
Chair of Software Engineering 

Concepts of Concurrent Computation 
 

Bertrand Meyer 
Sebastian Nanz	
  

 
Lecture 2: Challenges of Concurrency 



2 

Today's lecture 

In this lecture you will learn about: 
 
•  the basics of concurrent execution of processes in 
operating systems (multiprocessing, multitasking) 
•  the interleaving semantics of concurrent computation, 
and a formalization (transition systems, temporal logic) 
•  the most important problems related to concurrent 
programming (race conditions, deadlock, starvation) 
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Multiprocessing 

•  Until a few years ago: systems with one processing unit 
standard 
•  Today: most end-user systems have multiple processing 
units in the form of multi-core processors 

•  Multiprocessing: the use of more than one processing unit 
in a system 
•  Execution of processes is said to be parallel, as they are 
running at the same time 

Process 1 CPU 1 

Process 2 CPU 2 
Instructions 
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Multitasking 

•  Also on systems with a single processing unit it appears 
that programs run "in parallel" 
•  This is because the operating system implements 
multitasking: the operating system switches between the 
execution of different tasks 

•  Execution of processes is said to be interleaved, as all 
are in progress, but only one is running at a time 

Process 1 

CPU 

Process 2 

Instructions 
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Processes 

•  A (sequential) program is a set of instructions 
•  A process is an instance of a program that is being 
executed 
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Concurrency 

•  Both multiprocessing and multitasking are examples of 
concurrent computation 
•  The execution of processes is said to be concurrent if it 
is either parallel or interleaved 
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Operating system processes 

•  How are processes implemented in an operating system? 
•  Structure of a typical process: 

•  Process identifier: unique ID of a process. 
•  Process state: current activity of a process. 
•  Process context: program counter, register values 
•  Memory: program text, global data, stack, and heap. 

Process ID 

Code Global data 

Register 
values 

Stack 
Heap 

Program 
counter 
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The scheduler 

•  A system program called the scheduler controls which 
processes are running; it sets the process states: 

•  new: being created. 
•  running: instructions are being executed. 
•  blocked: currently waiting for an event. 
•  ready: ready to be executed, but not been assigned 

a processor yet. 
•  terminated: finished executing. 

blocked 

running ready 

Context switch 

new terminated 



10 

Blocked processes 

•  A process can get into state blocked by executing special 
program instructions (synchronization primitives, see 
following lectures) 
•  When blocked, a process cannot be selected for 
execution 
•  A process gets unblocked by external events which set 
its state to ready again 
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The context switch 

•  The swapping of processes on a processing unit by the 
scheduler is called the context switch 
  

•  Scheduler actions when switching processes P1 and P2: 
•  P1.state := ready 
•  Save register values as P1's context in memory 
•  Use context of P2 to set register values 
•  P2.state := running 

CPU Registers 

P1 
Context 

P2 
Context 
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 Concurrency within programs 

•  We also want to use concurrency within programs 
  

CPU 1 CPU 2 

task 1 
task 2 

m 

n 

m + n 

CPU 1 CPU 2 

task 1 

task 2 m 
n 

max(m, n) 

Sequential execution: Concurrent execution: 

compute 
    do 
        t1.do_task1 
        t2.do_task2 
    end 
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Threads 

•  Make programs concurrent by associating them with 
threads 
•  A thread is a part of an operating system process 
•  Components private to each thread 

•  Thread identifier 
•  Thread state 
•  Thread context 
•  Memory: only stack 

•  Components shared with other  
threads: 

•  Program text 
•  Global data 
•  Heap  

Process ID 

Code Global data 

Register 
values 

Thread ID1 Thread ID3 Thread ID2 

Register 
values 

Register 
values 

Stack Stack Stack 

Heap 

Program 
counter 

Program 
counter 

Program 
counter 
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Concurrent programs 

•  A program which at runtime gives rise to a process 
containing multiple threads is called a concurrent program. 
•  How to specify threads? Every programming language 
provides different syntax. 
•  Abstract notation for a concurrent program: 

x := 0 
P1 P2 
1 
2 

x := 0 
x := x + 1 

1 x := 2 
 

Initialization of global variables 
Thread ID 

Line numbers Code of concurrently 
executed threads 
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Execution sequences 

