
end

Table 1 shows four different implementations of feature infect, which is supposed to infect a
person p and all people reachable from p through the coworker relation.

To do

1. For each version of infect answer the following questions:

• Does it do what it is supposed to do?

• If yes, how? (One to two sentences.)

• If no, why? (One to two sentences.)

Note: this is a pen-and-paper task; you are not supposed to use EiffelStudio.

2. The class PERSON above assumes that each employee can only infect one coworker. This
is unfortunately too optimistic. Rewrite the class PERSON in such a way that an employee
can have (and infect) an arbitrary number of coworkers. Implement a correct recursive
feature infect for this new setting. Note: you may use a loop to iterate through the list of
coworkers.

3. Optional. The coworker structure with at most one coworker forms a (possibly circu-
lar) linked list. Which data structure is formed by a coworker structure with multiple
coworkers? What kind of traversal do you apply to traverse this structure in the feature
infect?

To hand in

Hand in your answers to the tasks 1 and 3 and the code of class PERSON and feature infect for
the task 2.

2 Reachable stations

In this task you will write a procedure that, given a station, highlights all stations that are
reachable from it within a certain time limit (e.g. 10 minutes).

Figure 1 shows an example of stations and stops in Traffic. Every TRAFFIC STATION
contains a list of TRAFFIC STOPs. Every TRAFFIC STOP represents a stop of a certain

3

ETHZ D-INFK
Prof. Dr. B. Meyer

Introduction to programming – Assignments
Fall 2010

Table 1: Different versions of feature infect
Version 1 Version 2

infect (p: PERSON)
−− Infect ‘p’ and coworkers.

require
p exists: p /= Void

do
p.set flu
if p.coworker /= Void and then not

p.coworker.has flu then
infect (p.coworker)

end
end

infect (p: PERSON)
−− Infect ‘p’ and coworkers.

require
p exists: p /= Void

do
if p.coworker /= Void and then not

p.coworker.has flu then
infect (p.coworker)
p.coworker.set flu

end
p.set flu

end

Version 3 Version 4

infect (p: PERSON)
−− Infect ‘p’ and coworkers.

require
p exists: p /= Void

local
q: PERSON

do
from

q := p.coworker
p.set flu

until
q = Void

loop
if not q.has flu then

q.set flu
end
q := q.coworker

end
end

infect (p: PERSON)
−− Infect ‘p’ and coworkers.

require
p exists: p /= Void

do
if p.coworker /= Void and then

not p.coworker.has flu then
p.coworker.set flu
infect (p.coworker)

end
p.set flu

end

TRAFFIC LINE in one direction. For example, the lowest stop of station Haldenegg in Figure 1
represents the stop for Tram 7 coming from Sonneggstrasse and continuing towards Central.

Class TRAFFIC STOP offers the following useful features:

• station – the associated station;

• right – the next stop;

• time to next – time (in minutes) it takes to travel from the stop to the next stop.

4

ETHZ D-INFK
Prof. Dr. B. Meyer

Introduction to programming – Assignments
Fall 2010

Figure 1: Example stops, stations, and segments.

To do

1. Download http://se.ethz.ch/teaching/2010-H/eprog-0001/assignments/09/assignment 9.zip
and extract it in traffic/example. You should now have a new directory traffic/
example/assignment 9 with assignment 9.ecf directly in it.

2. Open and compile this new project and navigate to class RECURSIVE HIGHLIGHTING.

3. Implement a recursive feature highlight reachable stations that takes two arguments: a
station s of type TRAFFIC STATION and a time t of type REAL 64. The feature should
highlight all stations that are reachable from s in less time than t minutes. You may use a
loop to iterate through the stops of a certain station (accessible through the query stops).

Test your implementation of highlight reachable stations with some of the predefined sta-
tions of Paris (such as Station chatelet or Station Invalides) and a certain time limit such
as 10 minutes.

To hand in

Hand in the code of RECURSIVE HIGHLIGHTING.

3 Get me out of this maze!

In this task, you will write an application that reads a maze description from a file and then,
given a starting point, calculates a path to an exit. We provide classes for reading the maze
files and storing the maze. If you feel adventurous you can also write the entire application
yourself (your application should be able to read the maze files provided by us). The main goal,
however, is to implement the recursive feature find path.

5

http://se.ethz.ch/teaching/2010-H/eprog-0001/assignments/09/assignment_9.zip

ETHZ D-INFK
Prof. Dr. B. Meyer

Introduction to programming – Assignments
Fall 2010

To do

1. Create a new application in EiffelStudio with a root class MAZE APPLICATION and a
creation feature make.

2. Download http://se.ethz.ch/teaching/2010-H/eprog-0001/assignments/09/maze.zip and
extract it into the project directory. The zip-file contains classes MAZE READER and
MAZE as well as three maze input files.

A maze is a rectangular board with width w and height h where each field is either empty,
a wall, or an exit.

Each input file starts with the width and height of the board. They are followed by a map
of the maze, where ’.’ denotes an empty field, ’#’ denotes a wall, and ’*’ denotes an exit.
Below you see an example 6×6 maze input file. Class MAZE READER reads the file and
stores the data in an instance of class MAZE.

6 6

..####

#....#

#.####

#.#..*

#...##

######

3. In the feature make of class MAZE APPLICATION you should ask the user for the name
of an input file and use MAZE READER to read the input file into an instance of class
MAZE. Display the read maze in the console. Then ask the user to input a row and a
column number within the maze’s dimensions. This will be the starting field for finding a
path to an exit. See Figure 2 for an example.

4. In class MAZE there is a feature find path whose implementation is missing. The argument
of find path defines the starting field. Your implementation should search for a path from
the starting field to one of the exits in the maze and store the sequence of moves that
are needed to reach it. There are four valid moves from a given field: move one field up
(North), move one down (South), move one left (West) and move one right (East). Note
that the implementation of find path does not need to find the shortest path – any path
leading to an exit is good enough. The feature find path should also set path exists to True
if a path is found, and to False if there is no way out of the maze. Figure 2 shows an
execution of the system with a maze where a path exists and Figure 3 shows an execution
when there is no path.

Hint

You can base the algorithm on the following idea: to find a path from a certain position on the
board make a step in one of the possible directions to a field that has not yet been explored and
then try finding your way from there.

To hand in

Hand in the source code of your application.

6

http://se.ethz.ch/teaching/2010-H/eprog-0001/assignments/09/maze.zip

ETHZ D-INFK
Prof. Dr. B. Meyer

Introduction to programming – Assignments
Fall 2010

Figure 2: Maze with a path.

Figure 3: Maze with no path.

7

	An infectious task
	Reachable stations
	Get me out of this maze!

