Software Verification

Sebastian Nanz

Lecture 8: Abstract Interpretation
Plan for today's lecture

- In the first part we discuss *program slicing* as another example of an application of data flow analysis.

- In the second part we discuss *abstract interpretation*, a general framework for expressing program analyses.
Program Slicing
"What program statements potentially affect the value of variable sum at line 8 of the program?"
Program slicing

- Program slicing provides an answer to the question

"What program statements potentially affect the values of the variables at program point I?"

- The resulting program statements are called the program slice.
- The program point I is called the slicing criterion.
- An observer focusing on the slicing criterion (i.e. only observing values of the variables at program point I) cannot distinguish a run of the program from the run of its slice.
Applications of program slicing

- **Debugging**: Slicing lets the programmer focus on the program part relevant to a certain failure, which might lead to quicker detection of a fault.

- **Testing**: Slicing can minimize test cases, i.e. find the smallest set of statements that produces a certain failure (good for regression testing).

- **Parallelization**: Slicing can determine parts of the program which can be computed independently of each other and can thus be parallelized.
Classification

- **Static slicing vs. dynamic slicing**
 - Static: general, not considering a particular input
 - Dynamic: computed for a fixed input, therefore smaller slices can be obtained

- **Backward slicing vs. forward slicing**
 - Backward: "Which statements affect the execution of a statement?"
 - Forward: "Which statements are affected by the execution of a certain statement?"

- In the following we present an algorithm for **static backward slicing**.
Program slice

A backward slice S of program P with respect to slicing criterion l is any executable program with the following properties:

1. S can be obtained by deleting zero or more statements from P.
2. If P halts on input I, then the values of the variables at program point l are the same in P and in S every time program point l is executed.
Slicing algorithm

- We present a slicing algorithm for static backward slicing.
- Many different approaches, we show one that constructs a program dependence graph (PDG).
- A PDG is a directed graph with two types of edges:
 - Data dependencies: given by data-flow analysis
 - Control dependencies: program point \(l \) is control-dependent on program point \(l' \) if
 1. \(l' \) labels the guard of a control structure
 2. the execution of \(l \) depends on the outcome of the evaluation of the guard at \(l' \)
Control flow graph of the example program

1. \[\text{sum} := 0 \]
2. \[\text{prod} := 1 \]
3. \[i := 0 \]
4. \[i < y \]
5. \[\text{sum} := \text{sum} + x \]
6. \[\text{prod} := \text{prod} \times x \]
7. \[i := i + 1 \]
8. \[\text{print(sum)} \]
9. \[\text{print(prod)} \]
Example: Program dependence graph

1. Data dependence subgraph

\[\begin{align*}
&[\text{sum} := 0]_1 \\
&[\text{prod} := 1]_2 \\
&[i := 0]_3 \rightarrow [i < y]_4 \\
&[\text{sum} := \text{sum} + x]_5 \\
&[\text{prod} := \text{prod} \times x]_6 \\
&[i := i + 1]_7 \\
&[\text{print(sum)}]_8 \\
&[\text{print(prod)}]_9 \\
\end{align*} \]

\[\{ (l, l') \mid l \in \bigcup_{x \text{ used in block } l'} \mathbf{UD}(x, l') \text{ where } l' \text{ labels a block} \} \]

(self-loops are omitted)
Example: Program dependence graph

2. Control dependence subgraph

ENTRY

[sum:=0] [prod:=1] [i:=0] [i<y]

[sum := sum + x] [prod := prod * x] [i := i + 1]

[print(sum)] [print(prod)]

(1) Edge from special node ENTRY to any node not within any control structure (such as while, if-then-else)

(2) Edge from any guard of a control structure to any statement within the control structure
Example: Computing the program slice

- Data dependencies
- Control dependencies

Slicing using the PDG:

1. Take as initial node the one given by the slicing criterion
2. Include all nodes which the initial node transitively depends upon (use both data- and control-dependencies)
Abstract Interpretation

Introduction
One framework to rule them all

- In the past lecture we have introduced a particular style of program analysis: data flow analysis.

