
Chair of Software Engineering

Einführung in die Programmierung
Introduction to Programming

Prof. Dr. Bertrand Meyer

Exercise Session 10

2

News

 Mock exam in 2 weeks (December 6th, 7th)

 You have to be present

 The week after (last exercise session) we will
discuss the results

3

Today

 Recursion
 Recursion

• Recursion
 Recursion

 Recursion

 Inheritance

 Genericity

4

Recursion: an example

 Fibonacci numbers:

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, ...

 How can we calculate Fibonacci number n?

 Recursive formula:

F(n) = F(n-1) + F(n-2) for n > 1

with F(0) = 0, F(1) = 1

5

Recursion: a second example

 Another example of recursion

Source: en.wikipedia.org/wiki/Recursion

6

A recursive feature

fibonacci(n: INTEGER): INTEGER

do

if n = 0 then

Result := 0

elseif n = 1 then

Result := 1

else

Result := fibonacci(n-1) +

fibonacci(n-2)

end

fib(4)

fib(3) fib(2)

fib(1) fib(0)fib(2) fib(1)

fib(1) fib(0)

 Calculate fibonacci(4)

1 0

1 1

2

1 0

1

3

7

The general notion of recursion

A definition for a concept is recursive
if it involves an instance of the concept itself

 The definition may use more than one “instance of the
concept itself ”

 Recursion is the use of a recursive definition

8

Thoughts

Better use iterative approach if reasonable

9

Iteration vs. recursion

 Every recursion could be rewritten as an iteration and
vice versa.

 BUT, depending on how the problem is formulated, this
can be difficult or might not give you a performance
improvement.

10

Exercise: Printing numbers

 If we pass n = 4, how many numbers will be printed
and in which order?

print_int (n: INTEGER)
do

print (n)
if n > 1 then

print_int (n - 1)
end

end

print_int (n: INTEGER)
do

if n > 1 then
print_int (n - 1)

end
print (n)

end

4321 1234

11

Exercise: Reverse string

 Print a given string in reverse order using a recursive
function.

12

Exercise: Solution

class APPLICATION

create
make

feature
make

local
s: STRING

do
create s.make_from_string ("poldomangia")
invert(s)

end

invert (s: STRING)
require

s /= Void
do

if not s.is_empty then
invert (s.substring (2, s.count))
print (s[1])

end
end

end

13

Exercise: Sequences

 Write a recursive and an iterative program to print
the following:

111,112,113,121,122,123,131,132,133,

211,212,213,221,222,223,231,232,233,

311,312,313,321,322,323,331,332,333,

 Note that the recursive solution can use loops too.

14

Exercise: Recursive solution

cells: ARRAY [INTEGER]

handle_cell (n: INTEGER)
local

i: INTEGER
do

from
i := 1

until
i > 3

loop
cells [n] := i
if (n < 3) then

handle_cell (n+1)
else

print (cells [1].out+cells [2].out+cells [3].out+",")
end
i := i + 1

end
end

15

Exercise: Iterative solution

from
i := 1

until
i > 3

loop
from

j := 1
until

j > 3
loop

from
k := 1

until
k > 3

loop
print (i.out+j.out+k.out+“,")
k := k + 1

end
j := j + 1

end
i := i + 1

end

16

Data structures

 You have seen several data structures

 ARRAY, LINKED_LIST, HASH_TABLE, …

 We will now look at another data structure and see how
recursion can be used for traversal.

17

Tree

18

Tree

19

Tree: A more abstract way

node root

leaf

 A non-empty tree has one root. An empty tree does not
have a root.

 Every non-leaf node has links to its children. A leaf
does not have children.

 There are no cycles.

20

Binary tree

node

 A binary tree is a tree.

 Each non-leaf node can have at most 2 children
(possibly 0 or 1).

21

Exercise: Recursive traversal

 Implement class NODE with an INTEGER attribute.

 In NODE implement a recursive feature that traverses
the tree and prints out the INTEGER value of each
NODE object.

 Test your code with a class APPLICATION which builds
a binary tree and calls the traversal feature.

22

Exercise: Solution

 See code in IDE.

23

Binary search tree

10

8 13

4 9 20

 A binary search tree is a binary tree where each node
has a COMPARABLE value.

 Left sub-tree of a node contains only values less than
the node‟s value.

 Right sub-tree of a node contains only values greater
than or equal to the node‟s value.

24

Exercise: Adding nodes

 Implement command put (n: INTEGER) in class
NODE which creates a new NODE object at the
correct place in the binary search tree rooted by
Current.

 Test your code with a class APPLICATION which
builds a binary search tree using put and prints out
the values using the traversal feature.

 Hint: You might need to adapt the traversal
feature such that the values are printed out in
order.

25

Exercise: Solution

 See code in IDE.

26

Exercise: Searching

 Implement feature has (n: INTEGER): BOOLEAN
in class NODE which returns true if and only if n is in
the tree rooted by Current.

