Software Verification

Lecture 11: Verification of Real-time Systems

Carlo A. Furia
Program Verification: the very idea

P: a program

max (a, b: INTEGER): INTEGER is
 do
 if a > b then
 Result := a
 else
 Result := b
 end
end

S: a specification

require
 true
ensure
 Result >= a
 Result >= b

Does P ⊧ S hold?

The Program Verification problem:
- **Given**: a program P and a specification S
- **Determine**: if every execution of P, for every value of input parameters, satisfies S
Real-time Verification

P: a program

\[
\text{max (a, b: INTEGER): INTEGER is}
\]
\[
\text{do}
\]
\[
\text{if } a > b \text{ then}
\]
\[
\text{Result} := a
\]
\[
\text{else}
\]
\[
\text{Result} := b
\]
\[
\text{end}
\]
\[
\text{end}
\]

S: a specification

\[
\text{ensure}
\]
\[
\text{Result} >= a
\]
\[
\text{Result} >= b
\]
\[
\text{ensure -- real-time}
\]
\[
\text{“max terminates no sooner than 3 ms and no later than 10 ms after invocation”}
\]

Does \(P \models S \) hold?

The Real-time Verification problem:

- **Given**: program \(P \) (embedded in system \(E \)) and real-time specification \(S \)
- **Determine**: if every execution of \(P \) (within \(E \)) satisfies \(S \)
Real-time Programs and Systems

Def. Real-time specification: specification that includes exact timing information.

Def. Real-time computation: computation whose specification is real-time. In other words: computation whose correctness depends not only on the value of the result but also on when the result is available.

- The timing of a piece of software is usually dependent on the environment where the computation takes place
- Hence, in real-time verification the focus shifts from programs to (software-intensive) systems
 - In a system, even the physical environment is often relevant
- The purely computational aspects can often be analyzed in isolation
- Real-time verification can then focus on real-time aspects of the system
 - e.g., synchronization, deadlines, delays, ...
while abstracting away most of the rest
The Real-time Verification problem:

- **Given:** program P (embedded in system E) and real-time specification S
- **Determine:** if every execution of P (within E) satisfies S

Does $F(P) \models N(S)$ hold?

- The **classes** for $F(P)$ and $N(S)$ should guarantee:
 - enough **expressiveness** to include a **quantitative notion of time**
 - **decidability** of the verification problem
Real-time Model-Checking

The Real-time Model Checking problem:

- **Given**: a timed automaton \(A \) and a metric temporal-logic formula \(F \)
- **Determine**: if every run of \(A \) satisfies \(F \) or not
 - if not, also provide a counterexample: a run of \(A \) where \(F \) does not hold

\[
A \Vdash F
\]

- The model-checking paradigm is naturally extended to real-time systems
- Different choices are possible for the family of automata and of formulae
 - The linear vs. branching time dichotomy is usually not significant for real-time
 - linear time is almost invariably preferred
 - A different attribute of time that becomes relevant in quantitative models is discrete vs. dense time
Discrete vs. dense (continuous) time

- **Discrete time**
 - sequence of isolated “steps”
 - every instant has a unique successor
 - e.g.: the naturals \(\mathbb{N} = \{0, 1, 2, \ldots\} \)

 + simple and intuitive
 + verification usually decidable (and acceptably complex)
 + robust and elegant theoretical framework

 - cannot express true asynchrony
 - unsuitable to model physical variables

- **Dense time**
 - arbitrarily small distances
 - the successor of an instant is not defined
 - e.g.: the reals \(\mathbb{R} \)

 + can model true asynchrony
 + accurate modeling of physical variables

 - tricky to understand
 - verification easily undecidable (or highly complex)
 - lacks a unifying framework

- merely **dense vs. continuous** is usually not as relevant
 - e.g.: \(\mathbb{Q} \) vs. \(\mathbb{R} \)
Dense Real-time Model-Checking

Timed Automata and
Metric Temporal Logic
Dense Real-time Model-Checking

Dense real-time model checking considers the same model as discrete real-time model checking but with $\mathbb{R}_{\geq 0}$ as time domain:

- A dense Timed Automaton (TA) models the system
- Dense-time Metric Temporal Logic (MTL) models the property

- The syntax of TA and MTL need not be changed for dense time
 - with the possible exception of allowing fractional time bounds
- The semantics of TA and MTL is also unchanged except that:
 - $\mathbb{R}_{\geq 0}$ replaces \mathbb{N} as time domain
 - Infinite words are considered by default:
 - This is a technicality that we will ignore in the presentation for simplicity, although it does affect some results.

