
Chair of Software Engineering

Einführung in die Programmierung
Introduction to Programming

Prof. Dr. Bertrand Meyer

Exercise Session 5

2

Today

 Reference types vs. expanded types

 Assignment

 Basic types

 Local variables

 Qualified and unqualified calls

 Entities and variables: summary

3

Two kinds of types

Reference types: value of any entity is a reference.

Example:

s : STATION

Expanded types: value of an entity is an object.

Example:

p : POINT

s

(STATION)

p

reference

1.2
5.0

(SOME_CLASS)

(SOME_CLASS)

(POINT)

4

Who can reference what?

Objects of expanded types can contain references to
other objects…

… but they cannot be referenced by other objects!

c

(SOME_CLASS)

(COUPLE)

(HUMAN)

(HUMAN)
(OTHER_CLASS) 10

5

Reference equality

a = b ?

a = b ?

1.0
2.0

(VECTOR)

a b

1.0
2.0

(VECTOR)

1.0
2.0

(VECTOR)

ba

6

Expanded entities equality

Entities of expanded types are compared by value!

a = b ?

a 1.2
5.0

(SOME_CLASS)

(POINT)

b 1.2
5.0

(POINT)

7

Expanded entities equality

(SOME_CLASS)

(HUMAN)

32
„John“

(HUMAN)

b

a

30
„Jane“

(HUMAN)

32
„John“

(HUMAN)

30
„Jane“

a = b ?

(COUPLE)
10

(COUPLE)
10

8

Expanded entities equality

(HUMAN)

32
„John“

(HUMAN)

30
„Jane“

a = b ?

(SOME_CLASS)

b

a

(COUPLE)
10

(COUPLE)
10

9

Why expanded types?

Pass-by-value semantics.

Basic types.

Realism in modeling external world objects

 Especially when you want to describe objects that
have sub-objects.

Possible efficiency gain.

Interface with other languages.

Machine-dependent operations.

10

Assignment

Assignment is an instruction (What other instructions do
you know?)

Syntax:

a := b

 where a is a variable (e.g., attribute) and b is an
expression (e.g. argument, query call);

 a is called the target of the assignment and b the
source.

Semantics:

 after the assignment a equals b (a = b);

 the value of b is not changed by the assignment.

11

Reference assignment

1.0
2.0

(VECTOR)

a
0.0
-1.0

(VECTOR)

b

a := b

a references the same object as b:

a = b

12

Expanded assignment

a 1.2
5.0

(POINT)

b -2.0
7.8

(POINT)

a := b

The value of b is copied to a, but again:

a = b

-2.0
7.8

13

Assignment

Explain graphically the effect of an

assignment:

(HUMAN)

32
„John“

(HUMAN)

a

30
„Jane“

(HUMAN)

25
„Dan“

(HUMAN)

24
„Lisa“

(COUPLE)
10

a := b

b

(COUPLE)
44

Here COUPLE is an expanded class, HUMAN is a
reference class

14

Attachment

 More general term than assignment

 Includes:

 Assignment

a := b

 Passing arguments to a routine

f (a: SOME_TYPE)

do … end

f (b)

 Same semantics

15

Dynamic aliasing

a, b: VECTOR

…

create b.make (1.0, 0.0)

a := b

 now a and b reference the same object (are two names
or aliases of the same object)

 any change to the object attached to a will be reflected,
when accessing it using b
 any change to the object attached to b will be
reflected, when accessing it using a

1.0
0.0

(VECTOR)

a

b
x

y

16

Dynamic aliasing

What are the values of a.x, a.y, b.x and

b.y after executing instructions 1-4?

a, b: VECTOR

…

create a.make (-1.0, 2.0)

1 create b.make (1.0, 0.0)

2 a := b

3 b.set_x (5.0)

4 a.set_y (-10.0)

5.0
-10.0

(VECTOR)

a

b
x

y

17

Where do expanded types come from?

To get an expanded type, declare a class with keyword
expanded:

expanded class COUPLE
feature -- Access

man, woman: HUMAN

years_together: INTEGER

end

Now all the entities of type COUPLE will automatically
become expanded:

pitt_and_jolie: COUPLE
Expanded

Reference

?

18

Basic types

 So called basic types (BOOLEAN, INTEGER, NATURAL,
REAL, CHARACTER, STRING) in Eiffel are classes – just
like all other types

 Most of them are expanded…

a := b

… and immutable (they do not contain commands to
change the state of their instances)…

a := a.plus (b) instead of a.add (b)

5b3a

5a 5b

a + b

Alias for „add“

19

Basic types

… their only privilege is to use manifest constants to
construct their instances:

b: BOOLEAN

x: INTEGER

c: CHARACTER
s: STRING

…

b := True

x := 5 -- instead of create x.make_five

c := „c‟

s := “I love Eiffel”

20

Strings are a bit different

Strings in Eiffel are not expanded…

s: STRING

… and not immutable

s := “I love Eiffel”

s.append (“ very much!”)

I l o v ...