 Test your code with a class APPLICATION which builds
a binary search tree and calls has.

27

Exercise: Solution

 See code in IDE.

28

Today

 Recursion
 Recursion

• Recursion
 Recursion

 Recursion

 Inheritance

 Genericity

29

Inheritance

Principle:
Describe a new class as extension or specialization of an
existing class

(or several with multiple inheritance)

If B inherits from A :

 As modules: all the services of A are available in B
(possibly with a different implementation)

 As types: whenever an instance of A is required, an
instance of B will be acceptable

(“is-a” relationship)

30

Let's play Lego!

BRICK

LEGO_BRICK

LEGO_BRICK_WITH_HOLE LEGO_BRICK_SLANTED

31

Class BRICK

deferred class
BRICK

feature
width: INTEGER
depth: INTEGER
height: INTEGER
color: COLOR

volume: INTEGER
deferred
end

end

32

Class LEGO_BRICK

class
LEGO_BRICK

inherit
BRICK

feature
number_of_nubs: INTEGER

do
Result := ...

end

volume: INTEGER
do

Result := ...
end

end

Inherit all features of
class BRICK.

New feature, calculate
all nubs

Implementation of
volume.

33

Class LEGO_BRICK_SLANTED

The feature volume is
going to be redefined

(=changed). The feature
volume comes from

LEGO_BRICK

class
LEGO_BRICK_SLANTED

inherit
LEGO_BRICK

redefine
volume

end

feature
volume: INTEGER

do
Result := ...

end
end

34

Class LEGO_BRICK_WITH_HOLE

class
LEGO_BRICK_WITH_HOLE

inherit
LEGO_BRICK

redefine
volume

end

feature
volume: INTEGER

do
Result := ...

end
end

The feature volume is
going to be redefined

(=changed). The feature
volume comes from

LEGO_BRICK

35

Inheritance Notation

volume++

BRICK

LEGO_BRICK

LEGO_BRICK_WITH_HOLE LEGO_BRICK_SLANTED

+

++

volume*

volume+

*

volume++

Notation:

Deferred *

Effective +

Redefinition ++

36

Deferred

 Deferred

 Deferred classes can have deferred features.

 A class with at least one deferred feature must
be declared as deferred.

 A deferred feature does not have an
implementation yet.

 Deferred classes cannot be instantiated and
hence cannot contain a create clause.

37

Effective

 Effective

 Effective classes do not have deferred features
(the “standard case”).

 Effective routines have an implementation of
their feature body.

38

Precursor

 If a feature was redefined, but you still wish to call
the old one, use the Precursor keyword.

volume: INTEGER
do

Result := Precursor - ...
end

39

Today

 Recursion
 Recursion

• Recursion
 Recursion

 Recursion

 Inheritance

 Genericity

40

Genericity

 Genericity lets you parameterize a class. The
parameters are types. A single class text may be
reused for many different types.

41

Genericity

LIST_OF_
CARS

SET_OF_
CARS

LINKED_LIST_
OF_CARS

LIST_OF_
CITIES

LIST_OF_
PERSONS

Abstraction

Specialization

Type parameterization Type parameterization

Genericity

Inheritance

42

A generic list
Formal generic parameter

Actual generic parameter

class LIST [G] feature

extend (x : G) ...

last : G ...

end

To use the class: obtain a generic derivation, e.g.

cities : LIST [CITY]

43

]-> RESOURCE

A generic list with constraints

class
STORAGE [G

inherit
LIST [G]

feature
consume_all

do
from start until after
loop

item.consume
forth

end
end

end

constrained generic parameter

The feature item is
checked for

conformance with
RESOURCE. We can

assume this.

The feature item is
of type G. We cannot

assume consume.

44

Type-safe containers

 Using genericity you can provide an implementation of
type safe containers. This helps avoiding object-tests.

x: ANIMAL
animal_list: LINKED_LIST [ANIMAL]
a_rock: MINERAL

animal_list.put (a_rock) -- Does this rock?

45

The End

End of slides

Time left?

Here„s another recursion examples...

46

Exercise: Magic Squares

 A magic square of size NxN is a NxN square such that:

 Every cell contains a number between 1 and N2.

 The sum in every row and column is constant.

 The numbers are all different.

4 3 8

9 5 1

2 7 6

47

Exercise: Magic Squares

 Finding a 3x3 magic square is related to finding the
permutations of 1 to 9.

 There exist 72 magic 3x3 squares.

123456789

123456798

123456879

123456897

123456978

123456987

...

987654321

48

Exercise: Magic Squares

 Write a program that finds all the 3x3 magic

squares.

 Hints

 Reuse the previous recursive algorithm by
applying it to permutations (enforce no
repetitions).

 Use two arrays of 9 elements, one for the
current permutation and one to know if a number
has already been used or not.

49

Exercise: Solution

 See code in IDE.