See later for the details.
Dense Real-time Model-Checking

Dense real-time model checking extends standard “untimed” model checking:

- The Timed Automaton (TA) extends the Finite-State Automaton (FSA)
- Metric Temporal Logic (MTL) extends Linear Temporal Logic (LTL)

The Dense Real-time Model Checking problem:

- Given: a dense TA A and an MTL formula F
- Determine: if every run of A satisfies F or not
 - if not, also provide a counterexample: a run of A where F does not hold

A: a TA

F: an MTL formula

$A \models F$
Timed Automata: Syntax

- $x := 0$ (turn_off)
- $x > 1$
- $y := 0$ (stop)
- $y \leq 300$
- start
- cooking
Timed Automata: Syntax

Def. Nondeterministic Timed Automaton (TA):

a tuple \([\Sigma, S, C, I, E, F]\):

- **\(\Sigma\)**: finite nonempty (input) alphabet
- **\(S\)**: finite nonempty set of locations (i.e., discrete states)
- **\(C\)**: finite set of clocks
- **\(I, F\)**: set of initial/final states
- **\(E\)**: finite set of edges \([s, \sigma, c, \rho, s']\)
 - \(s \in S\): source location
 - \(s' \in S\): target location
 - \(\sigma \in \Sigma\): input character (also “label”)
 - \(c\): clock constraint in the form:
 \[c ::= x \approx k \mid x - y \approx k \mid \neg c \mid c1 \land c2\]
 - \(x, y \in C\) are clocks
 - \(k \in \mathbb{Z}\) is an integer constant
 - \(\approx\) is a comparison operator among \(<, \leq, >, \geq, =\)
 - \(\rho \subseteq C\): set of clock that are reset (to 0)
Timed Automata: Semantics

- **Accepting run:**

 \[r = \begin{align*}
 &\text{off}, (x=0, y=0) \\
 &\text{on}, (x=0, y=3.2) \\
 &\text{cooking}, (x=8.5, y=0) \\
 &\text{on}, (x=81.7, y=73.2) \\
 &\text{off}, (x=84.91, y=76.41) \\
\end{align*} \]

- **Over input timed word:**

 \[w = \begin{align*}
 &\text{turn_on}, 3.2 \\
 &\text{start}, 11.7 \\
 &\text{stop}, 84.9 \\
 &\text{turn_off}, 88.11 \\
\end{align*} \]
Def. A timed word $w = w(1) w(2) ... w(n) \in (\Sigma \times \mathbb{R})^*$ is a sequence of pairs $[\sigma(i), t(i)]$ such that:

- the sequence of timestamps $t(1), t(2), ..., t(n)$ is **increasing**
- $[\sigma(i), t(i)]$ represents the i-th character $\sigma(i)$ read at time $t(i)$

Def. An accepting run of a TA $A=[\Sigma, S, C, I, E, F]$ over input timed word $w = [\sigma(1), t(1)] ... [\sigma(n), t(n)] \in (\Sigma \times \mathbb{R})^*$ is a sequence $r = [s(0), v(0,1), ..., v(0,|C|)] ... [s(n), v(n,1), ..., v(n,|C|)]$

\[(S \times \mathbb{R}^{|C|})^* \] of (extended) states such that:

- it starts from an initial state and ends in an accepting state: $s(0) \in I$ and $s(n) \in F$
- initially all clocks are reset to 0: $v(0,k) = 0$ for all $1 \leq k \leq |C|$
- for every transition $(0 \leq i < n)$:
 \begin{align*}
 & [s(i) v(i,1) ... v(i,|C|)] \rightarrow [s(i+1) v(i+1,1) ... v(i+1,|C|)] \\
 & \text{some edge } [s(i), \sigma(i+1), c, \rho, s(i+1)] \text{ in } E \text{ is followed:}
 \end{align*}
 - the clock values $v(i,1) + (t(i+1) - t(i)) ... v(i,|C|) + (t(i+1) - t(i))$ satisfy the constraint c
 - $v(i+1,k) = \text{if } k\text{-th clock is in } \rho \text{ then } 0 \text{ else } v(i,k) + t(i+1) - t(i)$
Timed Automata: Semantics