 

•  Execution can give rise to this execution sequence: 

x := 0 
P1 P2 
1 
2 

x := 0 
x := x + 1 

1 x := 2 
 

P1 1 x := 0 x = 0 
P2 1 x := 2 x = 2 
P1 2 x := x + 1 x = 3 

Variable values after 
execution of the 
code on the line 

Instruction executed 
with Thread ID and 
line number 
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Execution sequences 

 

•  Execution can also give rise to the following execution 
sequences: 

•  But not to the following (Why?): 

x := 0 
P1 P2 
1 
2 

x := 0 
x := x + 1 

1 x := 2 
 

P2 1 x := 2 x = 2 
P1 1 x := 0 x = 0 
P1 2 x := x + 1 x = 1 

P1 1 x := 0 x = 0 
P1 2 x := x + 1 x = 1 
P2 1 x := 2 x = 2 

P1 2 x := x + 1 
P2 1 x := 2 
P1 1 x := 0 
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Atomic instructions 

•  An instruction is atomic if its execution cannot be 
interleaved with other instructions before its completion 
•  We can choose different levels of atomicity 
 The choice is important: for example, the instruction 

 x := x + 1 
  is on many systems executed as: 

 temp := x    -- LOAD R0, x 
 temp := temp + 1   -- ADD R0, #1 
 x := temp    -- STORE R0, x 

•  Convention: in our notation for concurrent programs, 
every numbered line can be executed atomically 
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Choice of atomicity level 

•  To reflect the different assumption on atomicity, the 
concurrent program is restated: 

 
•  One of the possible execution sequences: 

x := 0 
P1 P2 
1 
2 
3 
4 

x := 0 
temp := x 
temp := temp + 1 
x := temp 

1 x := 2 
 

P1 1 x := 0 x = 0 
P1 2 temp := x x = 0, temp = 0 
P2 1 x := 2 x = 2, temp = 0 
P1 3 temp := temp + 1 x = 2, temp = 1 
P1 4 x := temp x = 1, temp = 1 
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Side remark: Concurrent programs in Java 

•  How to associate computations with threads? Example: 
Java Threads 
 

class Thread1 extends Thread { 
    public void run() { 
         // implement task1 here 
     } 
} 
class Thread2 extends Thread { 
    public void run() { 
         // implement task2 here 
      } 
} 

void compute() { 
    Thread1 t1 = new Thread1(); 
    Thread2 t2 = new Thread2(); 
    t1.start(); 
    t2.start(); 
} 



21 

Joining threads in Java 

•  Often the final results of thread executions need be 
combined 

 
•  We have to wait for both threads to be finished: we have 
to join the threads 

•  Example: the join() method, when invoked on a thread t 
causes the caller to wait until t is finished 

return t1.getResult() + t2.getResult(); 

t1.start(); 
t2.start(); 
t1.join(); 
t2.join(); 
return t1.getResult() + t2.getResult(); 
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True-concurrency vs. interleaving semantics 

•  To describe concurrent behavior, we need a model 
•  True-concurrency semantics: assumption that true 
parallel behaviors exist 
•  Interleaving semantics: assumption that all parallel 
behavior can be represented by the set of all non-
deterministic interleavings of atomic instructions 
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Interleaving semantics 

•  The interleaving semantics provides a good model for 
concurrent programs, in particular it can describe: 

•  Multitasking: The interleaving is performed by the 
scheduler 

•  Multiprocessing: The interleaving is performed by 
the hardware 

•  By considering all possible interleavings, we can ensure 
that a program runs correctly in all possible scenarios 
•  Downside: The number of possible interleavings grows 
exponentially in the number of concurrent processes 
(state space explosion problem) 
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Transition systems 

•  A formal model that allows us to express concurrent 
computation are transition systems 
•  They consist of states and transitions between them 
•  A state is labeled with atomic propositions, which 
express concepts such as: 

•  P2⊳2    (the program pointer of P2 points to 2) 
•  x = 6     (the value of variable x is 6) 

•  There is a transition between two states if one state can 
be reached from the other by executing an atomic 
instruction 
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Example: transition system 

