
ETHZ D-INFK
Prof. Dr. B. Meyer, Dr. S. Nanz

Concepts of Concurrent Compuation – Assignments
Spring 2011

Assignment 5: SCOOP principles

ETH Zurich

1 Interpreting a SCOOP program

1.1 Background

The code in listing 1 shows the participants of a crazy office. Note that the BOSS class is the
root of this system.

Listing 1: crazy office classes

class BOSS

create
make

feature
evil supervisor : separate EVIL SUPERVISOR
nice supervisor : separate NICE SUPERVISOR
worker: separate WORKER

make
−− Create supervisors and a worker and use the supervisors to drive the worker.

do
create evil supervisor
create nice supervisor
create worker
print (”boss: I am about to ask the supervisors to do their job.”)
run (evil supervisor , nice supervisor)
print (”boss: I am done.”)

end

run (a evil supervisor : separate EVIL SUPERVISOR; a nice supervisor: separate
NICE SUPERVISOR)
−− Use the supervisors to drive the worker.

do
a evil supervisor .convince (worker)
a nice supervisor .convince (worker)
a evil supervisor .convince (worker)
a nice supervisor .convince (worker)

if (a evil supervisor .done and a nice supervisor.done) then
print (”boss: The supervisors are done.”)

end
end

end

1

ETHZ D-INFK
Prof. Dr. B. Meyer, Dr. S. Nanz

Concepts of Concurrent Compuation – Assignments
Spring 2011

class EVIL SUPERVISOR

feature
done: BOOLEAN
−− Did I convince a worker?

convince (a worker: separate WORKER)
−− Convince ’a worker’ that he is not done as soon as he thinks that he is done.

require
a worker.done

do
a worker.be not done
done := true
print (”evil supervisor: I am done.”)

end
end

class NICE SUPERVISOR

feature
done: BOOLEAN
−− Did I convince a worker?

convince (a worker: separate WORKER)
−− Convince ’a worker’ that he is done as soon as he thinks that he is not done.

require
not a worker.done

do
a worker.be done
done := true
print (”nice supervisor: I am done.”)

end
end

class WORKER

create
make

feature
make

−− Create the worker and make him not done.
do
done := false

ensure
not done: not done

end

done: BOOLEAN
−− Do I think that I am done with my task?

2

ETHZ D-INFK
Prof. Dr. B. Meyer, Dr. S. Nanz

Concepts of Concurrent Compuation – Assignments
Spring 2011

be not done
−− Make me realize that I am not done.

do
print(”worker: I am not done.”)
done := false

end

be done
−− Make me realize that I am done.

do
print(”worker: I am done.”)
done := true

end
end

1.2 Task

Write down one possible output of the program. Does this system terminate (i.e. all processors
finish their tasks)?

2 Breakfast Running Time

2.1 Background

Reasoning about the execution times of a concurrent SCOOP program, in the context of break-
fast.

2.2 Task

Consider the following SCOOP program being executed on a processor z:

bread.cut
toaster . toast
pan.fry
meal.compose
Result := meal.is cooked and bread.is delicious
meal.eat

The object-processor associations are given as follows: pan is handled by processor p, bread
and toaster by processor q, and meal by processor r. The call bread.cut takes 20 time units
until it returns, toaster . toast 30 time units, pan.fry 20 time units, meal.compose 40 time units,
meal.eat 20 time units. Assume the queries are instantaneous. What is the minimum time for
execution of this program? Justify your answer.

3 Baboon Crossing

3.1 Background

This task is adapted from Downey [1] and Tanenbaum [2]. There is a deep canyon somewhere
in Kruger National Park, South Africa, and a single rope that spans the canyon. Baboons can
cross the canyon by swinging hand-over-hand on the rope, but if two baboons going in opposite
directions meet in the middle, they will fight and drop to their deaths. Furthermore, the rope

3

ETHZ D-INFK
Prof. Dr. B. Meyer, Dr. S. Nanz

Concepts of Concurrent Compuation – Assignments
Spring 2011

is only strong enough to hold n baboons. If there are more baboons on the rope at the same
time, it will break.

3.2 Task

Design and implement a SCOOP synchronization scheme with the following properties:

• Once a baboon has begun to cross, it is guaranteed to get to the other side without running
into a baboon going the other way.

• There are never more than n baboons on the rope.

• A continuing stream of baboons crossing in one direction should not bar baboons going
the other way indefinitely (no starvation).

References

[1] Allen B. Downey. The Little Book of Semaphores Second Edition. Green Tea Press, 2005.

[2] Andrew S. Tanenbaum. Modern Operating Systems (2nd Edition). Prentice Hall, 2001.

4

	Interpreting a SCOOP program
	Background
	Task

	Breakfast Running Time
	Background
	Task

	Baboon Crossing
	Background
	Task

