
Chair of Software Engineering

Concepts of Concurrent Computation

Bertrand Meyer
Sebastian Nanz	

Lecture 1: Welcome and introduction

2

Practical Details

•  Schedule
•  Course: Tuesday 10-12, RZ F21
•  Exercise: Tuesday 12-13, RZ F21

•  Course page
•  Check it at least once a week:

http://se.inf.ethz.ch/teaching/2011-F/CCC-0268/
•  Lecturers
•  Prof. Dr. Bertrand Meyer
•  Dr. Sebastian Nanz

•  Assistants
•  Benjamin Morandi
•  Scott West

3

Grading

•  Exam 50%
•  Will be held at the end of the semester (not in

the semester break).
•  Exam date: May 31, 2011 during the usual lecture

hours
•  Project 50%

4

Course description (from catalog)

•  This course explores the connections between the
object oriented and concurrent programming
paradigms, discussing the problems that arise in the
process of attempting to merge them

•  It reviews the main existing approaches to concurrent
O-O computation, including both widely used libraries
for multi-threading in Java and .NET and more
theoretical frameworks, with a particular emphasis on
the SCOOP model

•  It also provides some of the formal background for
discussing the correctness of concurrent O-O
applications

5

Purpose of the course

§ To give you a practical grasp of the excitement and
difficulties of building modern concurrent applications

§ To expose you to newer forms of concurrency
§ To study how the object-oriented paradigm transposes to
concurrent settings, and how it can help address
concurrency issues

§ To introduce you to the main concurrency approaches and
give you an idea of their strength and weaknesses

§ To present some of the concurrency calculi
§ To study in depth one particular approach: SCOOP
§ To enable you to get a concrete grasp of the issues and
solutions through a course project

6

Two sides of the same coin

“Classic” part
•  Survey of classic and modern approaches
•  Explains historical evolution
•  Illustrates problems and solutions e.g., Java

SCOOP part
•  The “object lesson”
•  High-level support for concurrency
•  Concurrency solution integrated with an OO

programming language, i.e., Eiffel
•  Starts from object-oriented programming

as a given, adds concurrency

Chair of Software Engineering

Concurrency:
benefits and challenges

8

Material (slightly adapted) from

The Art of Multiprocessor Programming
by Maurice Herlihy & Nir Shavit

9

Moore‘s Law

Clock speed
flattening

sharply

Transistor
count still

rising

Source: Intel

10

Uniprocessor

memory

cpu

11

Shared Memory Multiprocessor (SMP)

cache

Bus Bus

shared memory

cache cache

12

Multicore Processor (CMP)

Sun
T2000

Niagara

All on the

same chip

13

Why do we care about multicore processors?

•  Time no longer cures software bloat
•  The “free ride” is over

•  When you double your program’s path length
•  You can’t just wait 6 months
•  Your software must somehow exploit twice as

much concurrency

14

Traditional scaling process

User code

Traditional

Uniprocessor

Speedup
1.8x

7x
3.6x

Time: Moore’s law

15

Multicore scaling process: the hope

User code

Multicore

Speedup 1.8x

7x
3.6x

Unfortunately, not so simple…

16

Real scaling process

1.8x 2x 2.9x

User code

Multicore

Speedup

Parallelization and Synchronization
require great care…

17

Sequential computation

memory

object object

thread

18

Concurrent computation

memory

object object

19

Sudden unpredictable delays
•  Cache misses (short)
•  Page faults (long)
•  Scheduling quantum used up (really long)

Asynchrony

20

Model summary

•  Multiple threads
•  Sometimes called processes

•  Single shared memory
•  Objects live in memory
•  Unpredictable asynchronous delays

21

Concurrency jargon

•  Hardware
•  Processors

•  Software
•  Threads, processes

•  Sometimes OK to confuse them, sometimes not.

