
Chair of Software Engineering

Concepts of Concurrent Computation

Bertrand Meyer
Sebastian Nanz	

Lecture 2: Challenges of Concurrency

2

Today's lecture

In this lecture you will learn about:

•  the basics of concurrent execution of processes in
operating systems (multiprocessing, multitasking)
•  the interleaving semantics of concurrent computation,
and a formalization (transition systems, temporal logic)
•  the most important problems related to concurrent
programming (race conditions, deadlock, starvation)

Chair of Software Engineering

Concurrent	
 Processes	

4

Multiprocessing

•  Until a few years ago: systems with one processing unit
standard
•  Today: most end-user systems have multiple processing
units in the form of multi-core processors

•  Multiprocessing: the use of more than one processing unit
in a system
•  Execution of processes is said to be parallel, as they are
running at the same time

Process 1 CPU 1

Process 2 CPU 2
Instructions

5

Multitasking

•  Also on systems with a single processing unit it appears
that programs run "in parallel"
•  This is because the operating system implements
multitasking: the operating system switches between the
execution of different tasks

•  Execution of processes is said to be interleaved, as all
are in progress, but only one is running at a time

Process 1

CPU

Process 2

Instructions

6

Processes

•  A (sequential) program is a set of instructions
•  A process is an instance of a program that is being
executed

7

Concurrency

•  Both multiprocessing and multitasking are examples of
concurrent computation
•  The execution of processes is said to be concurrent if it
is either parallel or interleaved

8

Operating system processes

•  How are processes implemented in an operating system?
•  Structure of a typical process:

•  Process identifier: unique ID of a process.
•  Process state: current activity of a process.
•  Process context: program counter, register values
•  Memory: program text, global data, stack, and heap.

Process ID

Code Global data

Register
values

Stack
Heap

Program
counter

9

The scheduler

•  A system program called the scheduler controls which
processes are running; it sets the process states:

•  new: being created.
•  running: instructions are being executed.
•  blocked: currently waiting for an event.
•  ready: ready to be executed, but not been assigned

a processor yet.
•  terminated: finished executing.

blocked

running ready

Context switch

new terminated

10

Blocked processes

•  A process can get into state blocked by executing special
program instructions (synchronization primitives, see
following lectures)
•  When blocked, a process cannot be selected for
execution
•  A process gets unblocked by external events which set
its state to ready again

11

The context switch

•  The swapping of processes on a processing unit by the
scheduler is called the context switch

•  Scheduler actions when switching processes P1 and P2:
•  P1.state := ready
•  Save register values as P1's context in memory
•  Use context of P2 to set register values
•  P2.state := running

CPU Registers

P1
Context

P2
Context

12

 Concurrency within programs

•  We also want to use concurrency within programs

CPU 1 CPU 2

task 1
task 2

m

n

m + n

CPU 1 CPU 2

task 1

task 2 m
n

max(m, n)

Sequential execution: Concurrent execution:

compute
 do
 t1.do_task1
 t2.do_task2
 end

13

Threads

•  Make programs concurrent by associating them with
threads
•  A thread is a part of an operating system process
•  Components private to each thread

•  Thread identifier
•  Thread state
•  Thread context
•  Memory: only stack

•  Components shared with other
threads:

•  Program text
•  Global data
•  Heap

Process ID

Code Global data

Register
values

Thread ID1 Thread ID3 Thread ID2

Register
values

Register
values

Stack Stack Stack

Heap

Program
counter

Program
counter

Program
counter

Chair of Software Engineering

The	
 interleaving	
 seman4cs	

15

Concurrent programs

•  A program which at runtime gives rise to a process
containing multiple threads is called a concurrent program.
•  How to specify threads? Every programming language
provides different syntax.
•  Abstract notation for a concurrent program:

x := 0
P1 P2
1
2

x := 0
x := x + 1

1 x := 2

Initialization of global variables
Thread ID

Line numbers Code of concurrently
executed threads

16

Execution sequences

•  Execution can give rise to this execution sequence:

x := 0
P1 P2
1
2

x := 0
x := x + 1

1 x := 2

P1 1 x := 0 x = 0
P2 1 x := 2 x = 2
P1 2 x := x + 1 x = 3

Variable values after
execution of the
code on the line

Instruction executed
with Thread ID and
line number

17

Execution sequences

•  Execution can also give rise to the following execution
sequences:

•  But not to the following (Why?):

x := 0
P1 P2
1
2

x := 0
x := x + 1

1 x := 2

P2 1 x := 2 x = 2
P1 1 x := 0 x = 0
P1 2 x := x + 1 x = 1

P1 1 x := 0 x = 0
P1 2 x := x + 1 x = 1
P2 1 x := 2 x = 2

P1 2 x := x + 1
P2 1 x := 2
P1 1 x := 0

18

Atomic instructions

•  An instruction is atomic if its execution cannot be
interleaved with other instructions before its completion
•  We can choose different levels of atomicity
 The choice is important: for example, the instruction

 x := x + 1
 is on many systems executed as:

 temp := x -- LOAD R0, x
 temp := temp + 1 -- ADD R0, #1
 x := temp -- STORE R0, x

•  Convention: in our notation for concurrent programs,
every numbered line can be executed atomically

19

Choice of atomicity level

•  To reflect the different assumption on atomicity, the
concurrent program is restated:

•  One of the possible execution sequences:

x := 0
P1 P2
1
2
3
4

x := 0
temp := x
temp := temp + 1
x := temp

1 x := 2

P1 1 x := 0 x = 0
P1 2 temp := x x = 0, temp = 0
P2 1 x := 2 x = 2, temp = 0
P1 3 temp := temp + 1 x = 2, temp = 1
P1 4 x := temp x = 1, temp = 1

20

Side remark: Concurrent programs in Java

•  How to associate computations with threads? Example:
Java Threads

class Thread1 extends Thread {
 public void run() {
 // implement task1 here
 }
}
class Thread2 extends Thread {
 public void run() {
 // implement task2 here
 }
}

void compute() {
 Thread1 t1 = new Thread1();
 Thread2 t2 = new Thread2();
 t1.start();
 t2.start();
}

21

Joining threads in Java

•  Often the final results of thread executions need be
combined

•  We have to wait for both threads to be finished: we have
to join the threads

•  Example: the join() method, when invoked on a thread t
causes the caller to wait until t is finished

return t1.getResult() + t2.getResult();

t1.start();
t2.start();
t1.join();
t2.join();
return t1.getResult() + t2.getResult();

22

True-concurrency vs. interleaving semantics

•  To describe concurrent behavior, we need a model
•  True-concurrency semantics: assumption that true
parallel behaviors exist
•  Interleaving semantics: assumption that all parallel
behavior can be represented by the set of all non-
deterministic interleavings of atomic instructions

23

Interleaving semantics

•  The interleaving semantics provides a good model for
concurrent programs, in particular it can describe:

•  Multitasking: The interleaving is performed by the
scheduler

•  Multiprocessing: The interleaving is performed by
the hardware

•  By considering all possible interleavings, we can ensure
that a program runs correctly in all possible scenarios
•  Downside: The number of possible interleavings grows
exponentially in the number of concurrent processes
(state space explosion problem)

24

Transition systems

•  A formal model that allows us to express concurrent
computation are transition systems
•  They consist of states and transitions between them
•  A state is labeled with atomic propositions, which
express concepts such as:

•  P2⊳2 (the program pointer of P2 points to 2)
•  x = 6 (the value of variable x is 6)

•  There is a transition between two states if one state can
be reached from the other by executing an atomic
instruction

25

Example: transition system

P1⊳1
P2⊳1
x = 0

P1⊳2
P2⊳1
x = 0

P1⊳1
x = 2

P1⊳2
x = 0

x = 1

P2⊳1
x = 1 x = 2

x = 3 x = 2

x := 0
P1 P2
1
2

x := 0
x := x + 1

1 x := 2

26

Transition systems, formally

•  Let A be a set of atomic propositions
•  A transition system T is a triple (S, ->, L) where

