E,H Ziirich

Chair of Software Engineering

Einfihrung in die Programmierung
Introduction to Programming

Prof. Dr. Bertrand Meyer

Exercise Session 2

Organizational

» Assignments
> One assignment per week
> Will be put online Friday (before 17:00)

> Should be handed in within ten days (Monday,
before 15:00)

> Testat

> You have to hand in n - 1 out of n assignments
Must include the last one
Show serious effort

> You have to hand in Two mock exams

> Military service or illness -> contact assistant
» Group mailing list

> Is everybody subscribed?

Today ©

>

>
>

Y VY

Give you the intuition behind object-oriented (OO)
programming
Teach you about formatting your code
Distinguishing between

> feature declaration and feature call

> commands and queries
Understanding feature call chains
Getting to know the basics of EiffelStudio

Classes and objects

> Classes are pieces of software code.
> Several classes make up a program.

> Objects are instances of classes.
> A class may have many instances.

> Classes define operations applicable to their instances.

> Example: A class STUDENT can define operations
applicable to all its instances, such as subscribing to a
course, registering for an exam, etc. This means that all
class STUDENT's instances (such as the students Bob,
Mike, Steve, etc.) will be able to subscribe themselves to a
course, to register for an exam, etc.

> Only operations defined in a class can be applied to its
instances.

Features ©

> A feature is an operation that may be applied to certain
classes of objects.

> Feature declaration vs. feature call

> You declare a feature when you write it into a class.
set_name (a_name: STRING)
-- Set “name' to "a_nhame'.
do
name := a_name
end

> You call a feature when you apply it to an object.
The object is called the target of this feature call.
* a_person.set_name ("Peter”)

> Arguments, if any, need to be provided in feature calls.
« computer.shut_down
« computer.shut_down_after (3)
« telephone.ring_several (10, Loud)

Features: Exercise

> Class BANK_ACCOUNT defines the following operations:
> deposit (a_num: INTEGER)
> withdraw (a_num: INTEGER)
> close

> If b: BANK_ACCOUNT (b is an instance of class
BANK_ACCOUNT) which of the following feature calls are
possible:

> b.deposit (10)
b.deposit

b.close

b.close ("Now”)
b.open

b.withdraw (100.50)
b.withdraw (0)

YV V V V V VY
(XXX AAXS

Class text ©

class | PREVIEW|< _ Class names |
inherit / |Featur'e declaration I
TOURISM

feature /] Comment

explore
-- Show city info. . Feature body
do
/]
I Louvrg spo r//'gh fi
end

end

Style rule

/For' indentation, use Tabs,\

hot spaces

Use this property to
highlight the structure
of the program,
particularly through

Q\den‘raﬂon /

class
PREVIEW

inherit
TOURISM

feature
explore
-- Show city info
-- and route.
do

= [[Paris.display

V Louvre,spotlight
Line8, highlight

Routel animate

end
end

More style rules

class

Period in feature call: no

Names of predefined

ﬁlass nhame: all upper'—casg\

space before or after —__

objects: start with upper-

— PREVIEW
‘mlq' erit

TOURISM

eature
Jore

-- Show city info
-- route.

define) start with lower-
case letters

case letters \

New names (for objects you

J

_, Paris!display

Louvre,spotlight
\ Line8, highlight
Routel,animate
end
end

Even more style rules

ﬁr feature names, use fm

words, not abbreviations

Always choose identifiers
that clearly identify the
intended role

Use words from natural /
language (preferably

English) for the names you
define

For multi-word identifiers, —]
Qe underscores /

class
PREVIEW

inherit
TOURISM

eature
explore

v

-- Show city info
-- and route.

