
Chair of Software Engineering

Einführung in die Programmierung
Introduction to Programming

Prof. Dr. Bertrand Meyer

Exercise Session 11

2

News

 Mock exam in one week (December 6th, 7th)

 You have to be present

 The week after (last exercise session) we will
discuss the results

3

Today

 Basic Data-structures

 Arrays

 Linked Lists

 Hashtables

 Tuples

 Agents

 Agents and Data-structures

4

Arrays

An array is a very fundamental data-structure, which is
very close to how your computer organizes its memory. An
array is characterized by:

Constant time for random reads

Constant time for random writes

Costly to resize (including inserting elements in the
middle of the array)

Must be indexed by an integer

Generally very space efficient

In Eiffel the basic array class is generic, ARRAY [G].

5

Using Arrays

Which of the following lines are valid?

Which can fail, and why?

 my_array : ARRAY [STRING]

 my_array [“Fred”] := “Sam”

 my_array [10] + “’s Hat”

 my_array [5] := “Ed”

 my_array.force (“Constantine”, 9)

Which is not a constant-time array operation?

Valid, can’t fail

Invalid

Valid, can fail

Valid, can fail

Valid, can’t fail

6

Linked Lists

 Linked lists are one of the simplest data-structures

 They consist of linkable cells

class LINKABLE [G]

create
set_value

feature
set_value (v : G)

do
value := v

end

value : G

set_next (n : LINKABLE[G])
do

next := n
end

next : LINKABLE [G]
end

7

Using Linked Lists

Supposing you keep a reference to only the head of the
linked list, what is the running time (using big O notation)
to:

Insert at the beginning

Insert in the middle

Insert at the end

Find the length of the list

What simple optimization could be made to make end-
access faster?

O (1)

O (n)

O (n)

O (n)

8

Hashtables

Hashtables provide a way to use regular objects as keys
(sort of like how we use INTEGER “keys” in arrays). This is
essentially a trade-off:

we have to provide a hashing function

hashing function should be good (minimize collision)

our hashtable will always take up more space than it
needs to

9

Good points about Hashtables

Hashtables aren’t all that bad though, they provide us with
a great solution: they can store and retrieve objects
quickly by key! This is a very common operation.

For each list define, what the key and values could be:

A telephone book

The index of a book

Google search

Name Telephone Number

Concept Page

Search String Websites

Would you use a hashtable or an array for storing the
pages of a book?

10

Tuples

A tuple of type TUPLE [A, B, C] is a sequence of at least
three values, first of type A, second of type B, third of
type C.
 In this case possible tuple values that conform are:
 [a, b, c], [a, b, c, x],...
where a is of type A, b of type B, c of type C and x of
some type X

Tuple types (for any types A, B, C, ...):
TUPLE
TUPLE [A]
TUPLE [A, B]
TUPLE [A, B, C]
...

11

Labeled Tuples

Tuples may be declared with labeled arguments:

tuple: TUPLE [food: STRING; quantity: INTEGER]

 Same as an unlabeled tuple:
TUPLE [STRING, INTEGER]
but provides easier (and safer!) access to its elements:

May use

io.print (tuple.food)
instead of

io.print (tuple.item(1))

12

Tuple Inheritance

TUPLE [A,B]

TUPLE

TUPLE [A]

...

13

Tuple conformance

tuple_conformance
local

t0: TUPLE
t2: TUPLE [INTEGER, INTEGER]

do
create t2
t2 := [10, 20]
t0 := t2
print (t0.item (1).out + "%N")
print (t0.item (3).out)

end

Not necessary in this
case

Runtime error, but
will compile

Implicit creation

14

What are agents in Eiffel?

 Objects that represent operations

 Can be seen as operation wrappers

 Similar to

 delegates in C#

 anonymous inner classes in Java < 7

 closures in Java 7

 function pointers in C

 functors in C++

15

Agent definition

 Every agent has an associated routine, which the agent
wraps and is able to invoke

 To get an agent, use the agent keyword

e.g. an_agent := agent my_routine

 This is called agent definition

 What’s the type of an_agent?

16

EiffelBase classes representing agents

*
ROUTINE

+
PROCEDURE

+
FUNCTION

+
PREDICATE

call

item

17

Agent Type Declarations

p: PROCEDURE [ANY, TUPLE]
Agent representing a procedure belonging to a class
that conforms to ANY. At least 0 open arguments

q: PROCEDURE [C, TUPLE [X, Y, Z]]
Agent representing a procedure belonging to a
class that conforms to C. At least 3 open arguments

f: FUNCTION [ANY, TUPLE [X, Y], RES]
Agent representing a function belonging to a class that
conforms to ANY. At least 2 open arguments, result of
type RES

18

Open and closed agent arguments

An agent can have both “closed” and “open” arguments:

 closed arguments are set at agent definition time

 open arguments are set at agent call time.

To keep an argument open, replace it by a question mark

u := agent a0.f (a1, a2, a3) -- All closed
w := agent a0.f (a1, a2, ?)
x := agent a0.f (a1, ?, a3)
y := agent a0.f (a1, ?, ?)
z := agent a0.f (?, ?, ?) -- All open

19

Agent Calls

An agent invokes its routine using the feature “call”

f (x1: T1; x2: T2; x3: T3)
-- defined in class C with
-- a0: C; a1: T1; a2: T2; a3: T3

u := agent a0.f (a1, a2, a3)

v := agent a0.f (a1, a2, ?)

w := agent a0.f (a1, ?, a3)

x := agent a0.f (a1, ?, ?)

y := agent a0.f (?, ?, ?) y.call ([a1, a2, a3])

x.call ([a2, a3])

w.call ([a2])

v.call ([a3])

u.call ([])PROCEDURE [C, TUPLE]

PROCEDURE [C, TUPLE [T3]]

PROCEDURE [C, TUPLE [T2]]

PROCEDURE [C, TUPLE [T2, T3]]

PROCEDURE [C, TUPLE [T1,T2,T3]

What are the types of the agents?

20

Doing something to a list

do_all (do_this : PROCEDURE[ANY, TUPLE[G]])
local

i : INTEGER
do

from

until

loop

end

end

i := 1

i > count

Given a simple ARRAY [G] class, with only the features

`count’ and `at’, implement a feature which will take an agent and

perform it on every element of the array.

do_this.call ([at (i)])
i := i + 1

21

For-all quantifiers over lists

for_all (pred : PREDICATE [ANY, TUPLE[G]])
local

i : INTEGER
do

from

until

loop

end
end

i := 1

i > count or not Result

Result := True

Result := pred.item ([at (i)])
i := i + 1

22

Using inline agents

We can also define our agents as-we-go!

Applying this to the previous `for_all’ function we made,
we can do:

for_all_ex (int_array : ARRAY [INTEGER]): BOOLEAN

local

greater_five: PREDICATE [ANY, TUPLE [INTEGER]]

do

greater_five := agent (i : INTEGER) : BOOLEAN

do

Result := i > 5

end

Result := int_array.for_all (greater_five)

end

23

Problems with Agents/Tuples

We have already seen that TUPLE [A,B] conforms to
TUPLE [A]. This raises a problem, consider the definition:

f (proc : PROCEDURE [ANY, TUPLE[INTEGER]])

do

proc.call ([5])

end

Yes! Oh no… that procedure needs at least TWO
arguments!

Are we allowed to call this on something of type
PROCEDURE [ANY, TUPLE[INTEGER,INTEGER]] ?

