E,H Ziirich

Chair of Software Engineering

Einfihrung in die Programmierung
Introduction to Programming

Prof. Dr. Bertrand Meyer

Exercise Session b

Today

> Reference types vs. expanded types
» Assignment

> Basic types

» Local variables

» Qualified and unqualified calls

> Entities and variables: summary

Two kinds of types

Reference types: value of any entity is a reference.
Example:

r=----~7reference
s: STATION a B
(50;1/1_5: _6'2;155) _
(STATION)

Expanded types: value of an entity is an object.
Example:

p: POINT P H
5.0

(SOME CLASS)

Who can reference what?

Objects of expanded types can contain references to
other objects...

(OTHER_CIASS)

(HUMAN)

SOME_CLASS)

.. but they cannot be referenced by other objects!

Reference equality

>H4 b
2.0

(VECTOR)
a=b?
O . o[-
2.0 2.0

(VECTOR) (VECTOR)

Expanded entities equality

a

=t

(POINT)

o

(POINT)

(SOME CLASS)

Q
I
G-
N

Entities of expanded types are compared by valuel

Expanded entities equality

.John"
a P> 32
(HUMAN)
» . Jane"
30
(COUPLE) (HUMAN)
.John"
32 < b
(HUMAN)
Jane" [<€
30
HUMAN
(HUMAN) (COUPLF)

(SOME_CLASS)

a=b?

Expanded entities equality

a

.Jane"

«—

30

(HUMAN)

—

(COUPLE)

.John"

32

<

—

(COUPLE)

—
e

(SOME_CLASS)

a=b?

(HUMAN)

Why expanded types?

»Pass-by-value semantics.
> Basic types.
»Realism in modeling external world objects

> Especially when you want to describe objects that
have sub-objects.

»Possible efficiency gain.
»Interface with other languages.
»Machine-dependent operations.

Assignment ©

»Assignment is an instruction (What other instructions do
you know?)

» Syntax:
a:=b
> where ais a variable (e.g., attribute) and b is an
expression (e.g. argument, query call);

> ais called the target of the assignment and 6 the
source.

» Semantics:

> after the assignment aequals 6 (a= b);
> the value of b6 is not changed by the assignment.

10

Reference assignment

B
2.0

(VECTOR)

—
-1.0

(VECTOR)

areferences the same object as b4:

a= b

11

Expanded assignment

a b
/7.8 i /.8

(POINT) (POINT)

The value of bis copied to a, but again:
a=b

12

Assignment

Explain graphically the effect of an
assignment:

.John" a ,Dan"
32 |[¢— Pl 25 |je¢——
(HUMAN) (HUMAN)
.Jane" [¢ P Lisa® |[€
(HUMAN) HUMAN
(COUPLE) (HUMARD (COUPLE)
a=b

Here COUPLE is an expanded class, HUMAN is a
reference class

13

Attachment

» More general term than assignment
» Includes:
> Assignment
a:=>b

> Passing arguments to a routine
f(a SOME_TYPE)
do .. end

f(b)
» Same semantics

14

Dynamic aliasing ©

a, b: VECTOR a

create b.make (1.0, 0.0) X 00 e b

a:=b Y : =
(VECTOR)

> now aand b reference the same object (are two names
or aliases of the same object)

» any change to the object attached to awill be reflected,
when accessing it using b

» any change to the object attached to 6 will be
reflected, when accessing it using a

15

Dynamic aliasing

What are the values of a.x, a.y, b.x and
b.y after executing instructions 1-4?

a, b: VECTOR

create a.make (-1.0, 2.0)
create b.make (1.0, 0.0)

o X
a:i=b y -10.0 \\ b

b.set_x(5.0) (VECTOR)
a.set_y (-10.0)

H w N+

16

Where do expanded types come from?

To get an expanded type, declare a class with keyword
expanded:

expanded class COUPLE
feature -- Access

man, woman. HUMAN —===____ Reference |

years_together. INTEGER —~<______ 2 |

end

Now all the entities of type COUPLE will automatically
become expanded:

pitt_and_jolie. COUPLE

g Expanded |

17

Basic types ©

> So called basic types (BOOLEAN, INTEGER, NATURAL,
REAL, CHARACTER, STRING) in Eiffel are classes - just
like all other types

> Most of them are expanded...
« IS b (NS
« b 6]

»> ... and immutable (they do not contain commands to
change the state of their instances)...

a.=b

a= a+b instead of a.add (b)

] Alias for .add" |

18

Basic types

.. their only privilege is o use manifest constants to
construct their instances:

b: BOOLEAN
x: INTEGER

c. CHARACTER
s STRING

b := True

x:=5 -- instead of create x.make_five
c:i='c

5:="I love Eiffel"

19

Strings are a bit different

Strings in Eiffel are not expanded...

s. STRING

S area

count

.. and not immutable

s:= "I love Eiffel"
s.append (" very much!”)