\

do

Paris,display

Louvre,spo f//'ghf

Line8, highlight
Line8,remove_all_sections
Routel animérnte

10

Exercise: style rules %
> Format this class:
class bank_account
feature deposit (a_sum: INTEGER)

-- Add "a_sum' to the account.
do balance := balance + a_sum end

balance: INTEGER end

11

Exercise: solution

class
BANK ACCOUNT

feature
deposit (a_sum: INTEGER)
-- Add "a_sum' to the account.

do
balance := balance + a_sum
end

balance. INTEGER
end

Within comments, use
and ' to quote names of
arguments and features

Commands and queries

> A feature can be:
> acommand: a feature to carry out some computation

Register a student to a course
Assign an id to a student Modify N

i ?
Record the grade a student ~ °PI€ct(s)
got in an exam Return %
value?

.. other examples?

> aquery: a feature to obtain properties of objects

What is the name of a person?

What is the age of a person?

What is the id of a student?

Is a student registered for a particular course?
Are there any places left in a certain course?

.. other examples?

13

Exercise: query or command?

YV V V V

YV V V V

What is the balance of a bank account?
Withdraw some money from a bank account
Who is the owner of a bank account?

Who are the clients of a bank whose deposits are over
100,000 CHF?

Change the account type of a client

How much money can a client withdraw at a time?
Set a minimum limit for the balance of accounts
Is Steve Jobs a client of Credit Suisse?

14

Command-query separation principle

"Asking a question shouldn’t change the answer”

‘i.e. a query\

15

Query or command?

class DEMO

feature ‘4 command |

procedure_name (al: T1 a2, a3: T2)
-- Comment
do

endm

J query |
function_name (al: T1 a2, a3: T2): T3

-- Comment

do Predefined variabl
Result := .. |denoting the result

end

J query |
attribute_name:

-- Comment

end

A\

A\

Y VYV

no result
body

result
body

result
ho body

16

Features: the full story ©

Client view Internal view
(specification) (implementation)

Command — Procedure \
No result Routine
Compu’r:%

" Feature
emory

Feature

Returns result :
Function
Computation

Query

Attribute

17

General form of feature call instructions

objectl.gueryl.guery2.command (objectZ.query3.query4, object3)
_ / _ o _

g
| target | .arguments|

» Targets and arguments can be query calls themselves.

> Where are gueryl, gueryZ, guery3 and guery4 defined?
» Where is command defined?

18

Qualified vs. unqualified feature calls ©

> A qualified feature call has an explicit target.
» Anunqualified feature call is one whose target is left out.

> Anunqualified feature call uses the current object of its
caller as the implicit target.

> The current object of a feature is the object on which the
feature is called. (what's the other name for this object?)

assign_same_name (a_name: STRING, a_other_person: PERSON)
-- Set “a_name' to this person and " a_other_person'.

do A Qualified call
a_other_person.set_name(a_hame

set_name (a_name) Unqualified call, same as
end Current.set_name (a_name)

personl.assign_same_name(Hans”, person2)

|_assign_same_name | call >| set_name |

caller callee

19

EiffelStudio ©

> EiffelStudio is a software tool (IDE) to develop Eiffel

rograms. B — .
Prog | Integrated Development Environment |

> Help & Resources

> Online tour in the help of EiffelStudio
http://www.eiffel.com/
http://dev.eiffel.com/
http://docs.eiffel.com/

http://www.ecma-
international.org/publications/files/ECMA-
ST/ECMA-367.pdf

YV V V VY

20

http://www.eiffel.com/
http://www.eiffel.com/
http://www.eiffel.com/
http://docs.eiffel.com/
http://www.ecma-international.org/publications/files/ECMA-ST/ECMA-367.pdf
http://www.ecma-international.org/publications/files/ECMA-ST/ECMA-367.pdf
http://www.ecma-international.org/publications/files/ECMA-ST/ECMA-367.pdf
http://www.ecma-international.org/publications/files/ECMA-ST/ECMA-367.pdf
http://www.ecma-international.org/publications/files/ECMA-ST/ECMA-367.pdf
http://www.ecma-international.org/publications/files/ECMA-ST/ECMA-367.pdf
http://www.ecma-international.org/publications/files/ECMA-ST/ECMA-367.pdf
http://www.ecma-international.org/publications/files/ECMA-ST/ECMA-367.pdf

