
ETHZ D-INFK
Prof. Dr. B. Meyer, Dr. S. Nanz

Concepts of Concurrent Compuation – Assignments
Spring 2011

Assignment 8: Concurrent Objects

ETH Zurich

1 Comparing Histories: Linearizability

Figures 1 and 2 show two different histories for three threads. Each time line corresponds to
one thread.

Figure 1: first history

Figure 2: second history

1.1 Task

Decide whether the histories are sequentially consistent. Decide whether the histories are lin-
earizable. Justify your answer.

2 FIFO Queue: Linearizability

The AtomicInteger class is a container for an integer value. One of its methods is boolean
compareAndSet(int expect, int update). This method compares the object’s current value to
expect. If the values are equal, then it atomically replaces the object’s value with update and
returns true. Otherwise, it leaves the object’s value unchanged, and returns false. This class
also provides int get() which returns the object’s actual value.

Consider the following FIFO queue implementation. It stores its items in an array items, which,
for simplicity, we will assume has unbounded size. It has two AtomicInteger fields. tail is the
index of the next slot from which to remove an item. head is the index of the next slot in which
to place an item.

1

ETHZ D-INFK
Prof. Dr. B. Meyer, Dr. S. Nanz

Concepts of Concurrent Compuation – Assignments
Spring 2011

class IQueue<T> {
AtomicInteger head = new AtomicInteger(0);
AtomicInteger tail = new AtomicInteger(0);
T[] items = (T[]) new Object[Integer.MAX VALUE];

public void enq(T x) {
int slot
do {

slot = tail .get() ;
} while (! tail .compareAndSet(slot, slot + 1));
items[slot] = x;
}

public T deq() throws EmptyException {
T value;
int slot ;

do {
slot = head.get() ;
value = items[slot];
if (value == null) {
throw new EmptyException();
}
} while (!head.compareAndSet(slot, slot + 1));
return value;
}
}

2.1 Task

Give an example showing that this implementation is not linearizable.

3 Lock-free Deque

3.1 Background

This exercise is a version of the algorithm given in [1].
The deque is identified by a triple, (LeftEnd,RightEnd, Status) where LeftEnd and RightEnd

are pointers to nodes, and Status is a flag denoting the current stability or operation. The pos-
sible values of the status flag are Stable, LPush, and RPush, denoting a stable state, in the
middle of a left-push operation, or in the middle of a right-push operation.

The nodes themselves also have a Left and Right componenet, as well as some associated
data.

We say that the deque is left-incoherent if the property node.Right.Left 6= node holds for
the left-most node. Likewise a deque is right-incoherent if the property node.Left.Right 6= ndoe
holds for the right-most node.

We say that a deque is stable if it has the status-tag Stable, and:

• Has 0 or 1 nodes.

• Has 2 or more nodes, and it is both left- and right-coherent.

Our deque has four operations: push right, push left, pop right, and pop left.

2

ETHZ D-INFK
Prof. Dr. B. Meyer, Dr. S. Nanz

Concepts of Concurrent Compuation – Assignments
Spring 2011

3.2 Task

The task is to implement, in pseudo-code and using compare and swap, the push right operation
for a lock-free deque. This operation takes some data as an argument and adds a new node on
the right-side of the deque to hold it.

The deque is the global variable Anchor.
You can assume that a procedure Stabilize exists. Stabilize when given an argument deque

(l, r, s) where s indicates incoherence (either LPush or RPush) will either successfully make
the Anchor stable with left and right nodes set to l and r, or return.

Every operation (push right, push left, pop right, and pop left) only proceeds to modify
the deque after the deque is stable. If the deque is not stable, each operation tries to make it
be stable before it proceeds.

You can also assume that the CAS operation is able to operate properly on the deque triple.

References

[1] CAS-Based Lock-Free Algorithm for Shared Deques. 9th Euro-Par Conference on Parallel
Processing. Maged M. Michael 2003.

3

	Comparing Histories: Linearizability
	Task

	FIFO Queue: Linearizability
	Task

	Lock-free Deque
	Background
	Task

