
Chair of Software Engineering

Einführung in die Programmierung
Introduction to Programming

Prof. Dr. Bertrand Meyer

Exercise Session 2

2

Organizational

 Assignments

 One assignment per week

 Will be put online Friday (before 17:00)

 Should be handed in within ten days (Monday,
before 15:00)

 Testat

 You have to hand in n - 1 out of n assignments
• Must include the last one

• Show serious effort

 You have to hand in two mock exams

 Military service or illness -> contact assistant

 Group mailing list

 Is everybody subscribed?

3

Today

 Give you the intuition behind object-oriented (OO)
programming

 Teach you about formatting your code

 Distinguishing between

 feature declaration and feature call

 commands and queries

 Understanding feature call chains

 Getting to know the basics of EiffelStudio

4

Classes and objects

 Classes are pieces of software code.
 Several classes make up a program.

 Objects are instances of classes.
 A class may have many instances.

 Classes define operations applicable to their instances.
 Example: A class STUDENT can define operations

applicable to all its instances, such as subscribing to a
course, registering for an exam, etc. This means that all
class STUDENT‟s instances (such as the students Bob,
Mike, Steve, etc.) will be able to subscribe themselves to a
course, to register for an exam, etc.

 Only operations defined in a class can be applied to its
instances.

5

Features

 A feature is an operation that may be applied to certain
classes of objects.

 Feature declaration vs. feature call
 You declare a feature when you write it into a class.

set_name (a_name: STRING)
-- Set `name‟ to `a_name‟.

do
name := a_name

end

 You call a feature when you apply it to an object.
The object is called the target of this feature call.
• a_person.set_name (“Peter”)

 Arguments, if any, need to be provided in feature calls.

• computer.shut_down

• computer.shut_down_after (3)
• telephone.ring_several (10, Loud)

6

Features: Exercise

 Class BANK_ACCOUNT defines the following operations:

 deposit (a_num: INTEGER)
 withdraw (a_num: INTEGER)
 close

 If b: BANK_ACCOUNT (b is an instance of class
BANK_ACCOUNT) which of the following feature calls are
possible:

 b.deposit (10)
 b.deposit
 b.close
 b.close (“Now”)
 b.open
 b.withdraw (100.50)
 b.withdraw (0)

7

Feature declaration

Class names

Comment

Feature body

Instructions

Feature names

Class text

class PREVIEW

inherit

TOURISM
feature

explore
-- Show city info.
do

Paris display

Louvre spotlight

end
end

8

Style rule

For indentation, use tabs,
not spaces

Use this property to
highlight the structure
of the program,
particularly through
indentation

class
PREVIEW

inherit
TOURISM

feature
explore

-- Show city info
-- and route.

do
Paris display
Louvre spotlight
Line8 highlight
Route1 animate

end
endTabs

9

Class name: all upper-case

Period in feature call: no
space before or after

Names of predefined
objects: start with upper-
case letters

New names (for objects you
define) start with lower-
case letters

class
PREVIEW

inherit
TOURISM

feature
explore

-- Show city info
-- and route.

do

Paris display
Louvre spotlight
Line8 highlight
Route1 animate

end
end

More style rules

10

For feature names, use full
words, not abbreviations

Always choose identifiers
that clearly identify the
intended role

Use words from natural
language (preferably
English) for the names you
define

For multi-word identifiers,
use underscores

class
PREVIEW

inherit
TOURISM

feature
explore

-- Show city info
-- and route.

do
Paris display
Louvre spotlight
Line8 highlight
Line8 remove_all_sections
Route1 animate

end
end

Even more style rules

11

Exercise: style rules

 Format this class:

class bank_account

feature deposit (a_sum: INTEGER)

-- Add `a_sum' to the account.

do balance := balance + a_sum end

balance: INTEGER end

12

Exercise: solution

class
BANK_ACCOUNT

feature
deposit (a_sum: INTEGER)

-- Add `a_sum' to the account.
do

balance := balance + a_sum
end

balance: INTEGER
end

Within comments, use `
and „ to quote names of
arguments and features

13

Commands and queries

 A feature can be:
 a command: a feature to carry out some computation

• Register a student to a course

• Assign an id to a student

• Record the grade a student
got in an exam

• … other examples?

 a query: a feature to obtain properties of objects

• What is the name of a person?

• What is the age of a person?

• What is the id of a student?

• Is a student registered for a particular course?

• Are there any places left in a certain course?

• … other examples?

Query Command

Modify
object(s)?

N Y

Return
value?

Y N

14

Exercise: query or command?

 What is the balance of a bank account?

 Withdraw some money from a bank account

 Who is the owner of a bank account?

 Who are the clients of a bank whose deposits are over
100,000 CHF?

 Change the account type of a client

 How much money can a client withdraw at a time?

 Set a minimum limit for the balance of accounts

 Is Steve Jobs a client of Credit Suisse?