- For these types of analyses, and others, a main concern is correctness: how do we know that a particular analysis produces sound results (does not forget possible errors)?

- In the following we discuss abstract interpretation, a general framework for describing program analyses and reasoning about their correctness.
Main ideas: Concrete computations

- An ordinary program describes computations in some \textbf{concrete domain} of values.
 - \textbf{Example:} program states that record the integer value of every program variable.

\[
\sigma \in \text{State} = \text{Var} \rightarrow \mathbb{Z}
\]

- Possible computations can be described by the \textbf{concrete semantics} of the programming language used.
Main ideas: Abstract computations

- Abstract interpretation of a program describes computation in a different, abstract domain.
 - **Example:** program states that only record a specific property of integers, instead of their value: their sign, whether they are even/odd, or contained in [-32768, 32767] etc.

\[\sigma \in \text{AbstractState} = \text{Var} \rightarrow \{ \text{even, odd} \} \]

- In order to obtain abstract computations, an abstract semantics for the programming language has to be defined.
- Abstract interpretation provides a framework for proving that the abstract semantics is sound with respect to the concrete semantics.
The collecting semantics

We assume the state of a program to be modeled as:

\[\sigma \in \text{State} = \text{Var} \rightarrow \mathbb{Z} \]

We will use the following notation for function update:

\[\sigma[x \mapsto k](y) = \begin{cases} k & \text{if } x = y \\ \sigma(y) & \text{otherwise} \end{cases} \]

We construct the collecting semantics as a function which gives for every program label the set of all possible states.

\[C : \text{Labels} \rightarrow \mathcal{P}(\text{State}) \]
Rules of the collecting semantics

\[C_{\cdot} = \{ \sigma[x \mapsto n] \mid \sigma \in C_\cdot \text{ and } C[e] \sigma = n \} \]

\[C_{\text{true}} = \{ \sigma \mid \sigma \in C_\cdot \text{ and } C[b] \sigma = \text{true} \} \]

\[C_{\text{false}} = \{ \sigma \mid \sigma \in C_\cdot \text{ and } C[b] \sigma = \text{false} \} \]

\[C_\cdot = C_{\text{true}} \cup C_{\text{false}} \]

Note: In difference to the lecture on program analysis, labels are not on blocks, but on edges.
Example: Collecting semantics

Assume $x > 0$.

\[
\begin{align*}
C_1 &= \{\sigma \mid \sigma(x) > 0\} \\
C_2 &= \{\sigma[y \mapsto 1] \mid \sigma \in C_1\} \cup \{\sigma[x \mapsto \sigma(x) - 1] \mid \sigma \in C_4\} \\
C_3 &= C_2 \cap \{\sigma \mid \sigma(x) \neq 0\} \\
C_4 &= \{\sigma[y \mapsto \sigma(x) \cdot \sigma(y)] \mid \sigma \in C_3\} \\
C_5 &= C_2 \cap \{\sigma \mid \sigma(x) = 0\}
\end{align*}
\]
Solving the equations

- The equation system we obtain has variables C_1, \ldots, C_5 which are interpreted over the complete lattice \wp(State).
- We can express the equation system as a monotone function $F : \wp$(State)$^5 \to \wp$(State)5

 $$F(C_1, \ldots, C_5) = (\{\sigma \mid \sigma(x) > 0\}, \ldots, C_2 \cap \{\sigma \mid \sigma(x) = 0\})$$

- Using Tarski's Fixed Point Theorem, we know that a least fixed point exists.

- We have seen: The least fixed point can be computed by repeatedly applying F, starting with the bottom element $\bot = (\emptyset, \emptyset, \emptyset, \emptyset, \emptyset)$ of the complete lattice until stabilization.