...
13

s area

count

e

21

Initialization

Default value of any reference type is Void

Default values of basic expanded types are:

 False for BOOLEAN
 0 for numeric types (INTEGER, NATURAL, REAL)

 “null” character (its code = 0) for CHARACTER

Default value of a non-basic expanded type is an object,
whose fields have default values of their types

(COUPLE)
0

22

Initialization

What is the default value for the following
classes?

expanded class POINT
feature x, y: REAL end

class VECTOR

feature x, y: REAL end

STRING

0.0
0.0

(POINT)

x

y

Void

Void

23

 Expanded classes must be creatable in the default way
expanded class POINT
create make
feature make do x := 5.0; y := 5.0 end

...
end

 But you can use a trick
expanded class POINT
inherit ANY

redefine default_create
feature

default_create
do

x := 5.0; y := 5.0
end

end

Custom initialization for expanded types

24

 Some variables are only used by a certain routine
(examples from your last assignment?)

 Declare them as local:

feature

f (arg1: A; …)

require ...

local

x, y : B

z : C

do … end

ensure ...

end

Local variables

25

The scope of names

Attributes:

 are declared anywhere inside a feature clause, but
outside other features

 are visible anywhere inside the class

Formal arguments:

 are declared after the feature name

 are only visible inside the feature body and its
contracts

Local variables:

 are declared in a local clause inside the feature
declaration

 are only visible inside the feature body

26

Compilation error? (1)

class PERSON
feature

name: STRING

set_name (a_name: STRING)
do

name := a_name
end

exchange_names (other: PERSON)
local

s: STRING
do

s := other.name
other.set_name (name)
set_name (s)

end
print_with_semicolon

do
create s.make_from_string (name)
s.append(„;‟)
print (s)

end
end

Error: this variable
was not declared

27

Compilation error? (2)

class PERSON
feature

… -- name and set_name as before

exchange_names (other: PERSON)
local

s: STRING
do

s := other.name
other.set_name (name)
set_name (s)

end

print_with_semicolon
local

s: STRING
do

create s.make_from_string (name)
s.append(„;‟)
print (s)

end
end

OK: two different local
variables in two routines

28

Compilation error? (3)

class PERSON
feature

… -- name and set_name as before

s: STRING

exchange_names (other: PERSON)
do

s := other.name
other.set_name (name)
set_name (s)

end

s: STRING

print_with_semicolon
do

create s.make_from_string (name)
s.append(„;‟)
print (s)

end
end

Error: an attribute
with the same name
was already defined

29

Compilation error? (4)

class PERSON
feature

… -- name and set_name as before

exchange_names (other: PERSON)
do

s := other.name
other.set_name (name)
set_name (s)

end

print_with_semicolon
do

create s.make_from_string (name)
s.append(„;‟)
print (s)

end

s: STRING
end

OK: a single attribute
used in both routine

30

Local variables vs. attributes

Which one of the two correct versions

(2 and 4) do you like more? Why?

 Describe the conditions under which it is better

to use a local variable instead of an attribute and
vice versa

31

Result

 Inside every function you can use the predefined local
variable Result (you needn‟t and shouldn‟t declare it)

 The return value of a function is whatever value the
Result variable has at the end of the function execution

 At the beginning of routine‟s body Result (as well as
regular local variables) is initialized with the default
value of its type

 Every regular local variable is declared with some type;
and what is the type of Result?

It‟s the function return type!

32

Compilation error? (5)

class PERSON

feature

… -- name and set_name as before

exchange_names (other: PERSON)

do

Result := other.name

other.set_name (name)

set_name (Result)

end

name_with_semicolon: STRING
do

create Result.make_from_string (name)

Result.append(„;‟)

print (Result)

end

end

Error: Result can
not be used in a

procedure

33

 In object-oriented computation each routine call is
performed on a certain object

 Inside the routine we can access this object using the
predefined entity Current

Current

(STATION)

x.connect (y) connect (other: STATION)
do

…
road.connect

(Current, other)
end

 What is the type of Current?

34

 If the target of a feature call is Current, it is common
to omit it:

Current.f (a) f (a)

Revisiting qualified vs. unqualified feature calls

 Such a call is unqualified

 Otherwise, if the target of a call is specified
explicitly, the call is qualified

x.f (a)

35

Qualified or unqualified?

Are the following feature calls, with their
feature names underlined, qualified or unqualified?
What are the targets of these calls?

1) x.y

2) x

3) f (x.a)

4) x.y.z

5) x (y.f (a.b))

6) f (x.a).y (b)

7) Current.x

qualified

unqualified

unqualified

qualified

unqualified

qualified

qualified

36

Assignment to attributes

 Direct assignment to an attribute is only allowed if an
attribute is called in an unqualified way:

y := 5

x.y := 5

Current.y := 5

 There are two main reasons for this rule:

1. A client may not be aware of the restrictions on
the attribute value and interdependencies with
other attributes => class invariant violation
(Example?)

2. Guess! (Hint: uniform access principle)

OK

Error

?Error

37

Entity: the final definition

 variable attribute

 constant attribute

Only a variable can be used in a creation instruction and in
the left part of an assignment

An entity in program text is a “name” that directly
denotes an object. More precisely: it is one of

 attribute name

 formal argument name

 local variable name

 Result

 Current

Read-write entities / variables

Read-only entities

38

Find 5 errors

class VECTOR
feature

x, y: REAL

copy_from (other: VECTOR)
do

Current := other
end

copy_to (other: VECTOR)
do

create other
other.x := x
other.y := y

end

reset
do

create Current
end

end

Current is not a
variable and can not

be assigned to

other is a formal argument
(not a variable) and thus can

not be used in creation

other.x is a qualified attribute
call (not a variable) and thus

can not be assigned to

the same reason for other.y

Current is not a variable and
thus can not be used in

creation