P1⊳1 
P2⊳1 
x = 0 

P1⊳2 
P2⊳1 
x = 0 

P1⊳1 
x = 2 

P1⊳2 
x = 0 

x = 1 

P2⊳1 
x = 1 x = 2 

x = 3 x = 2 

x := 0 
P1 P2 
1 
2 

x := 0 
x := x + 1 

1 x := 2 
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Transition systems, formally 

•  Let A be a set of atomic propositions  
•  A transition system T is a triple (S, ->, L) where 

•  S is the set of states 
•  -> ⊆ S x S is the transition relation 
•   L : S -> 2A is the labeling function 

•  The transition relation has the additional property that 
for every s ∈ S there is an s' ∈ S such that s -> s' 
•  A path is an infinite sequence of states 
  π = s1, s2, s3, ... 
  such that for every i ≥ 1 we have si -> si+1 

•  We write π[i] for the subsequence si, si+1, si+2, ... 
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Temporal logic 

•  For any concurrent program, its transition system 
represents all of its behavior 
•  We are typically interested in specific aspects of this 
behavior, e.g. 

•  "the value of variable x will never be negative" 
•  "the program pointer of P2 will eventually point to 9" 

•  Temporal logics allow us to express such properties 
formally 
•  We will study linear-time temporal logic (LTL) 
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Syntax of LTL 

•  The syntax of LTL formulas is given by the following 
grammar: 

ϕ ::= T | p | ¬ϕ | ϕ ∧ ϕ | G ϕ | F ϕ | ϕ U ϕ | X ϕ 
•  Formulas known from propositional logic:  

T | p | ¬ϕ | ϕ ∧ ϕ  
•  Temporal operators: 

•  G ϕ: Globally (in all future states) ϕ holds 
•  F ϕ: in some Future state ϕ holds 
•  ϕ1 U ϕ2: in some future state ϕ2 holds, and at least 

Until then, ϕ1 holds 
•  X ϕ: in the next state, ϕ holds 

•  Sometimes we write ☐ instead of G, and ♢ instead of F 
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Example: LTL formulas 

•  "the value of variable x will never be negative" 

G ¬(x < 0) 
 

•  "whenever the program pointer of P2 points to 3, it will 
eventually point to 9" 

G (P2⊳3 -> F P2⊳9) 
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Semantics of LTL 

•  The meaning of formulas is defined by the satisfaction 
relation |= for a path π = s1, s2, s3, ... 
π |= T 
π |= p   iff p ∈ L(s1) 
π |= ¬ϕ   iff π |= ϕ does not hold 
π |= ϕ1 ∧ ϕ2  iff π |= ϕ1 and π |= ϕ2 
π |= G ϕ   iff for all i ≥ 1, π[i] |= ϕ  
π |= F ϕ   iff exists i ≥ 1, such that π[i] |= ϕ  
π |= ϕ1 U ϕ2 iff exists i ≥ 1, such that π[i] |= ϕ2 and  

    for all 1 ≤ j < i, π[j] |= ϕ1 

π |= X ϕ   iff π[2] |= ϕ  
•  If we write s |= ϕ we mean that for every path π 
starting in s we have π |= ϕ 
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Example: semantics of LTL 

•  Consider the following transition system: 

•  Which properties hold? 
•  s1 |= p ⋀ q 
•  s1 |= G ¬(p ⋀ r) 
•  s1 |= X q 
•  for all s, s |= F (¬q ⋀ r) -> F G r 

p, q 
s1 

r 
s3 

q, r 
s2 
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Equivalence of formulas 

•  Two formulas φ and ψ are equivalent if for all transition 
systems and all paths π 

π |= φ   iff    π |= ψ 
•  Some equivalent formulas: 

•  F φ ≡ T U φ 
•  G φ ≡ ¬ F ¬φ 

•  Hence both F and G can be expressed by U 
•  X cannot be expressed in terms of the others 
•  X and U form an adequate set of temporal connectives, 
i.e. all temporal operators can be defined in terms of these 
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Safety and liveness properties 

•  There are two types of formal properties in 
asynchronous computation: 

•  Safety properties: properties of the form 
"nothing bad ever happens" 

•  Liveness properties: properties of the form 
"something good eventually happens" 