$$F(\bot) \subseteq F(F(\bot)) \subseteq \ldots \subseteq F^n(\bot) = F^{n+1}(\bot)$$
Example: Fixed Point Computation

\[\begin{align*}
1 & \quad \emptyset \{[x \mapsto m, y \mapsto n] \mid m > 0\} \\
2 & \quad \emptyset \{[x \mapsto m, y \mapsto 1] \mid m > 0\} \cup \{[x \mapsto m-1, y \mapsto m] \mid m > 0\} \\
5 & \quad [x \neq 0] \quad \emptyset \{[x \mapsto 0, y \mapsto m] \mid m > 0\} \quad \text{... etc.} \\
3 & \quad \emptyset \{[x \mapsto m, y \mapsto 1] \mid m > 0\} \\
4 & \quad \emptyset \{[x \mapsto m, y \mapsto m] \mid m > 0\} \\
6 & \quad [x \mapsto x - 1]
\end{align*} \]

\[\begin{align*}
C_1 &= \{\sigma \mid \sigma(x) > 0\} \\
C_2 &= \{\sigma[y \mapsto 1] \mid \sigma \in C_1\} \cup \\
& \quad \{\sigma[x \mapsto \sigma(x) - 1] \mid \sigma \in C_4\} \\
C_3 &= C_2 \cap \{\sigma \mid \sigma(x) \neq 0\} \\
C_4 &= \{\sigma[y \mapsto \sigma(x) \cdot \sigma(y)] \mid \sigma \in C_3\} \\
C_5 &= C_2 \cap \{\sigma \mid \sigma(x) = 0\}
\end{align*}\]
We want to focus on the sign of integers, using the domain

\[\sigma \in \text{AbstractState} = \text{Var} \rightarrow \text{Signs} \]

where Signs is the following structure:

\[\top \text{ represents all integers} \]
\[+ \text{ the positive integers} \]
\[- \text{ the negative integers} \]
\[0 \text{ the set \{0\}} \]
\[\bot \text{ the empty set} \]

How is such a structure called?
A complete lattice
Example: Sign Analysis

Assume $x > 0$. Use the abstract domain for sign analysis.

\[A_1 = [x \mapsto +, y \mapsto T] \]

\[A_2 = A_1[y \mapsto +] \sqcup \]

\[A_4[x \mapsto A_4(x) \ominus +] \]

\[A_3 = A_2 \]

\[A_4 = A_3[y \mapsto A_3(x) \otimes A_3(y)] \]

\[A_5 = A_2 \cap [x \mapsto 0, y \mapsto T] \]
Abstract Interpretation

Foundations
Introductory example: Expressions

A little language of expressions

Syntax
\[e ::= n \mid e \ast e \]

Concrete semantics
\[C[n] = n \]
\[C[e \ast e] = C[e] \cdot C[e] \]

Example
\[C[-3 \ast 2 \ast -5] = C[-3 \ast 2] \cdot C[-5] = C[-3 \ast 2] \cdot (-5) = ... = 30 \]
Introductory example: Abstraction

Assume that we are not interested in the value of an expression but only in its sign:

- Negative: -
- Zero: 0
- Positive: +

Abstract semantics

\[A[n] = \text{sign}(n) \]

\[A[e \times e] = A[e] \otimes A[e] \]

Example

\[A[-3 \times 2 \times -5] = A[-3 \times 2] \otimes A[-5] = A[-3 \times 2] \otimes (-) = \ldots = \]

\[= (-) \otimes (+) \otimes (-) = (+) \]
Introductory example: Soundness

- We want to express that the abstract semantics correctly describes the sign of a corresponding concrete computation.
- For this we first link each concrete value to an abstract value:

 Representation function

 \(\beta : \mathbb{Z} \rightarrow \{-, 0, +\} \)

 \[
 \beta(n) = \begin{cases}
 - & \text{if } n < 0 \\
 0 & \text{if } n = 0 \\
 + & \text{if } n > 0
 \end{cases}
 \]
Introductory example: Soundness

Conversely, we can also link abstract values to the set of concrete values they describe:

Concretization function

\[\gamma : \{-, 0, +\} \to \wp(\mathbb{Z}) \]

\[\gamma(s) = \begin{cases}
\{n \mid n < 0\} & \text{if } s = - \\
\{0\} & \text{if } s = 0 \\
\{n \mid n > 0\} & \text{if } s = +
\end{cases} \]

Soundness then describes intuitively that the concrete value of an expression is described by its abstract value:

\[\forall e. \ C[e] \in \gamma(A[e]) \]
Extending the language

Syntax
\[e ::= n \mid e \times e \mid e + e \mid -e \]