•  S is the set of states
•  -> ⊆ S x S is the transition relation
•  L : S -> 2A is the labeling function

•  The transition relation has the additional property that
for every s ∈ S there is an s' ∈ S such that s -> s'
•  A path is an infinite sequence of states
 π = s1, s2, s3, ...
 such that for every i ≥ 1 we have si -> si+1

•  We write π[i] for the subsequence si, si+1, si+2, ...

27

Temporal logic

•  For any concurrent program, its transition system
represents all of its behavior
•  We are typically interested in specific aspects of this
behavior, e.g.

•  "the value of variable x will never be negative"
•  "the program pointer of P2 will eventually point to 9"

•  Temporal logics allow us to express such properties
formally
•  We will study linear-time temporal logic (LTL)

28

Syntax of LTL

•  The syntax of LTL formulas is given by the following
grammar:

ϕ ::= T | p | ¬ϕ | ϕ ∧ ϕ | G ϕ | F ϕ | ϕ U ϕ | X ϕ
•  Formulas known from propositional logic:

T | p | ¬ϕ | ϕ ∧ ϕ
•  Temporal operators:

•  G ϕ: Globally (in all future states) ϕ holds
•  F ϕ: in some Future state ϕ holds
•  ϕ1 U ϕ2: in some future state ϕ2 holds, and at least

Until then, ϕ1 holds
•  X ϕ: in the next state, ϕ holds

•  Sometimes we write ☐ instead of G, and ♢ instead of F

29

Example: LTL formulas

•  "the value of variable x will never be negative"

G ¬(x < 0)

•  "whenever the program pointer of P2 points to 3, it will
eventually point to 9"

G (P2⊳3 -> F P2⊳9)

30

Semantics of LTL

•  The meaning of formulas is defined by the satisfaction
relation |= for a path π = s1, s2, s3, ...
π |= T
π |= p iff p ∈ L(s1)
π |= ¬ϕ iff π |= ϕ does not hold
π |= ϕ1 ∧ ϕ2 iff π |= ϕ1 and π |= ϕ2
π |= G ϕ iff for all i ≥ 1, π[i] |= ϕ
π |= F ϕ iff exists i ≥ 1, such that π[i] |= ϕ
π |= ϕ1 U ϕ2 iff exists i ≥ 1, such that π[i] |= ϕ2 and

 for all 1 ≤ j < i, π[j] |= ϕ1

π |= X ϕ iff π[2] |= ϕ
•  If we write s |= ϕ we mean that for every path π
starting in s we have π |= ϕ

31

Example: semantics of LTL

•  Consider the following transition system:

•  Which properties hold?
•  s1 |= p ⋀ q
•  s1 |= G ¬(p ⋀ r)
•  s1 |= X q
•  for all s, s |= F (¬q ⋀ r) -> F G r

p, q
s1

r
s3

q, r
s2

32

Equivalence of formulas

•  Two formulas φ and ψ are equivalent if for all transition
systems and all paths π

π |= φ iff π |= ψ
•  Some equivalent formulas:

•  F φ ≡ T U φ
•  G φ ≡ ¬ F ¬φ

•  Hence both F and G can be expressed by U
•  X cannot be expressed in terms of the others
•  X and U form an adequate set of temporal connectives,
i.e. all temporal operators can be defined in terms of these

33

Safety and liveness properties

•  There are two types of formal properties in
asynchronous computation:

•  Safety properties: properties of the form
"nothing bad ever happens"

•  Liveness properties: properties of the form
"something good eventually happens"

•  Example (safety): "the value of variable x will never be
negative"
•  Example (liveness): "whenever the program pointer of P2
points to 3, it will eventually point to 9"
•  Safety properties are often expressible with the LTL
formula G ¬ϕ, and liveness properties with G (ϕ -> F ψ)

