E,H Ziirich

Chair of Software Engineering

Einfihrung in die Programmierung
Introduction to Programming

Prof. Dr. Bertrand Meyer

Exercise Session 10

News

> Mock exam in 2 weeks (December 6th, 7th)
> You have to be present

»> The week after (last exercise session) we will
discuss the results

Today

> Recursion

> Recursion

« Recursion

= Recursion
= Recursion

> Inheritance
> Genericity

Recursion: an example

> Fibonacci numbers:
0,1,1.2,3,5,8,13,21, 34,55, ..

> How can we calculate Fibonacci nhumber #?

> Recursive formula:

F(n) = F(n-1) + F(n-2) forn>1

with F(0) =0, F(1) =1

Recursion: a second example

> Another example of recursion

Source: enwikipedia.org/wiki/Recursion

A recursive feature O,

fibonacci(n: INTEGER): INTEGER
do
if n=0 then
Result := 0
elseif n=1 then

Result = 1
cse (o)

Result := fibonacci(n-1) +

fibonacci(n-2) (Fib@))}2 T fib(@)

> Calculate fibonacci(4)

end

The general notion of recursion

A definition for a concept is recursive
if it involves an instance of the concept itself

J

> The definition may use more than one "/nstance of the
concept itself"

> Recursionis the use of a recursive definition

Thoughts

\.\\

- divine
To iterate 1S human, T0 recurse

but ... computers gre built by humans

Better use iterative approach if reasonable)
a

Iteration vs. recursion

> Every recursion could be rewritten as an iteration and
vice versa.

» BUT, depending on how the problem is formulated, this
can be difficult or might not give you a performance
improvement.

Exercise: Printing numbers

> If we pass n =4, how many numbers will be printed
and in which order?

print_int (n: INTEGER) print_int (n: INTEGER)

do do
print (n) if n>1then
if n>1then print_int (n - 1)
print_int (n - 1) end
end print (n)
end end

| 4321 | ‘ 1234 \

10

Exercise: Reverse string

» Print a given string in reverse order using a recursiv
function.

11

Exercise: Solution

class APPLICATION

create
make

feature
make

local
s: STRING

do
create s.make_from_string ("poldomangia®)
invert(s)

end

invert (s: STRING)
require
s /=Void
do
if not s./s_empty then
invert (s.substring (2, s.count))
print (s{1])
end
end
end

12

Exercise: Sequences

» Worite a recursive and an iterative program to print
the following:

111,112,113 ,121,122,123,131,132,133,
211,212 ,213,221,222,223,231,232,233,
311,312,313,321,322,323,331,332,333,

» Note that the recursive solution can use loops too.

13

Exercise: Recursive solution

cells: ARRAY [INTEGER]

handle_cell (n: INTEGER)
local
i: INTEGER
do
from
/.= 1
until
/>3
loop
cells[n]:=i
if (n<3)then
handle_cell (n+1)
else
print (cells [1]out+cells [2]out+cells [3]out+",")
end
[:=7+1
end
end

14

Exercise: Iterative solution O,

from
[:=1
until
(>3
loop
from
ji=1
until
J>3
loop
from
k:=1
until
k>3
loop
print (i.out+j.out+k.out+",")
k:=k+1
end
J=j+1
end
[:=7+1
end

15

Data structures

> You have seen several data structures
> ARRAY LINKED LIST, HASH TABLE, ..

> We will now look at another data structure and see how
recursion can be used for traversal.

16

Tree

17

Tree

18

Tree: A more abstract way

leaf

> A non-empty tree has one root. An empty tree does not
have a root.

> Every non-leaf node has links to its children. A leaf
does not have children.

» There are no cycles.

Binary tree

> A binary free is a free.

> Each non-leaf node can have at most 2 children
(possibly O or 1).

20

Exercise: Recursive traversal

Y VY

Implement class NODE with an INTEGER attribute.

In NODE implement a recursive feature that traverses
the tree and prints out the INTEGER value of each
NODE object.

Test your code with a class APPLICATION which builds
a binary tree and calls the traversal feature.

21

Exercise: Solution

> See code in IDE.

22

Binary search tree

i e

> A binary search tree is a binary tree where each node
has a COMPARABLE value.

> Left sub-tree of a node contains only values less than
the node's value.

> Right sub-tree of a node contains only values greater
than or equal to the node's value.

23

Exercise: Adding nodes

» Implement command put (n: INTEGER) in class
NODE which creates a new NODE object at the
correct place in the binary search tree rooted by
Current.

> Test your code with a class APPLICATION which
builds a binary search tree using put and prints out
the values using the traversal feature.

» Hint: You might need to adapt the traversal
feature such that the values are printed out in
order.

24

Exercise: Solution

> See code in IDE.

25

Exercise: Searching

> Implement feature Aas (n: INTEGER): BOOLEAN
in class NODE which returns true if and only if nis in
the tree rooted by Current.

