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Practical Details 

•  Schedule 
•  Course: Tuesday 10-12, RZ F21 
•  Exercise: Tuesday 12-13, RZ F21 

•  Course page 
•  Check it at least once a week: 

http://se.inf.ethz.ch/teaching/2011-F/CCC-0268/ 
•  Lecturers 
•  Prof. Dr. Bertrand Meyer 
•  Dr. Sebastian Nanz 

•  Assistants 
•  Benjamin Morandi 
•  Scott West 
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Grading 

•  Exam 50% 
•  Will be held at the end of the semester (not in 

the semester break). 
•  Exam date: May 31, 2011 during the usual lecture 

hours 
•  Project 50% 
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Course description (from catalog) 

•  This course explores the connections between the 
object oriented and concurrent programming 
paradigms, discussing the problems that arise in the 
process of attempting to merge them  

•  It reviews the main existing approaches to concurrent  
O-O computation, including both widely used libraries 
for multi-threading in Java and .NET and more 
theoretical frameworks, with a particular emphasis on 
the SCOOP model 

•  It also provides some of the formal background for 
discussing the correctness of concurrent O-O 
applications 
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Purpose of the course 

§ To give you a practical grasp of the excitement and 
difficulties of building modern concurrent applications 

§ To expose you to newer forms of concurrency 
§ To study how the object-oriented paradigm transposes to 
concurrent settings, and how it can help address 
concurrency issues 

§ To introduce you to the main concurrency approaches and 
give you an idea of their strength and weaknesses 

§ To present some of the concurrency calculi 
§ To study in depth one particular approach: SCOOP 
§ To enable you to get a concrete grasp of the issues and 
solutions through a course project 
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Two sides of the same coin 

“Classic” part 
•  Survey of classic and modern approaches 
•  Explains historical evolution 
•  Illustrates problems and solutions e.g., Java 
 
SCOOP part 
•  The “object lesson”  
•  High-level support for concurrency 
•  Concurrency solution integrated with an OO 

programming language, i.e., Eiffel 
•  Starts from object-oriented programming 

as a given, adds concurrency 
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benefits and challenges 
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Material (slightly adapted) from 

 
 
 
 
 
 
 

 
 
 

The Art of Multiprocessor Programming 
by Maurice Herlihy & Nir Shavit 
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Moore‘s Law 

Clock speed 
flattening 

sharply 

Transistor 
count still 

rising 

Source: Intel 
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Uniprocessor 

memory 

cpu 
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Shared Memory Multiprocessor (SMP) 

cache 

Bus Bus 

shared memory 

cache cache 
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Multicore Processor (CMP)  

Sun 
T2000 

Niagara 

All on the  

same chip 
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Why do we care about multicore processors? 

•  Time no longer cures software bloat 
•  The “free ride” is over 

•  When you double your program’s path length 
•  You can’t just wait 6 months 
•  Your software must somehow exploit twice as 

much concurrency 
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Traditional scaling process 

User code 

Traditional 

Uniprocessor  

Speedup 
1.8x 

7x 
3.6x 

Time: Moore’s law 
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Multicore scaling process: the hope 

User code 

Multicore 

Speedup 1.8x 

7x 
3.6x 

Unfortunately, not so simple… 
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Real scaling process 

1.8x 2x 2.9x 

User code 

Multicore 

Speedup 

Parallelization and Synchronization  
require great care…  
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Sequential computation 

memory 

object object 

thread 
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Concurrent computation 

memory 

object object 



19 

Sudden unpredictable delays 
•  Cache misses (short) 
•  Page faults (long) 
•  Scheduling quantum used up (really long) 

Asynchrony 
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Model summary 

•  Multiple threads 
•  Sometimes called processes 

•  Single shared memory 
•  Objects live in memory 
•  Unpredictable asynchronous delays 
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Concurrency jargon 

•  Hardware 
•  Processors 

•  Software 
•  Threads, processes 

•  Sometimes OK to confuse them, sometimes not. 
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Example: parallel primality testing 

•  Challenge 
•  Print primes from 1 to 1010 

•  Given 
•  Ten-processor multiprocessor 
•  One thread per processor 

•  Goal 
•  Get ten-fold speedup (or close) 
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Load balancing 

•  Split the work evenly 
•  Each thread tests range of 109 

 

… 

… 109 1010 2·109 1 

P0 P1 P9 
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Procedure for thread i 

void primePrint { 

  int i = ThreadID.get(); // IDs in {0..9} 

  for (j = i*109+1, j<(i+1)*109; j++) { 

    if (isPrime(j)) 

      print(j); 

  } 

} 
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Issues 

•  Higher ranges have fewer primes 
•  Yet larger numbers harder to test 
•  Thread workloads 

•  Uneven 
•  Hard to predict 

•  Need dynamic load balancing 
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Amdahl’s Law 

…of computation given n CPUs instead of 1 

time execution new
time execution old

=speedup
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Amdahl’s Law 

n
pp

speedup
+−

=
1

1
Parallel 
fraction 

Sequential 
fraction 

Number of 
processors 
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Example 

•  Ten processors 
•  60% concurrent, 40% sequential 
•  How close to 10-fold speedup? 
 