»i—»

20

Initialization

Default value of any reference type is Void

Default values of basic expanded types are:
> False for BOOLEAN
> O for numeric types (INTEGER, NATURAL, REAL)
» "null" character (its code = O) for CHARACTER

Default value of a non-basic expanded type is an object,
whose fields have default values of their types

¢
L 4
L 4
=—;
*

(COUPLE)

21

Initialization

What is the default value for the following
classes?

expanded class POINT
feature x, y: REAL end

class VECTOR
feature x, y: REAL end

S TRING Void

22

Custom initialization for expanded types

» Expanded classes must be creatable in the default way
expanded class POINT
create make

feature makedo x := 5.0y := 5.0en

end

> But you can use a trick
expanded class POINT

inherit ANY
redefine default_create
feature
default _create
do
x:=50'y: =50
end

end

0,

23

Local variables

» Some variables are only used by a certain routine
(examples from your last assignment?)

> Declare them as local:

feature
f (argl A; .)

require ...

(local P

X, y.B

. z: &
do ... end
ensure ...

end

The scope of names

Attributes:

> are declared anywhere inside a feature clause, but
outside other features

> are visible anywhere inside the class
Formal arguments:
> are declared after the feature name

> are only visible inside the feature body and its
contracts

Local variables:

> are declared in a local clause inside the feature
declaration

> are only visible inside the feature body

25

Compilation error? (1)

class PERSON
feature
name. S TRING

set_name (a_name. STRING)

do
name = a_name
end
exchange_names (other. PERSON)
local
5. STRING
do
5:= other.name
other.set_name (name)
set_name (5)
end
print_ W/'gh_sem/co/on
)
create s.make_from_string (name)
s.append(’;')
print (s)
end

end

26

Compilation error? (2)

class PERSON
feature
-- name and set_name as before

exchange_names (other. PERSON)

local
s STRING
do
5 := other.name
other.set_name (name)
set_name (s)
end
, , , OK: two different local
p/‘/m‘_W/lf/‘/_slem/ca/an variables in two routines
oca
s STRING
do
create s.make_from_string (name)
s.append(’;')
print (s)
end

end

27

Compilation error? (3)

class PERSON

feature
-- name and set_name as before

s. STRING

exchange_names (other. PERSON)

do
5:= other.name
other.set_name (name)
set_name (s)
end
s STRING

print_ w/;h_sem/co/on
)
create s.make_from_string (name)
s.append(’;')
print (s)
end
end

28

Compilation error? (4)

class PERSON
feature
-- name and set_name as before

exchange_names (other. PERSON)

do
s .= other.name
other.set_name (name)
set_name (s)

end

OK: a single attribute

used in both routine

print_with_semicolon

do
create s.make_from_string (name)
s.append(’;')
print (s)
end
s STRING

end

29

Local variables vs. attributes ©

> Which one of the two correct versions
(2 and 4) do you like more? Why?

> Describe the conditions under which it is better

to use a local variable instead of an attribute and
vice versa

30

Result

> Inside every function you can use the predefined local
variable Result (you needn't and shouldn't declare it)

> The return value of a function is whatever value the
Result variable has at the end of the function execution

» At the beginning of routine's body Result (as well as
regular local variables) is initialized with the default
value of its type

> Every regular local variable is declared with some type;

and what is the type of Result?

I't's the function return typel

31

Compilation error? (5)

class PERSON
feature

-- name and set_name as before
exchange names (other. PERSON)

do
Result := other.name
other.set_name (name)

set_name (Result)

end

name_with_semicolon: S TRING

do
create Result.make_from_string (name)
Result.append(’;")
print (Result)

end

end

32

Current

» In object-oriented computation each routine call is
performed on a certain object

> Inside the routine we can access this object using the
predefined entity Current

x.connect (y) connect (other. STATION)
do

road.connect
{Current, other)

(STATION) end

» What is the type of Current?

33

Revisiting qualified vs. unqualified feature calls

> If the target of a feature call is Current, it is common
to omit it:
7 (a)

» Such a call is unqualified

» Otherwise, if the target of a call is specified
explicitly, the call is qualified

x.f(a)

34

Qualified or unqualified?

Are the following feature calls, with their
feature names underlined, qualified or unqualified:
What are the targets of these calls?

1) xy [qualified

2) x W
3) f(x.a) unqualified

4) xy.z [qualified
5) x(y.f (a.b)) | unqualified
6) f(x.a).y(b) [qualified |
7) Current.x | qualified

35

Assignment to attributes

> Direct assignment to an attribute is only allowed if an
attribute is called in an unqualified way:

y = o) [OK J
XY= e Erer
Current.y:= 5 @

> There are two main reasons for this rule:

1. A client may not be aware of the restrictions on
the attribute value and interdependencies with
other attributes => class invariant violation
(Example?)

2. Guess! (Hint: uniform access principle)

36

Entity: the final definition ©

An entity in program text is a "name" that directly
denotes an object. More precisely: it is one of

» attribute name
>[var'iab|e attribute }([Read-write entities / var'iables]

r >[cons’ram‘ attribute

formal argument name

Llocal variable name

Result

Current

Read-only entities]

YV V V V

Only a variable can be used in a creation instruction and in
the left part of an assignment

37

Find 5 errors

class VECTOR
feature
x, y. REAL

copy._from (other. VECTOR)

do

end

copy._to (other. VECTOR)

do

end

reset
do

end
end

Current := other

create oth
other x =
other.y:=y

T e e for ey |

create Current <<=

38