Def. Any TA $A=\langle \Sigma, S, C, I, E, F \rangle$ defines a set of input timed words $\langle A \rangle$:

$$\langle A \rangle \triangleq \{ w \in (\Sigma \times \mathbb{R})^* \mid \text{there is an accepting run of } A \text{ over } w \}$$

$\langle A \rangle$ is called the language of A

With regular expressions and arithmetic:

$$\langle A \rangle = ([\text{turn}_\text{on}, t_1]$$

$$([\text{start}, t_2][\text{stop}, t_3])^*$$

$$[\text{turn}_\text{off}, t_4])^*$$

with $t_3 - t_2 \leq 300$ and $t_4 - t_1 > 1$
Metric (Linear) Temporal Logic

◊[2,4) stop

“there is an occurrence of stop between 2 (included) and 4 (excluded) time units in the future”

• [any, t < 2]* [stop, 2] [stop, 3] [any, 3.5] [any, 3.7] ...
• [any, t < 3.99]* [stop, 3.99] [any, 4] [any, t > 4] ...

□(2,4] start

“start holds between 2 (excluded) and 4 (included) time units in the future”

• [any, t ≤ 2] [start, 2.2] [start, 3] [start, 4] [any, t > 4] ...
• [any, t ≤ 2] [start, 4] [any, t > 4] ...
• [stop, 0] [stop, 0.3] [stop, 0.7]
Metric (Linear) Temporal Logic

□ (start ⇒ ◻(3,10] stop)

“every occurrence of start is followed by an occurrence of stop between 3 (excluded) and 10 (included) time units in the future”

cook U(3,10] stop

“stop occurs between 3 (excluded) and 10 (included) time units in the future, and cook holds until then”
Metric (Linear) Temporal Logic: Syntax

Def. Propositional Metric Temporal Logic (MTL) formulae are defined by the grammar:

\[F ::= p \mid \neg F \mid F \land G \mid F \mathbin{U}^{<a,b>} G \]

with \(p \in P \) any atomic proposition and \(<a,b> \) is an interval of the time domain (w.l.o.g. with integer endpoints).

Temporal (modal) operators:

- **next:** \(X F \triangleq \text{True} \mathbin{U}^{[1,1]} F \)
- **bounded until:** \(F \mathbin{U}^{<a,b>} G \)
- **bounded release:** \(F \mathbin{R}^{<a,b>} G \triangleq \neg (\neg F \mathbin{U}^{<a,b>} \neg G) \)
- **bounded eventually:** \(\Diamond^{<a,b>} F \triangleq \text{True} \mathbin{U}^{<a,b>} F \)
- **bounded always:** \(\Box^{<a,b>} F \triangleq \neg \Diamond^{<a,b>} \neg F \)
- **intervals can be unbounded; e.g., \([3, \infty) \)**
- **intervals with pseudo-arithmetic expressions, e.g.:**
 - \(\geq 3 \) for \([3, \infty) \)
 - \(= 1 \) for \([1,1]\)
 - \([0, \infty)\) is simply omitted

\[\square \ (\text{start} \Rightarrow \Diamond^{(3,10]} \text{stop}) \]
Def. A timed word $w = [\sigma(1), t(1)] [\sigma(2), t(2)] \ldots [\sigma(n), t(n)] \in (P \times \mathbb{R})^*$ satisfies an LTL formula F at position $1 \leq i \leq n$, denoted $w, i \models F$, under the following conditions:

- $w, i \models p$ iff $p = \sigma(i)$
- $w, i \models \neg F$ iff $w, i \models F$ does not hold
- $w, i \models F \land G$ iff both $w, i \models F$ and $w, i \models G$ hold
- $w, i \models F \bigcup_{a,b} G$ iff for some $i \leq j \leq n$ such that $t(j) - t(i) \in <a,b>$ it is:
 - $w, j \models G$ and for all $i \leq k < j$ it is $w, k \models F$

 * i.e., F holds until G will hold within $<a, b>$

For derived operators:

- $w, i \models \diamond_{a,b} F$ iff for some $i \leq j \leq n$ such that $t(j) - t(i) \in <a,b>$ it is: $w, j \models F$