10
6.06.01

117.2
+−

==speedup
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Example 

•  Ten processors 
•  80% concurrent, 20% sequential 
•  How close to 10-fold speedup? 
 

10
8.08.01

157.3
+−

==speedup
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Example 

•  Ten processors 
•  90% concurrent, 10% sequential 
•  How close to 10-fold speedup? 
 

10
9.09.01

126.5
+−

==speedup
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Example 

•  Ten processors 
•  99% concurrent, 1% sequential 
•  How close to 10-fold speedup? 
 

10
99.099.01

117.9
+−

==speedup
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The moral 

•  Making good use of our multiple processors (cores) 
means finding ways to effectively parallelize our code 

•  Minimize sequential parts 
•  Reduce idle time in which threads wait without 

doing something useful. 
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SCOOP	  Taster	  
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put (b :                [G ] ; v : G ) 
  -- Store v into b. 
 require 
  not b.is_full 
 do 
  … 
 ensure 
  not b.is_empty 

  end 

QUEUE   BUFFER   

my_queue :               [T ] 
…  

if not my_queue.is_full then 

 
 

 put (my_queue, t ) 
end 

BUFFER   QUEUE   

put 

item, remove 
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The issue 

Concurrency everywhere: 
Ø  Multithreading 
Ø  Multitasking 
Ø  Networking, Web services, Internet 

Can we bring concurrent programming 
to the same level 

of abstraction and convenience 
as sequential programming? 

Ø Multicore 



36 

Previous advances in programming 

“Structured 
programming”  

“Object 
technology”  

Use higher-level abstractions  ü ü 
Helps avoid bugs ü ü 
Transfers tasks to implementation ü ü 
Lets you do stuff you couldn’t before NO ü 

Has well-understood math basis ü ü 
Doesn’t require understanding that basis ü ü 

Removes restrictions NO ü 
Adds restrictions ü ü 

Permits less operational reasoning ü ü 
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Then and now 

Sequential programming: 
 
Used to be messy 
 
Still hard but key 
improvements: 
 

Ø  Structured 
programming 

Ø  Data abstraction & 
object technology 

Ø  Design by Contract 
Ø  Genericity, multiple 

inheritance 
Ø  Architectural 

techniques 

Concurrent programming: 
 
Used to be messy 

Example: threading models in 
most popular approaches 

 

Development level: sixties/
seventies 

 

Only understandable through 
operational reasoning 

Still messy 
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The chasm 

Theoretical models, process calculi… Elegant theoretical 
basis, but 

Ø  Little connection with practice (some exceptions, 
e.g. BPEL) 

Ø  Handle concurrency aspects only 
 

Practice of concurrent & multithreaded programming 
 

Ø  Little influenced by above 
Ø  Low-level, e.g. semaphores 
Ø  Poorly connected with rest of programming model 
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Wrong (in my opinion) assumptions 

“Objects are naturally concurrent ” (Milner) 
     

Ø  Many attempts, often based on “Active objects” 
 (a self-contradictory notion) 

Ø  Lead to artificial issue of “Inheritance anomaly” 

“Concurrency is the basic scheme, sequential programming 
a special case ” (many) 
 

Ø  Correct in principle, but in practice we understand 
sequential best 
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SCOOP mechanism 

Simple Concurrent Object-Oriented Programming 
 

Evolved through last decade; CACM (1993) and chap. 30 of 
Object-Oriented Software Construction, 2nd edition, 1997 
 

Implemented at ETH, integrated into EiffelStudio 
 
Current state is described in Piotr Nienaltowski’s 2007 
ETH PhD dissertation 
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Dining philosophers 

class PHILOSOPHER inherit 
 PROCESS 
  rename 
          setup as getup 
  redefine step end 

 
feature {BUTLER} 

 step  
  do 
            think ;   eat (left, right) 

           end   
 

 eat (l, r : separate FORK)  
                -- Eat, having grabbed l and r. 

           do … end  
end 