Chair of Software Engineering

Concurrency	
 Challenges	

35

Race conditions

•  Which value does the function f return?

f : INTEGER
 do
 x := 0
 x := x + 1
 result := x
 end

36

Where the trouble starts

•  If processes/threads are completely independent,
concurrency is easy
•  Much more often threads interfere with each other, for
example by accessing and modifying the same variables or
objects
•  The function f could execute concurrently with other
instructions, e.g. x := 2: we end up with three different
results, depending on the particular interleaving taken

P2 1 x := 2 x = 2
P1 1 x := 0 x = 0
P1 2 x := x + 1 x = 1

P1 1 x := 0 x = 0
P1 2 x := x + 1 x = 1
P2 1 x := 2 x = 2

P1 1 x := 0 x = 0
P2 1 x := 2 x = 2
P1 2 x := x + 1 x = 3

37

Race conditions

•  The situation that the result of a concurrent execution is
dependent on the nondeterministic interleaving is called a
race condition or data race
•  Such errors can stay hidden for a long time and are
difficult to find by testing

38

Synchronization

•  In order to solve the problem of data races, processes
have to synchronize with each other
•  Synchronization describes the idea that processes
communicate with each other in order to agree on a
sequence of actions
•  In the above example, it could be agreed that only one
process at a time can hold the resource (have exclusive
use of it); we will see techniques for this in later lectures
•  How can processes communicate?

39

Communication

•  Two main means of process communication:
•  Shared memory: processes communicate by reading

and writing to shared sections of memory
•  Message-passing: processes communicate by sending

messages to each other
•  The predominant technique is shared memory
communication and we will concentrate on this

40

The problem of deadlock

•  The ability to hold resources exclusively is central to
providing process synchronization for resource access
•  Unfortunately, it brings about other problems
•  A deadlock is the situation where a group of processes
blocks forever because each of the processes is waiting
for resources which are held by another process in the
group
•  An illustrative example of deadlock is the dining
philosopher's problem

41

The dining philosophers problem

•  n philosophers are seated around a table and in between
each pair of philosophers there is a single fork.
•  In order to eat, each philosopher needs to pick up both
forks which are lying to his sides, and thus philosophers
sitting next to each other can never eat at the same time.
•  A philosopher only engages in two activities: thinking and
eating.
•  The problem consist in devising an algorithm such that
the following properties are ensured:

•  Each fork is held by one
philosopher at a time

•  Philosophers don't deadlock

42

Dining philosophers: solution attempt 1

•  Each philosopher first picks up the right fork, then the
left fork, and then starts eating; after having eaten, the
philosopher puts down the left fork, then the right one
•  Philosophers can deadlock! How?

43

The Coffman conditions

•  There are a number of necessary conditions for
deadlock to occur

1.  Mutual exclusion: processes have exclusive
control of the resources they require

2.  Hold and wait: processes already holding
resources may request new resources

3.  No preemption: resources cannot be forcibly
removed from a process holding it

4.  Circular wait: two or more processes form a
circular chain where each process waits for a
resource that the next process in the chain holds

•  Attempts at avoiding deadlocks typically try to break
one of these conditions

44

Dining philosophers: solution attempt 2

•  Each philosopher picks up right fork and the left fork at
the same time, and then starts eating; after having eaten,
the philosopher puts them both back down
•  What is the problem?

45

Starvation

•  Even if no deadlock occurs, it may still happen that some
processes are not treated fairly
•  The situation that processes are perpetually denied
access to resources is called starvation

46

Fairness

•  To make solution attempt 2 work, we have to ensure that
philosophers are scheduled in a fair way
•  Fairness is concerned with a fair resolution of
nondeterminism
•  Weak fairness: if an action is continuously enabled, i.e.
never temporarily disabled, then it has to be executed
infinitely often
•  Strong fairness: if an activity is infinitely often enabled,
but not necessarily always, then it has to be executed
infinitely often