 * i.e., F holds eventually within $<a,b>$

- $w, i \models \square_{a,b} F$ iff for all $i \leq j \leq n$ such that $t(j) - t(i) \in <a,b>$ it is: $w, j \models F$

 * i.e., F holds always within $<a,b>$
Def. Satisfaction:

\[w \models F \iff w, 1 \models F \]

i.e., timed word \(w \) satisfies formula \(F \) initially

Def. Any MTL formula \(F \) defines a set of timed words \(\langle F \rangle \):

\[\langle F \rangle \overset{\Delta}{=} \{ w \in (P \times \mathbb{R})^* \mid w \models F \} \]

\(\langle F \rangle \) is called the language of \(F \)
Dense Real-time Model-Checking

What's Decidable?
TAs not Closed under Complement

A: a dense TA

F: a dense-time MTL formula

\[A \not\models F \]

Fundamental problem:

- Dense timed automata are not closed under complement
 - The complement of the language of this TA isn't accepted by any TA:
 - language of this TA:
 "there exist two p's separated by one t.u."
 - complement language:
 "no two p's are separated by one t.u."
 - intuition: need a clock for each p within the past time unit, but there can be an unbounded number of such p's because time is dense
TAs not Closed under Complement

Fundamental problem:

- Dense TAs are not closed under complement
- MTL is clearly closed under complement
 - Language of the TA: $\Diamond (p \land \Diamond = 1 p)$
 - Complement language of the TA: $\neg \Diamond (p \land \Diamond = 1 p) = \Box (p \Rightarrow \neg \Diamond = 1 p)$
- Hence, automata-theoretic dense real-time model-checking is unfeasible
Dense MTL Model Checking is Undecidable

An even more fundamental problem:

- The dense-time model-checking problem for MTL and TAs is **undecidable** (for infinite words)
 - no approach is going to work, not just the automata-theoretic one

- MTL and TAs are “too expressive” over dense time
What's Decidable about Timed Automata

Let's revisit the three algorithmic components of automata-theoretic model checking:

- **MTL2TA**: given MTL formula F build TA $a(F)$ such that $\langle F \rangle = \langle a(F) \rangle$
 - undecidable problem (for infinite words)
- **TA-Intersection**: given TAs A, B build TA C such that $\langle A \rangle \cap \langle B \rangle = \langle C \rangle$
 - decidable
- **TA-Emptiness**: given TA A check whether $\langle A \rangle = \emptyset$ is the case
 - decidable!
Dense Real-time Model-Checking

Intersection of Timed Automata
Given TAs A, B it is always possible to build automatically a TA C that accepts precisely the words that both A and B accept.

TA C represents all possible parallel runs of A and B where a timed word is accepted if and only if both A and B would accept it. The construction is called “product automaton”.
TA-Intersection: Example

\[x := 0 \text{ turn_off} \]
\[x > 2 \text{ turn_on} \]
\[z := 0 \text{ start} \]
\[z > 3 \text{ turn_off} \]
\[y := 0 \text{ stop} \]
\[y \leq 3 \text{ start} \]
\[y > 3 \text{ turn_off} \]
\[* \]

\[= \]

\[x := 0 \text{ turn_off} \]
\[x > 2 \text{ turn_on} \]
\[z := 0 \]
\[y := 0 \]
\[z > 3 \text{ turn_off} \]
\[x > 2 \text{ turn_on} \]
\[y := 0 \]
\[y \leq 3 \text{ stop} \]
\[y > 3 \text{ turn_off} \]
\[* \]

let $C \triangleq A \times B \triangleq [\Sigma, S^C, C^C, I^C, E^C, F^C]$ be defined as:

- $S^C \triangleq S^A \times S^B$
- $C^C \triangleq C^A \cup C^B$ (assuming w.l.o.g. that they are disjoint sets)
- $I^C \triangleq \{ (s, t) \mid s \in I^A \text{ and } t \in I^B \}$
- $[(s, t), \sigma, c^A \land c^B, \rho^A \cup \rho^B, (s', t')] \in E^C$ iff
 $[s, \sigma, c^A, \rho^A, s'] \in E^A$ and $[t, \sigma, c^B, \rho^B, t'] \in E^B$
- $F^C \triangleq \{ (s, t) \mid s \in F^A \text{ and } t \in F^B \}$

Theorem.

$$\langle A \times B \rangle = \langle A \rangle \cap \langle B \rangle$$
Dense Real-time Model-Checking

Checking the Emptiness of Timed Automata
Given a TA A it is always possible to check automatically if it accepts some timed word.