•  Example (safety): "the value of variable x will never be 
negative" 
•  Example (liveness): "whenever the program pointer of P2 
points to 3, it will eventually point to 9" 
•  Safety properties are often expressible with the LTL 
formula G ¬ϕ, and liveness properties with G (ϕ -> F ψ) 
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Race conditions 

•  Which value does the function f return? 

f : INTEGER 
 do 
     x := 0 
     x := x + 1 
     result := x 
 end 
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Where the trouble starts 

•  If processes/threads are completely independent, 
concurrency is easy 
•  Much more often threads interfere with each other, for 
example by accessing and modifying the same variables or 
objects 
•  The function f could execute concurrently with other 
instructions, e.g. x := 2: we end up with three different 
results, depending on the particular interleaving taken 

P2 1 x := 2 x = 2 
P1 1 x := 0 x = 0 
P1 2 x := x + 1 x = 1 

P1 1 x := 0 x = 0 
P1 2 x := x + 1 x = 1 
P2 1 x := 2 x = 2 

P1 1 x := 0 x = 0 
P2 1 x := 2 x = 2 
P1 2 x := x + 1 x = 3 
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Race conditions 

•  The situation that the result of a concurrent execution is 
dependent on the nondeterministic interleaving is called a 
race condition or data race 
•  Such errors can stay hidden for a long time and are 
difficult to find by testing 
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Synchronization 

•  In order to solve the problem of data races, processes 
have to synchronize with each other 
•  Synchronization describes the idea that processes 
communicate with each other in order to agree on a 
sequence of actions 
•  In the above example, it could be agreed that only one 
process at a time can hold the resource (have exclusive 
use of it); we will see techniques for this in later lectures 
•  How can processes communicate? 
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Communication 

•  Two main means of process communication:  
•  Shared memory: processes communicate by reading 

and writing to shared sections of memory 
•  Message-passing: processes communicate by sending 

messages to each other 
•  The predominant technique is shared memory 
communication and we will concentrate on this 
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The problem of deadlock 

•  The ability to hold resources exclusively is central to 
providing process synchronization for resource access 
•  Unfortunately, it brings about other problems 
•  A deadlock is the situation where a group of processes 
blocks forever because each of the processes is waiting 
for resources which are held by another process in the 
group 
•  An illustrative example of deadlock is the dining 
philosopher's problem 
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The dining philosophers problem 

•  n philosophers are seated around a table and in between 
each pair of philosophers there is a single fork.  
•  In order to eat, each philosopher needs to pick up both 
forks which are lying to his sides, and thus philosophers 
sitting next to each other can never eat at the same time. 
•  A philosopher only engages in two activities: thinking and 
eating.  
•  The problem consist in devising an algorithm such that 
the following properties are ensured: 

•  Each fork is held by one 
philosopher at a time 

•  Philosophers don't deadlock 
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Dining philosophers: solution attempt 1 

•  Each philosopher first picks up the right fork, then the 
left fork, and then starts eating; after having eaten, the 
philosopher puts down the left fork, then the right one 
•  Philosophers can deadlock! How? 
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The Coffman conditions 

•  There are a number of necessary conditions for 
deadlock to occur 

1.  Mutual exclusion: processes have exclusive 
control of the resources they require 

2.  Hold and wait: processes already holding 
resources may request new resources 

3.  No preemption: resources cannot be forcibly 
removed from a process holding it 

4.  Circular wait: two or more processes form a 
circular chain where each process waits for a 
resource that the next process in the chain holds 

•  Attempts at avoiding deadlocks typically try to break 
one of these conditions 
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Dining philosophers: solution attempt 2 

•  Each philosopher picks up right fork and the left fork at 
the same time, and then starts eating; after having eaten, 
the philosopher puts them both back down 
•  What is the problem? 
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Starvation 

•  Even if no deadlock occurs, it may still happen that some 
processes are not treated fairly 
•  The situation that processes are perpetually denied 
access to resources is called starvation 
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Fairness 

•  To make solution attempt 2 work, we have to ensure that 
philosophers are scheduled in a fair way 
•  Fairness is concerned with a fair resolution of 
nondeterminism  
•  Weak fairness: if an action is continuously enabled, i.e. 
never temporarily disabled, then it has to be executed 
infinitely often 
•  Strong fairness: if an activity is infinitely often enabled, 
but not necessarily always, then it has to be executed 
infinitely often 