Components

YV V V V VYV VY

editor

context tool
clusters pane
features pane
compiler
project settings

21

Editor ©

VVV V V VY

Y VY

Syntax highlighting

Syntax completion

Auto-completion (CTRL+Space)

Class name completion (SHIFT+CTRL+Space)

Smart indenting

Block indenting or unindenting (TAB and SHIFT+TAB)

Block commenting or uncommenting (CTRL+K and
SHIFT+CTRL+K)

Infinite level of Undo/Redo (reset after a save)

Quick search features (first CTRL+F to enter words
then F3 and SHIFT+F3)

22

Compiler

» Uses incremental compilation
> freezing: Generates C code from

the whole system and then compiles
it To machine code. This code is
used during development. Initially
the system is frozen.

melting: Generates bytecode for
the changed parts of the system.
This is much faster than freezing.
This code is used during
development.

finalizing: Creates an executable
production version. Finalization
performs extensive time and space
optimizations.

0,

23

Debugger: setup

>

>

The system must be melted/frozen (finalized systems
cannot be debugged).

Set / delete breakpoints

> An efficient way of adding breakpoints consists
in dropping a feature in the context tool.

> Click in the margin to enable/disable single
breakpoints.

Use the toolbar debug buttons to enable or disable all
breakpoints globally.

24

Debugger: run

YV VY

Run the program by clicking on the Run button.

Pause by clicking on the Pause button or wait for a
triggered breakpoint.

Analyze the program:

> Use the call stack pane to browse through the
call stack.

> Use the object tool to inspect the current
object, the locals and arguments.

Run the program or step over / into the next
statement.

Stop the running program by clicking on the Stop
button.

25

Advanced Material

The following slides contain advanced
material and are optional.

26

Outline

»Syntax comparison: Eiffel vs Java
»Naming in Eiffel
>Feature comments: Less is better (sometimes...)

27

Eiffel vs Java: Class declaration

class class Account {
ACCOUNT

end }

28

Eiffel vs Java: Inheritance

class public class Account
ACCOUNT extends Object {
inherit
ANY

end }

29

Eiffel vs Java: Feature redefinition

class
ACCOUNT
inherit
ANY
redefine outend

feature

out: STRING
do
Result .= “abc”
end

end

public class Account
extends Object {

String toString() {
return “abc";

}

30

Eiffel vs Java: Precursor call

class
ACCOUNT
inherit
ANY
redefine outend

feature

out: STRING
do
Result .=

Precursor {ANY}
end

end

public class Account
extends Object {

String toString() {
return super();

}

31

Eiffel vs Java: Deferred

deferred class
ACCOUNT

feature
deposit (a_num: INT)
deferred
end

end

abstract class Account {
abstract void deposit(int a);

}

32

Eiffel vs Java: Frozen

frozen class
ACCOUNT
inherit
ANY

end

final class Account
extends Object {

33

Eiffel vs Java: Expanded

expanded class int, float, double, char
ACCOUNT

end

34

Eiffel vs Java: Constructors

class
ACCOUNT
create
make

feature
make

do
end

end

public class Account {

}

public Account() {}

35

Eiffel vs Java: Constructor overloading ©

class public class Account {
ACCOUNT public Account() {}

create . /
make, make_amount public Account(int a) {}

feature
make
do end

make_amount (a_amount: INT)
do end

end

36

Eiffel vs Java: Overloading ©

class public class Printer {
PRINTER public print(int i) {}
feature public print(float f) {}
print_int (a_int: INTEGER) public print(String s) {}
do end)

print_real (a_real: REAL)
do end

print_string (a_str: STRING)

do end
end

37

Eiffel: Exception Handling

class
PRINTER
feature

print_int (a_int: INTEGER)
local

| _retried: BOOLEAN
do
if not /_retried then
(create {DEVELOPER_EXCEPTION]}) raise
else
-- Do something alternate.
end
rescue
| _retried := True
retry
end

end

38

Java: Exception Handling

public class Printer {
public print(int i) {
try {
throw new Exception()
}
catch(Exceptione) { }
}
}