Outline of the algorithm:

- Assume that clock constraints involve **integer constants** only
 - this is without loss of generality as it amounts to scaling
- Define an **equivalence relation** over extended states
 - an extended state is a tuple $[s, v(1), \ldots, v(|C|)]$
 - with a location s and a value $v(i)$ for every clock in C.
- All extended states in the same equivalence class are **equivalent** w.r.t. satisfaction of clock constraints
- The equivalence relation is such that there is a **finite number** of equivalence classes for any given TA
- Given a TA A, build an FSA $\text{reg}(A)$ – the “region automaton”:
 - the **states** of $\text{reg}(A)$ represent the equivalence classes of the extended states of any run of A
 - the **edges** of $\text{reg}(A)$ represent evolution of any extended state within the equivalence class over any run of A
- Checking the emptiness of $\text{reg}(A)$ is **equivalent** to checking the emptiness of A
Integer vs. Rational vs. Irrational

• The domain for time is $\mathbb{IR}_{\geq 0}$

• What about the domain for time constraints?
 - constants in clock constraints of TAs (e.g.: $x < k$)

 1. Same as the domain for time: $\mathbb{IR}_{\geq 0}$
 • e.g.: $x < \pi$
 • emptiness becomes undecidable!

 2. Discrete time domain: integers \mathbb{IN}
 • e.g.: $x < 5$
 • emptiness fully decidable (see algorithm next)

 3. Dense but not continuous: rationals $\mathbb{Q}_{\geq 0}$
 • e.g.: $x < 1/3$
 • emptiness is reducible to the integer case
Integer vs. Rational

- **Dense** but not continuous: rationals $\mathbb{Q}_{\geq 0}$
 - Let A be a TA with rational constants
 - let m be the **least common multiple** of denominators of all constants appearing in the clock constraints of A
 - let $A \times m$ be the TA obtained from A by **multiplying** every constants in the clock constraints by m
 - $A \times m$ has only integers constants in its clock constraints
 - A accepts any timed word $[\sigma(1), t(1)] [\sigma(2), t(2)] \ldots [\sigma(n), t(n)]$
 - iff $A \times m$ accepts the “scaled” timed word $[\sigma(1), m \times t(1)] [\sigma(2), m \times t(2)] \ldots [\sigma(n), m \times t(n)]$
 - Hence **checking the emptiness** of $A \times m$ is **equivalent to** checking the emptiness of A
Equivalence Relation over Extended States

Let us fix a TA $A = [\Sigma, S, C, I, E, F]$ with $C = [x(1), \ldots, x(n)]$

- For any clock $x(i)$ in C let $M(i)$ be the largest constant involving clock $x(i)$ in any clock constraint in E

- Let $[v(1), \ldots, v(n)] \in \mathbb{R}_{\geq 0}^n$ denote a “clock evaluation” representing any assignment of values to clocks

- **Equivalence** of two clock evaluations:
 $[v(1), \ldots, v(n)] \sim [v'(1), \ldots, v'(n)]$ iff all of the following hold:

 1. For all $1 \leq i \leq n$: $\text{int}(v(i)) = \text{int}(v'(i))$ or $v(i), v'(i) > M(i)$

 2. For all $1 \leq i, j \leq n$ such that $v(i) \leq M(i)$ and $v(j) \leq M(j)$:
 $\frac{v(i)}{v(j)} \leq \frac{v'(i)}{v'(j)}$ iff $\frac{v'(i)}{v'(j)} \leq \frac{v'(i)}{v'(j)}$

 3. For all $1 \leq i \leq n$ such that $v(i) \leq M(i)$:
 $\frac{v(i)}{v(i)} = 0$ iff $\frac{v'(i)}{v'(i)} = 0$

- Note: $\text{int}(x)$ is the integer part of x; $\text{frac}(x)$ is the fractional part of x
Clock Regions

Def. A clock region is an equivalence class of clock evaluations induced by the equivalence relation ~