Abstract semantics
\[
\begin{align*}
A[n] &= \text{sign}(n) \\
A[-e] &= \oplus A[e] \\
\end{align*}
\]

Observation: The abstract domain \{-,0,+\} is not closed under the interpretation of addition.
Extending the abstract domain

We have to introduce an additional abstract value:

\[T \quad "top" \quad - \quad \text{(any value)} \]

\[
\begin{array}{cccc}
\oplus & - & 0 & + & T \\
- & - & - & T & T \\
0 & 0 & + & T \\
+ & + & & T \\
T & & & T \\
\end{array}
\]
The new abstract domain

We can extend the concretization function to the new abstract domain \{-,0,+,{\top},{\bot}\} (add \bot for completeness):

\[
\gamma(\top) = \mathbb{Z} \quad \gamma(\bot) = \emptyset
\]

We obtain the following structure when drawing the partial order induced by

\[a \leq b \text{ iff } \gamma(a) \subseteq \gamma(b)\]

How is such a structure called?

A complete lattice
Construction of complete lattices

- If we know some complete lattices, we can construct new ones by combining them.
- Such constructions become important when designing new analyses with complex analysis domains.

Example: Total function space

Let \((D_1, \sqsubseteq_1)\) be a partially ordered set and let \(S\) be a set. Then \((D, \sqsubseteq)\), defined as follows, is a complete lattice:

- \(D = S \rightarrow D_1\) ("space of total functions")
- \(f \sqsubseteq f'\) iff \(\forall s \in S : f(s) \sqsubseteq_1 f'(s)\) ("point-wise ordering")
The framework of abstract interpretation

- Starting from a concrete domain C, define an abstract domain (A, \sqsubseteq), which must be a complete lattice
- Define a representation function β that maps a concrete value to its best abstract value
 \[\beta : C \rightarrow A \]
- From this we can derive the concretization function γ
 \[\gamma : A \rightarrow \mathcal{P}(C) \]
 \[\gamma(a) = \{ c \in C \mid \beta(c) \sqsubseteq a \} \]
 and abstraction function α for sets of concrete values
 \[\alpha : \mathcal{P}(C) \rightarrow A \]
 \[\alpha(C) = \sqcap \{ \beta(c) \mid c \in C \} \]
Galois connections

- The following properties of α and γ hold:

Monotonicity

(1) α and γ are monotone functions

Galois connection

(2) $a \supseteq \alpha(\gamma(a))$ for all $a \in A$
(3) $c \subseteq \gamma(\alpha(c))$ for all $c \in \wp(C)$

- **Galois connection**: This property means intuitively that the functions α and γ are "almost inverses" of each other.
Figure: Galois connection
Galois insertions

- For a Galois connection, there may be several elements of A that describe the same element in C
- As a result, A may contain elements which are irrelevant for describing C
- The concept of Galois insertion fixes this:

Monotonicity

(1) α and γ are monotone functions

Galois insertion

(2) $a = \alpha(\gamma(a))$ for all $a \in A$

(3) $c \subseteq \gamma(\alpha(c))$ for all $c \in \mathcal{P}(C)$
Figure: Galois insertion

\[\gamma(\alpha(c)) \]

\[C \quad \alpha(c) \quad A \]
Induced Operations

- A Galois connection can be used to induce the abstract operations from the concrete ones.

\[
\begin{array}{c}
\alpha \circ \text{op} \circ \gamma \\
\alpha \\
\wp(C) \\
\end{array}
\quad \rightarrow
\begin{array}{c}
\alpha \\
\wp(C) \\
\end{array}
\]

abstract execution

\[
\begin{array}{c}
\alpha \circ \text{op} \circ \gamma \\
\gamma \\
\wp(C) \\
\end{array}
\quad \rightarrow
\begin{array}{c}
\alpha \\
\wp(C) \\
\end{array}
\]

concrete execution

- We can show that the induced operation \(\text{op} = \alpha \circ \text{op} \circ \gamma \) is the most precise abstract operation in this setting.
- The induced operation might not be computable. In this case we can define an upper approximation \(\text{op}^\#, \text{op} \subseteq \text{op}^\# \), and use this as abstract operation.
Abstract Interpretation

Widening
To introduce the notion of widening, we have a look at range analysis, which provides for every variable an over-approximation of its integer value range.