22

Example: parallel primality testing

•  Challenge
•  Print primes from 1 to 1010

•  Given
•  Ten-processor multiprocessor
•  One thread per processor

•  Goal
•  Get ten-fold speedup (or close)

23

Load balancing

•  Split the work evenly
•  Each thread tests range of 109

…

… 109 1010 2·109 1

P0 P1 P9

24

Procedure for thread i

void primePrint {

 int i = ThreadID.get(); // IDs in {0..9}

 for (j = i*109+1, j<(i+1)*109; j++) {

 if (isPrime(j))

 print(j);

 }

}

25

Issues

•  Higher ranges have fewer primes
•  Yet larger numbers harder to test
•  Thread workloads

•  Uneven
•  Hard to predict

•  Need dynamic load balancing

26

Amdahl’s Law

…of computation given n CPUs instead of 1

time execution new
time execution old

=speedup

27

Amdahl’s Law

n
pp

speedup
+−

=
1

1
Parallel
fraction

Sequential
fraction

Number of
processors

28

Example

•  Ten processors
•  60% concurrent, 40% sequential
•  How close to 10-fold speedup?

10
6.06.01

117.2
+−

==speedup

29

Example

•  Ten processors
•  80% concurrent, 20% sequential
•  How close to 10-fold speedup?

10
8.08.01

157.3
+−

==speedup

30

Example

•  Ten processors
•  90% concurrent, 10% sequential
•  How close to 10-fold speedup?

10
9.09.01

126.5
+−

==speedup

31

Example

•  Ten processors
•  99% concurrent, 1% sequential
•  How close to 10-fold speedup?

10
99.099.01

117.9
+−

==speedup

32

The moral

•  Making good use of our multiple processors (cores)
means finding ways to effectively parallelize our code

•  Minimize sequential parts
•  Reduce idle time in which threads wait without

doing something useful.

Chair of Software Engineering

SCOOP	 Taster	

34 3
4

put (b : [G] ; v : G)
 -- Store v into b.
 require
 not b.is_full
 do
 …
 ensure
 not b.is_empty

 end

QUEUE BUFFER

my_queue : [T]
…

if not my_queue.is_full then

 put (my_queue, t)
end

BUFFER QUEUE

put

item, remove

35

The issue

Concurrency everywhere:
Ø  Multithreading
Ø  Multitasking
Ø  Networking, Web services, Internet

Can we bring concurrent programming
to the same level

of abstraction and convenience
as sequential programming?

Ø Multicore

36

Previous advances in programming

“Structured
programming”

“Object
technology”

Use higher-level abstractions ü ü
Helps avoid bugs ü ü
Transfers tasks to implementation ü ü
Lets you do stuff you couldn’t before NO ü

Has well-understood math basis ü ü
Doesn’t require understanding that basis ü ü

Removes restrictions NO ü
Adds restrictions ü ü

Permits less operational reasoning ü ü

37

Then and now

Sequential programming:

Used to be messy

Still hard but key
improvements:

Ø  Structured
programming

Ø  Data abstraction &
object technology

Ø  Design by Contract
Ø  Genericity, multiple

inheritance
Ø  Architectural

techniques

Concurrent programming:

Used to be messy

Example: threading models in
most popular approaches

Development level: sixties/
seventies

Only understandable through
operational reasoning

Still messy

38

The chasm

Theoretical models, process calculi… Elegant theoretical
basis, but

Ø  Little connection with practice (some exceptions,
e.g. BPEL)

Ø  Handle concurrency aspects only

Practice of concurrent & multithreaded programming

Ø  Little influenced by above
Ø  Low-level, e.g. semaphores
Ø  Poorly connected with rest of programming model

39

Wrong (in my opinion) assumptions

“Objects are naturally concurrent ” (Milner)

Ø  Many attempts, often based on “Active objects”
 (a self-contradictory notion)

Ø  Lead to artificial issue of “Inheritance anomaly”

“Concurrency is the basic scheme, sequential programming
a special case ” (many)

Ø  Correct in principle, but in practice we understand
sequential best

40

SCOOP mechanism

Simple Concurrent Object-Oriented Programming

Evolved through last decade; CACM (1993) and chap. 30 of
Object-Oriented Software Construction, 2nd edition, 1997

Implemented at ETH, integrated into EiffelStudio

Current state is described in Piotr Nienaltowski’s 2007
ETH PhD dissertation

41

Dining philosophers

class PHILOSOPHER inherit
 PROCESS
 rename
 setup as getup
 redefine step end

feature {BUTLER}

 step
 do
 think ; eat (left, right)

 end

 eat (l, r : separate FORK)
 -- Eat, having grabbed l and r.

 do … end
end