15

Command-query separation principle

“Asking a question shouldn’t change the answer”

i.e. a query

16

Query or command?

class DEMO

feature
procedure_name (a1: T1; a2, a3: T2)

-- Comment
do

…
end

function_name (a1: T1; a2, a3: T2): T3
-- Comment

do
Result := …

end

attribute_name: T3
-- Comment

end

 no result

 body

 result

 body

 result

 no body

command

query

query

Predefined variable
denoting the result

17

FeatureFeature

Features: the full story

Command

Query

Feature

Function

No result

Memory

Computation

Client view
(specification)

Internal view
(implementation)

Returns result

Attribute

Procedure

Memory

Computation

Routine

Feature

18

General form of feature call instructions

object1.query1.query2.command (object2.query3.query4, object3)

target arguments

 Where are query1, query2, query3 and query4 defined?

 Where is command defined?

 Targets and arguments can be query calls themselves.

19

Qualified vs. unqualified feature calls

 A qualified feature call has an explicit target.

 An unqualified feature call is one whose target is left out.

 An unqualified feature call uses the current object of its
caller as the implicit target.

 The current object of a feature is the object on which the
feature is called. (what„s the other name for this object?)

assign_same_name (a_name: STRING; a_other_person: PERSON)
-- Set `a_name‟ to this person and `a_other_person‟.

do
a_other_person.set_name(a_name)
set_name (a_name)

end

person1.assign_same_name(“Hans”, person2)

Qualified call

Unqualified call, same as
Current.set_name (a_name)

assign_same_name set_namecall

caller callee

20

EiffelStudio

 EiffelStudio is a software tool (IDE) to develop Eiffel
programs.

 Help & Resources

 Online tour in the help of EiffelStudio

 http://www.eiffel.com/

 http://dev.eiffel.com/

 http://docs.eiffel.com/

 http://www.ecma-
international.org/publications/files/ECMA-
ST/ECMA-367.pdf

Integrated Development Environment

http://www.eiffel.com/
http://www.eiffel.com/
http://www.eiffel.com/
http://docs.eiffel.com/
http://www.ecma-international.org/publications/files/ECMA-ST/ECMA-367.pdf
http://www.ecma-international.org/publications/files/ECMA-ST/ECMA-367.pdf
http://www.ecma-international.org/publications/files/ECMA-ST/ECMA-367.pdf
http://www.ecma-international.org/publications/files/ECMA-ST/ECMA-367.pdf
http://www.ecma-international.org/publications/files/ECMA-ST/ECMA-367.pdf
http://www.ecma-international.org/publications/files/ECMA-ST/ECMA-367.pdf
http://www.ecma-international.org/publications/files/ECMA-ST/ECMA-367.pdf
http://www.ecma-international.org/publications/files/ECMA-ST/ECMA-367.pdf

21

Components

 editor

 context tool

 clusters pane

 features pane

 compiler

 project settings

 ...

22

Editor

 Syntax highlighting

 Syntax completion

 Auto-completion (CTRL+Space)

 Class name completion (SHIFT+CTRL+Space)

 Smart indenting

 Block indenting or unindenting (TAB and SHIFT+TAB)

 Block commenting or uncommenting (CTRL+K and
SHIFT+CTRL+K)

 Infinite level of Undo/Redo (reset after a save)

 Quick search features (first CTRL+F to enter words
then F3 and SHIFT+F3)

23

Compiler

 Uses incremental compilation

 freezing: Generates C code from
the whole system and then compiles
it to machine code. This code is
used during development. Initially
the system is frozen.

 melting: Generates bytecode for
the changed parts of the system.
This is much faster than freezing.
This code is used during
development.

 finalizing: Creates an executable
production version. Finalization
performs extensive time and space
optimizations.

24

Debugger: setup

 The system must be melted/frozen (finalized systems
cannot be debugged).

 Set / delete breakpoints

 An efficient way of adding breakpoints consists
in dropping a feature in the context tool.

 Click in the margin to enable/disable single
breakpoints.

 Use the toolbar debug buttons to enable or disable all
breakpoints globally.

25

Debugger: run

 Run the program by clicking on the Run button.

 Pause by clicking on the Pause button or wait for a
triggered breakpoint.

 Analyze the program:

 Use the call stack pane to browse through the
call stack.

 Use the object tool to inspect the current
object, the locals and arguments.

 Run the program or step over / into the next
statement.

 Stop the running program by clicking on the Stop
button.

26

Advanced Material

The following slides contain advanced
material and are optional.

27

Outline

Syntax comparison: Eiffel vs Java

Naming in Eiffel

Feature comments: Less is better (sometimes...)