- For a clock evaluation \(v = [v(1), ..., v(n)] \in \mathbb{R}_{\geq 0}^n \), \([v]\) denotes the clock region \(v \) belongs to.
- As a consequence of the definition of ~, any clock region can be uniquely characterized by a finite set of constraints on clocks.
 - \(v = [0.4; 0.9; 0.7; 0] \) for 4 clocks \(w, x, y, z \)
 - \([v]\) is \(z = 0 < w < y < x < 1 \)
- **Fact:** clock regions are always in finite number.
Clock Regions (cont'd)

More systematically:

- given a set of clocks $C = [x(1), ..., x(n)]$
- with $M(i)$ the largest constant appearing in constraints on clock $x(i)$

a clock region is uniquely characterized by

- For each clock $x(i)$ a constraint in the form:
 - $x(i) = c$ with $c = 0, 1, ..., M(i)$; or
 - $c - 1 < x(i) < c$ with $c = 1, ..., M(i)$; or
 - $x(i) > M(i)$
- For each pair of clocks $x(i), x(j)$ a constraint in the form
 - $\frac{x(i)}{x(j)} < \frac{x(j)}{x(i)}$
 - $\frac{x(i)}{x(j)} = \frac{x(j)}{x(i)}$
 - $\frac{x(i)}{x(j)} > \frac{x(j)}{x(i)}$

(These are unnecessary if $x(i) = c, x(j) = c, x(i) > M(i)$, or $x(j) > M(j)$.)
Clock Regions: Example

- Clocks $C = [x, y]$
- $M(x) = 2; \ M(y) = 3$
- All 60 possible clock regions:
 - 12 corner points
 - 30 open line segments
 - 18 open regions
Time-successors of Regions

• Fact: a clock evaluation \(v \) satisfies a clock constraint \(c \) iff any other clock evaluation in \([v]\) satisfies \(c \)

 – Hence, we can say that a “clock region satisfies a clock constraint”

Def. The time successor \(\text{time-succ}(R) \) of a clock region \(R \) is the set of all clock regions (including \(R \) itself) that can be reached from \(R \) by letting time pass (i.e., without resetting any clock).

Given a clock region \(R \) it is always possible to compute all other clock regions that can be reached from \(R \) by letting time pass (i.e., without resetting any clock)

• Graphically:

 • the time-successors of a region \(R \) are the regions that can be reached by moving along a line parallel to the diagonal in the upward direction, starting from any point in \(R \)

(For a precise definition see e.g.: Alur & Dill, 1994)
Time-successors of Regions: Example

- **Graphically:**
 - the time-successors of a region \(R \) are the regions that can be reached by moving along a line parallel to the diagonal in the upward direction, starting from any point in \(R \)

- **Example:**
 - successors of region \(2 < y < 3; 1 < x < y-1 \) (other than the region itself):
 - \(y > 3; 1 < x < 2 \)
 - \(y > 3; x = 2 \)
 - \(y = 3; 1 < x < 2 \)
 - \(y > 3; x > 2 \)
 - successors of region \(y = 1; x = 2 \) (other than the region itself):
 - \(2 < y < 3; x > 2 \)
 - ...

![Diagram showing time-successors](image)
Region Automaton Construction

For a timed automaton A it is always possible to build an FSA $\text{reg}(A)$ (the "region automaton" of A) such that:

$$\langle A \rangle = \emptyset \quad \text{iff} \quad \langle \text{reg}(A) \rangle = \emptyset$$

Def. Given a TA $A = [\Sigma, S, C, I, E, F]$ its region automaton $\text{reg}(A) \triangleq [\Sigma, rS, rI, rE, rF]$ is defined as:

- $rS \triangleq \{ (s, r) \mid s \in S \text{ and } r \text{ is a clock region} \}$
- $rI \triangleq \{ (s, [0, 0, ..., 0]) \mid s \in I \}$
 - the clock region where all clocks are reset to 0
- $rE(\sigma, [s, r]) \triangleq \{ (s', r') \mid [s, \sigma, c, \rho, s'] \in E$
 and there exists a region $r'' \in \text{time-succ}(r)$
 such that r'' satisfies c, and r' is obtained from r'' by resetting all clocks in ρ to 0
- $rF \triangleq \{ (s, r) \mid s \in F \}$
Region Automaton: Example

\[x := 0 \quad \text{turn_off} \]
\[x > 1 \quad \text{on} \]
\[y := 0 \quad \text{stop} \]
\[y \leq 1 \quad \text{start} \]
\[\text{cooking} \]