
Chair of Software Engineering

Concepts of Concurrent Computation

Bertrand Meyer
Sebastian Nanz	

Lecture 3: Synchronization Algorithms

2

Today's lecture

In this lecture you will learn about:

•  the mutual exclusion problem, a common framework for
evaluating solutions to the problem of exclusive resource
access
•  solutions to the mutual exclusion problem (Peterson's
algorithm, the Bakery algorithm) and their properties
•  ways of proving properties for concurrent programs

Chair of Software Engineering

The	
 mutual	
 exclusion	
 problem	

4

Mutual exclusion

•  As discussed in the last lecture, race conditions can
corrupt the result of a concurrent computation if
processes are not properly synchronized
•  We want to develop techniques for ensuring mutual
exclusion
•  Mutual exclusion: a form of synchronization to avoid the
simultaneous use of a shared resource
•  To identify the program parts that need attention, we
introduce the notion of a critical section
•  Critical section: part of a program that accesses a
shared resource.

5

The mutual exclusion problem (1)

•  We assume to have n processes of the following form:

•  Design the entry and exit protocols to ensure:
•  Mutual exclusion: At any time, at most one process

may be in its critical section
•  Freedom from deadlock: If two or more processes

are trying to enter their critical sections, one of
them will eventually succeed

•  Freedom from starvation: If a process is trying to
enter its critical section, it will eventually succeed

while true loop
 entry protocol
 critical section
 exit protocol
 non-critical section
end

6

The mutual exclusion problem (2)

•  Further important conditions:

•  Processes can communicate with each other only via
atomic read and write operations

•  If a process enters its critical section, it will
eventually exit from it

•  A process may loop forever or terminate while being
in its non-critical section

•  The memory locations accessed by the protocols
may not be accessed outside of them

while true loop
 entry protocol
 critical section
 exit protocol
 non-critical section
end

7

Locks

•  Synchronization mechanisms based on the ideas of entry-
and exit-protocols are called locks
•  They can typically be implemented as a pair of functions:

 lock
 do
 entry protocol
 end

 unlock
 do
 exit protocol
 end

8

Towards a solution

•  The mutual exclusion problem is quite tricky: in the
1960's many incorrect solutions were published
•  We will work along a series of failing attempts until
establishing a solution
•  We will start with trying to find a solution for only two
processes

9

Busy waiting

•  We will use the following statement in pseudo code

await b

which is equivalent to

while not b loop end

•  This type of waiting is called busy waiting or "spinning"
•  Busy waiting is inefficient on multitasking systems
•  Busy waiting makes sense if waiting times are typically so
short that a context switch would be more expensive
•  Therefore spin locks (locks using busy waiting) are often
used in operating system kernels

10

Solution attempt I

•  First idea: use two variables enter1 and enter2; if enteri
is true, it means that process Pi intends to enter the
critical section

enter1 := false
enter2 := false
P1 P2

1
2
3
4
5

while true loop
 await not enter2
 enter1 := true
 critical section
 enter1 := false
 non-critical section
end

1
2
3
4
5

while true loop
 await not enter1
 enter2 := true
 critical section
 enter2 := false
 non-critical section
end

11

Solution attempt I is incorrect

•  The solution attempt fails to ensure mutual exclusion
•  The two processes can end up in their critical sections at
the same time, as demonstrated by the following execution
sequence

P2 1 await not enter1
P1 1 await not enter2
P1 2 enter1 := true
P2 2 enter2 := true
P2 3 critical section
P1 3 critical section

12

Solution attempt II

•  When analyzing the failure, we see that we set the
variable enteri only after the await statement, which is
guarding the critical section
•  Second idea: switch these statements around

enter1 := false
enter2 := false
P1 P2

1
2
3
4
5

while true loop
 enter1 := true
 await not enter2
 critical section
 enter1 := false
 non-critical section
end

1
2
3
4
5

while true loop
 enter2 := true
 await not enter1
 critical section
 enter2 := false
 non-critical section
end

13

Solution attempt II is incorrect

•  The solution provides mutual exclusion
•  However, the processes can deadlock:

P1 1 enter1 := true
P2 1 enter2 := true
P2 2 await not enter1
P1 2 await not enter2

14

Solution attempt III

•  Third idea: let's try something new, namely a single
variable turn that has value i if it's Pi's turn to enter the
critical section

turn := 1 or turn := 2
P1 P2

1
2
3
4

while true loop
 await turn = 1
 critical section
 turn := 2
 non-critical section
end

1
2
3
4

while true loop
 await turn = 2
 critical section
 turn := 1
 non-critical section
end

15

Proving correctness of solution attempt III

•  Solution attempt III looks good to us, let's try to prove
it correct
•  Draw the related transition system; states are labeled
with triples (i, j, k): program pointer values P1⊳i and P2⊳j,
and value of the variable turn = k.