We are left with the task of choosing a suitable abstract domain: the interval lattice suggests itself.

Interval = \{ \bot \} \cup \{ [x, y] \mid x \leq y, x \in \mathbb{Z} \cup \{\infty\}, y \in \mathbb{Z} \cup \{\infty\} \}
Consider the following program:

\[
\begin{array}{c}
 1 \quad [x \mapsto \top] \\
 \downarrow \\
 [x := 1] \\
 \downarrow \\
 2 \quad [x \mapsto [1,1]] \cup [x \mapsto [2,2]] = [x \mapsto [1,2]] \\
 \downarrow \\
 [x \leq n] \\
 \downarrow \\
 3 \quad [x \mapsto [1,1]] \\
 \downarrow \\
 [x := x + 1]
\end{array}
\]

- At program point 2, the following sequence of abstract states arises: \([x \mapsto [1,1]], [x \mapsto [1,2]], [x \mapsto [1,3]], \ldots\)

Consequence: The analysis never terminates (or, if \(n\) is statically known, converges only very slowly).
The ascending chain condition

- Using an arbitrary complete lattice as abstract domain, the solution is not computable in general.
- The reason for that is the fact that the value space might be unbounded, containing infinite ascending chains:

 \[(l_n)_n \text{ is such that } l_1 \subseteq l_2 \subseteq l_3 \subseteq \cdots,\]

 but there exists no \(n\) such that \(l_n = l_{n+1} = \cdots\)

- If we replace it with an abstract space that is finite (or does not possess infinite ascending chains), then the computation is guaranteed to terminate.

- In general, we want an abstract domain to satisfy the ascending chain condition, i.e. each ascending chain eventually stabilises:

 \[
 \text{if } (l_n)_n \text{ is such that } l_1 \subseteq l_2 \subseteq l_3 \subseteq \cdots, \]

 then there exists \(n\) such that \(l_n = l_{n+1} = \cdots\)
Non-termination

- The reason for the non-termination in the example is that the interval lattice contains *infinite ascending chains*.

- Trick, if we cannot eliminate ascending chains: We redefine the join operator of the lattice to jump to the extremal value more quickly.

Before: $[1,1] \sqcup [2,2] = [1,2]$
Now: $[1,1] \triangledown [2,2] = [1,\infty]$
Widening

A widening $\nabla : D \times D \rightarrow D$ on a partially ordered set (D, \sqsubseteq) satisfies the following properties:

1. For all $x, y \in D$. $x \sqsubseteq x \nabla y$ and $y \sqsubseteq x \nabla y$

2. For all ascending chains $x_1 \subseteq x_2 \subseteq x_3 \subseteq \cdots$ the ascending chain $y_1 = x_1 \subseteq y_2 = y_1 \nabla x_2 \subseteq \cdots \subseteq y_{n+1} = y_n \nabla x_{n+1}$ eventually stabilizes.

Widening is used to accelerate the convergence towards an upper approximation of the least fixed point.
Example (continued)

- Assume we have a widening operator ∇ that is defined such that $[1,1] \nabla [2,2] = [1, +\infty]$

\[
\begin{array}{c}
1 \quad [x \mapsto \mathbb{T}] \\
\downarrow \\
[x := 1] \quad [x \mapsto [1, +\infty]] \nabla [x \mapsto [1,n]] = [x \mapsto [1, +\infty]] \\
\downarrow 2 \\
[x \leq n] \quad [x \mapsto [n+1, +\infty]] \\
\downarrow 3 \\
[x := x+1] \\
\downarrow 4 \\
[x \mapsto [1,1]] [x \mapsto [1,n]] = [x \mapsto [1, +\infty]]
\end{array}
\]

- The analysis converges quickly.
Reading

Chapter 1: Section 1.5
Chapter 4 (advanced material)