» Test your code with a class APPLICATION which builds
a binary search tree and calls Aas.

26

Exercise: Solution

> See code in IDE.

27

Today

> Recursion

» Recursion

e Recursion

= Recursion
= Recursion

> Inheritance
» Genericity

28

Inheritance ©

Principle:
Describe a new class as extension or specialization of an

existing class
(or several with multiple inheritance)

If Binherits from A

> As modules: all the services of 4 are available in 2
(possibly with a different implementation)

> As types: whenever an instance of A is required, an
instance of B will be acceptable
(“is-a" relationship)

29

Let's play Lego! ©

BRICK

EGO_BRICK

LEGO_BRICK WITH _HOLE LEGO _BRICK SLANTED

30

Class BRICK

deferred class
BRICK

feature
width: INTEGER
depth: INTEGER
height: INTEGER
color: COLOR

volume: INTEGER
deferred
end
end

31

Class LEGO _BRICK

class
LEGO BRICK
‘Inher‘i‘r all features of!
class BRICK. inherit
BRICK
feature

New feature, calculate
all nubs
Implementation of
volume.

end

number_of _nubs: INTEGER
do
Result .= ...
end

volume: INTEGER
do
Result - ...
end

32

Class LEGCO BRICK SLANTED

class

LEGO _BRICK SLANTED

inherit
LEGO BRICK

The feature volume is
going to be redefined
(=changed). The feature
volume comes from
LEGO BRICK

%

end

redefine
volume
end

feature

volume: INTEGER
do
Result .- ...
end

33

Class LEGCO BRICK WITH HOLE

The feature volume is
going to be redefined
(=changed). The feature
volume comes from
LEGO BRICK

class
LEGO _BRICK WITH HOLE

inherit
LEGO BRICK
redefine
volume
end

feature
volume: INTEGER
do
Result .- ...
end
end

34

Inheritance Notation

Notation:
Deferred * *
Effective + BRICK volume

Redefinition ++

+

LEGO_BRICK

volume+

volume++

LEGO_BRICK_WITH_HOLE LEGO_BRICK_SLANTED

Deferred
> Deferred
> Deferred classes can have deferred features.
> A class with at least one deferred feature must
be declared as deferred.
» A deferred feature does not have an
implementation yet.
> Deferred classes cannot be instantiated and

hence cannhot contain a create clause.

36

Effective

> Effective

> Effective classes do not have deferred features
(the "standard case").

> Effective routines have an implementation of
their feature body.

37

Precursor

» If a feature was redefined, but you still wish to call
the old one, use the Precursor keyword.

volume: INTEGER
do

Result .= Precursor - ..
end

38

Today

> Recursion

» Recursion

e Recursion

= Recursion
= Recursion

» TInheritance
> Genericity

39

Genericity

> Genericity lets you parameterize a class. The
parameters are types. A single class text may be
reused for many different types.

40

Genericity

-~

‘ Abs‘rr'ac’rib
|

Inheritance

Genericity

/

Type parameterization

.

EEEEEEEREREDR LIST‘-—O Illll*
PERSONS

\

Type parameterization

)

LINKED _LIST
OF_CARS

_

Specialization

41

A generic list . ©
j Formal generic parameter |

class LIST [[&]] feature
extend (x:6) ..
last . G ...

end

To use the class: obtain a generic derivation, e.g.

! Actual generic parameter |

cities: LIST [(CITY)]

42

A generic list with constraints

class
STORAGE [GF> RESOURCE

inherit ‘ constrained generic parameter |

LIST [G]
feature
consume__all
do
from startuntil after
[.
loop The feature /temis |'S
/fem.consume of type 6. We cannot
forth assume consume.
end - (
assume this.
end

end

43

Type-safe containers ©

» Using genericity you can provide an implementation of
type safe containers. This helps avoiding object-tests.

x: ANIMAL
animal_list: LINKED_LIST [ANIMAL]
a_rock: MINERAL

animal_list.put (a_rock)-- Does this rock?

44

The End

End of slides

Time left?
Here's another recursion examples...

45

Exercise: Magic Squares

» A magic square of size NxN is a NxN square such that:
> Every cell contains a number between 1 and N2
> The sum in every row and column is constant.
> The numbers are all different.

0,

46

Exercise: Magic Squares

> Finding a 3x3 magic square is related to finding the
permutations of 1 to 9.

» There exist 72 magic 3x3 squares.

123456789
123456798
123456879
123456897
123456978
123456987

987654321

Exercise: Magic Squares

» Write a program that finds all the 3x3 magic
squares.

> Hints

> Reuse the previous recursive algorithm by
applying it o permutations (enforce no
repetitions).

> Use two arrays of 9 elements, one for the

current permutation and one to know if a number
has already been used or not.

48

Exercise: Solution

> See code in IDE.

49