16

Proving correctness of solution attempt III

•  Solution attempt III satisfies mutual exclusion

Proof. Mutual exclusion expressed as LTL formula:
G ¬(P1⊳2 ∧ P2⊳2)

•  Solution attempt III is deadlock-free

Proof. Deadlock-freedom expressed as LTL formula:
G ((P1⊳1 ∧ P2⊳1) -> F (P1⊳2 ⋁ P2⊳2))

Easy to see that this formula holds, as there are no
states of the form (2, 2, k).

We have to examine the states (1, 1, 1) and (1, 1, 2); in
both cases, one of the processes is enabled to enter
its critical section.

17

Another setback

•  Let's check starvation-freedom
•  Expressed as LTL formula: for i = 1, 2

 G (Pi⊳1 -> F (Pi⊳2))
•  Recall: processes may terminate in non-critical section
•  A problematic case is (1, 4, 2): variable turn = 2, P1 trying
to enter critical section (although not its turn), P2 in non-
critical section
•  If P2 terminates, turn will never be set to 1: P1 will
starve

Chair of Software Engineering

Peterson's	
 algorithm	

19

Peterson's algorithm

•  Peterson’s algorithm combines the ideas of solution
attempts II and III
•  If both processes have set their enter-flag to true, then
the value of turn decides who may enter the critical
section

enter1 := false
enter2 := false
turn := 1 or turn := 2
P1 P2

1
2
3
4
5
6

while true loop
 enter1 := true
 turn := 2
 await not enter2 or turn = 1
 critical section
 enter1 := false
 non-critical section
end

1
2
3
4
5
6

while true loop
 enter2 := true
 turn := 1
 await not enter1 or turn = 2
 critical section
 enter2 := false
 non-critical section
end

20

Peterson's algorithm: mutual exclusion

•  Peterson’s algorithm satisfies mutual exclusion
Proof.
•  Assume that both P1 and P2 are in their critical section
and that P1 entered before P2
•  When P1 entered the critical section we have enter1 =
true, and P2 must thus have seen turn = 2 upon entering its
critical section
•  P2 could not have executed line 2 after P1 entered, as
this sets turn = 1 and would have excluded P2, as P1 does
not change turn while being in the critical section
•  However, P2 could not have executed line 2 before P1
entered either because then P1 would have seen enter2 =
true and turn = 1, although P2 should have seen turn = 2
•  Contradiction

21

Peterson's algorithm: starvation-freedom

•  Peterson’s algorithm is starvation-free

Proof.
•  Assume P1 is forced to wait in the entry protocol forever
•  P2 can eventually do only one of three actions:

1.  Be in its non-critical section: then enter2 is
false, thus allowing P1 to enter.

2.  Wait forever in its entry protocol: impossible
because turn cannot be both 1 and 2

3.  Repeatedly cycle through its code: then P2 will
set turn to 1 at some point and never change it
back

22

Peterson's algorithm for n processes

•  Up until now, we have only seen a solution to the mutual
exclusion problem for two processes; the problem is
however posed for n processes
•  Peterson's algorithm has a direct generalization

enter[1] := 0; ...; enter[n] := 0
turn[1] := 0; ...; turn[n − 1] := 0
Pi

1
2
3
4

5
6
7

for j = 1 to n − 1 do
 enter[i] := j
 turn[j] := i
 await (for all k != i : enter[k] < j) or turn[j] != i
end
critical section
enter[i] := 0
non-critical section

23

Peterson's algorithm for n processes

•  Every process has to go through n – 1 stages to reach the
critical section: variable j indicates the stage
•  enter[i]: stage the process Pi is currently in
•  turn[j]: which process entered stage j last
•  Waiting: Pi waits if there are still processes at higher
stages, or if there are processes at the same stage unless
Pi is no longer the last process to have entered this stage
•  Idea for mutual exclusion proof:
at most n – j processes can have
passed stage j =>
at most n – (n - 1) = 1 processes
can be in the critical section

max. n processes

max. n-1 processes

max. 2

max. 3

CS

Stage:

1

2

n – 2
n - 1

... ...