28

Eiffel vs Java: Class declaration

class
ACCOUNT

end

class Account {

}

29

Eiffel vs Java: Inheritance

class
ACCOUNT

inherit
ANY

end

public class Account

extends Object {

}

30

Eiffel vs Java: Feature redefinition

class
ACCOUNT

inherit
ANY

redefine out end

feature

out: STRING
do

Result := “abc”
end

end

public class Account

extends Object {

String toString() {

return “abc“;

}

}

31

Eiffel vs Java: Precursor call

class
ACCOUNT

inherit
ANY

redefine out end

feature

out: STRING
do
Result :=

Precursor {ANY}
end

end

public class Account

extends Object {

String toString() {

return super();

}

}

32

Eiffel vs Java: Deferred

deferred class
ACCOUNT

feature
deposit (a_num: INT)

deferred
end

end

abstract class Account {

abstract void deposit(int a);

}

33

Eiffel vs Java: Frozen

frozen class
ACCOUNT

inherit
ANY

end

final class Account

extends Object {

}

34

Eiffel vs Java: Expanded

expanded class
ACCOUNT

end

int, float, double, char

35

Eiffel vs Java: Constructors

class
ACCOUNT

create
make

feature
make

do
end

end

public class Account {

public Account() {}

}

36

Eiffel vs Java: Constructor overloading

class
ACCOUNT

create
make, make_amount

feature
make

do end

make_amount (a_amount: INT)
do end

end

public class Account {

public Account() {}

public Account(int a) {}

}

37

Eiffel vs Java: Overloading

class
PRINTER

feature
print_int (a_int: INTEGER)

do end

print_real (a_real: REAL)
do end

print_string (a_str: STRING)
do end

end

public class Printer {

public print(int i) {}

public print(float f) {}

public print(String s) {}

}

38

Eiffel: Exception Handling

class
PRINTER

feature
print_int (a_int: INTEGER)

local
l_retried: BOOLEAN

do
if not l_retried then

(create {DEVELOPER_EXCEPTION}).raise
else

-- Do something alternate.
end

rescue
l_retried := True
retry

end

end

39

Java: Exception Handling

public class Printer {

public print(int i) {

try {

throw new Exception()

}

catch(Exception e) { }

}

}

40

Eiffel vs Java: Conditional

class
PRINTER

feature
print

do
if True then

…
else

…
end

end

end

public class Printer {

public print() {

if (true) {

...

}

else {

...

}

}

}

41

Eiffel vs Java: Loop 1

print
local

i: INTEGER
do

from
i := 1

until
i >= 10

loop
…
i := i + 1

end
end

public class Printer {

public print() {

for(int i=1;i<10;i++) {

...

}

}

}

42

Eiffel vs Java: Loop 2

print
local

i: INTEGER
do

from
i := 1

until
i >= 10

loop
i := i + 1

end
end

public class Printer {

public print() {

int i=1;

while(i<10) {

i++;

}

}

}

43

Eiffel vs Java: Loop 3

print_1
do

from list.start
until list.after
loop

list.item.print
list.forth

end
end

print_2
do

-- Enable “provisional syntax” to
-- use “across”
across list as e loop

e.item.print
end

end

public class Printer {

public print() {

for(Element e: list) {

e.print();

}

}

}

44

Eiffel Naming: Classes

Full words, no abbreviations (with some exceptions)

Classes have global namespace

 Name clashes arise

Usually, classes are prefixed with a library prefix

 Traffic: TRAFFIC_

 EiffelVision2: EV_

 Base is not prefixed

45

Eiffel Naming: Features

Full words, no abbreviations (with some exceptions)

Features have namespace per class hierarchy

 Introducing features in parent classes, can clash
with features from descendants

46

Eiffel Naming: Locals / Arguments

Locals and arguments share namespace with features

 Name clashes arise when a feature is introduced,
which has the same name as a local (even in parent)

To prevent name clashes:

 Locals are prefixed with l_
 Some exceptions like “i“ exist

 Arguments are prefixed with a_

47

Feature comments: Version 1

tangent_ from (a_point: POINT): LINE

-- Return the tangent line to the current circle

-- going through the point `a_point‟, if the point

-- is outside of the current circle.

require
outside_circle: not has (a_point)

Example is from http://dev.eiffel.com/Style_Guidelines

48

Feature comments: Version 2

tangent_ from (a_point : POINT): LINE

-- The tangent line to the current circle

-- going through the point `a_point‟, if the point

-- is outside of the current circle.

require
outside_circle: not has (a_point)

49

Feature comments: Version 3

tangent_ from (a_point : POINT): LINE

-- Tangent line to current circle from point `a_point‟

-- if the point is outside of the current circle.

require
outside_circle: not has (a_point)

50

Feature comments: Version 4

tangent_ from (a_point : POINT): LINE

-- Tangent line to current circle from point `a_point‟.

require
outside_circle: not has (a_point)

51

Feature comments: Final version

tangent_ from (a_point : POINT): LINE

-- Tangent from `a_point‟.

require
outside_circle: not has (a_point)

52

Feature comments: More information

tangent_ from (a_point : POINT): LINE

-- Tangent from `a_point‟.

--

-- `a_point‟: The point from …

-- `Result‟: The tangent line …

--

-- The tangent is calculated using the

-- following algorithm:

-- …

require
outside_circle: not has (a_point)

53

Feature comments: Inherited comments

tangent_ from (a_point : POINT): LINE

-- <Precursor>

require
outside_circle: not has (a_point)

54

Ideas for future sessions

Inheritance concepts: Single/Multiple/Non-conforming

CAT Calls (Covariance and generics)

Once/Multiple inheritance vs. Static

Exception handling

Design by contract in depth

Void-safety

Modeling concepts

Best practices in Eiffel

A look at ECMA specification of Eiffel