39

Eiffel vs Java: Conditional

class public class Printer {
PRINTER public print() {
feature it (true) {
print
do }
if True then else {
else
ece }
end }
end }

end

40

Eiffel vs Java: Loop 1

print
local
i: INTEGER
do
from
[z 1
until
[>= 10
loop
[:=7+1
end

end

public class Printer {
public print() {
for(int i=1;i<10;i++) {

}
}
}

41

Eiffel vs Java: Loop 2

print
local
i: INTEGER
do
from
[z 1
until
[>= 10
loop
[:=7+1
end

end

public class Printer {
public print() {
int i=1;
while(i<10) {
I++,
}
}
}

42

Eiffel vs Java: Loop 3 ©

print_1 public class Printer {
do]) public print() {
rom /ist.start 1
until /ist.after for(Ele.menjr e list){
loop e.print();
list.item.print }
list.forth }
end)
end

print_2

do
-- Enable "provisional syntax" to
-- use "across"”
across /ist as e loop

e./ltem.print

end

end

43

Eiffel Naming: Classes

»Full words, no abbreviations (with some exceptions)

»Classes have global namespace
» Name clashes arise

»Usually, classes are prefixed with a library prefix
> Traffic: TRAFFIC_
> EiffelVision2: EV_
> Base is not prefixed

44

Eiffel Naming: Features ©

»Full words, no abbreviations (with some exceptions)

»Features have namespace per class hierarchy

> Introducing features in parent classes, can clash
with features from descendants

45

Eiffel Naming: Locals / Arguments ©

»Locals and arguments share namespace with features

> Name clashes arise when a feature is introduced,
which has the same name as a local (even in parent)

» To prevent name clashes:

> Locals are prefixed with |_

> Some exceptions like "i" exist

> Arguments are prefixed with a__

46

Feature comments: Version 1

tangent_ from (a_point: POINT): LINE
-- Return the tangent line to the current circle
-- going through the point " a_point’, if the point
-- is outside of the current circle.
require
outside_circle: not has (a_point)

Example is from http://dev.eiffel.com/Style_Guidelines

47

Feature comments: Version 2

tangent_ from (a_point : POINT): LINE
-- The tangent line to the current circle
-- going through the point " a_point', if the point
-- is outside of the current circle.
require
outside_circle: not has (a_point)

48

Feature comments: Version 3

tangent_ from (a_point : POINT): LINE
-- Tangent line to current circle from point ~a_point’
-- if the point is outside of the current circle.
require
outside_circle: not has (a_point)

49

Feature comments: Version 4

tangent_ from (a_point : POINT): LINE
-- Tangent line to current circle from point " a_point’.
require
outside_circle: not has (a_point)

50

Feature comments: Final version

tangent_ from (a_point : POINT): LINE
-- Tangent from " a_point".
require
outside_circle: not has (a_point)

51

Feature comments: More information

tangent_ from (a_point : POINT): LINE
-- Tangent from " a_point’.

-- “a_point": The point from ...
-- "Result: The tangent line ...

-- The tangent is calculated using the
-- following algorithm:

require
outside_circle: not has (a_point)

52

Feature comments: Inherited comments

tangent_ from (a_point : POINT): LINE
-- <Precursor>
require
outside_circle: not has (a_point)

53

Ideas for future sessions

»Inheritance concepts: Single/Multiple/Non-conforming
»CAT Calls (Covariance and generics)

»Once/Multiple inheritance vs. Static

»Exception handling

»Design by contract in depth

»Void-safety

»Modeling concepts

»Best practices in Eiffel

> A look at ECMA specification of Eiffel

54