Chair of Software Engineering

The	
 Bakery	
 algorithm	

25

Fairness again

•  Freedom from starvation still allows that processes may
enter their critical sections before a certain, already
waiting process is allowed access
•  We study an algorithm that has very strong fairness
guarantees

26

Bounded waiting

•  The following definitions help analyze the fairness with
respect to process waiting in mutual exclusion algorithms
•  Bounded waiting: If a process is trying to enter its
critical section, then there is a bound on the number of
times any other process can enter its critical section
before the given process does so.
•  r-bounded waiting: If a process tries to enter its critical
section then it will be able to enter before any other
process is able to enter its critical section r + 1 times.
•  This means: bounded waiting = there exists an r such
that the waiting is r-bounded
•  First-come-first-served: 0-bounded waiting

27

Relating the definitions

•  starvation-freedom deadlock-freedom
•  starvation-freedom bounded waiting
•  bounded waiting starvation-freedom
• 

 starvation-freedom

deadlock-freedom If two or more processes are trying
to enter their critical sections, one of them will eventually
succeed.

starvation-freedom If a process is trying to enter its
critical section, it will eventually succeed.

bounded waiting If a process is trying to enter its
critical section, then there is a bound on the number of
times any other process can enter its critical section
before the given process does so.

⇒
⇏

⇏

⇒
bounded waiting + deadlock-freedom

28

Peterson's algorithm: no bounded waiting

•  Assume a scenario with three competing processes

•  P2 and P3 can overtake P1 unboundedly often
•  Still P1 is not starved as it eventually (fairness) executes
turn[1] := 1 and can proceed into the critical section

P1 2 enter[1] := 1
P2 2 enter[2] := 1
P2 3 turn[1] := 2
P3 2 enter[3] := 1
P3 3 turn[1] := 3 turn[1] != 2: P2 can proceed
P2 ... enters + leaves critical section
P2 2 enter[2] := 1
P2 3 turn[1] := 2 turn[1] != 3: P3 can proceed
P3 ... enters + leaves critical section

... P3 can unblock P2 etc.

29

The bakery algorithm: first attempt

•  Idea: ticket systems for customers, at any turn the
customer with the lowest number will be served
•  number[i]: ticket number drawn by a process Pi
•  Waiting: until Pi has the lowest number currently drawn

•  Where is the problem?

number[1] := 0; ...; number[n] := 0
Pi

1
2
3

4
5
6

number[i] := 1 + max(number[1], ..., number[n])
for all j != i do
 await number[j] = 0 or number[i] < number[j]
end
critical section
number[i] := 0
non-critical section

30

Problem with the first attempt

•  Line 1 may not be executed atomically
•  Hence two processes may get the same ticket number
•  Then a deadlock can happen in line 3, as none of the
processes' ticket numbers is less than the other

31

A suggestion for a fix

•  Replace the comparison number[i] < number[j] by
(number[i], i) < (number[j], j)
•  The "less than" relation is defined in this case as

 (a, b) < (c, d) if (a < c) or ((a = c) and (b < d))

•  Idea: if two ticket numbers turn out to be the same, the
process with the lower identifier gets precedence

32

The fix doesn't work

•  Unfortunately, with the fix we no longer have mutual
exclusion:

•  P1 and P2 both compute the current maximum as 0
•  P2 assigns itself ticket number 1 (number[2] := 1)

and proceeds into critical section
•  P1 assigns itself ticket number 1 (number[1] := 1) and

proceeds into critical section, because
(number[1], 1) < (number[2], 2)

33

The bakery algorithm

•  Finally, we indicate with a flag if a process is currently
calculating its ticket number

number[1] := 0; ...; number[n] := 0
choosing[1] := false, ..., choosing[n] := false
Pi

1
2
3
4
5
6

7
8
9

choosing[i] := true
number[i] := 1 + max(number[1], ..., number[n])
choosing[i] := false
for all j != i do
 await choosing[j] = false
 await number[j] = 0 or (number[i], i) < (number[j], j)
end
critical section
number[i] := 0
non-critical section

doorway

bakery

34

Two lemmas

Lemma 1. If processes Pi and Pk are in the bakery and Pi
entered the bakery before Pk entered the doorway, then
number[i] < number[k].

Lemma 2. If process Pi is in its critical section and process
Pk is in the bakery then (number[i], i) < (number[k], k).
For Pi choosing[k] = false when reading it in line 5
If we have the situation of Lemma 1, we are finished.
If Pk had left the doorway before Pi read number[k], it was
reading its current value.
Since process Pi went on into the critical section, it must
have found (number[i], i) < (number[k], k).

35

Correctness of the bakery algorithm

•  The Bakery algorithm satisfies mutual exclusion.
Proof. Follows from Lemma 2.

•  The Bakery algorithm is deadlock-free.
Proof. Some waiting process Pi has the minimum value of
(number[i], i) among all the processes in the bakery. This
process must eventually complete the for loop and enter
the critical section.

•  The Bakery algorithm is first-come-first-served.
Proof. Follows from Lemmas 1 and 2.

36

Unbounded ticket numbers

•  Drawback of the Bakery algorithm: values of the ticket
numbers can grow unboundedly

•  Assume P1 gets ticket number 1 and proceeds to its
critical section.

•  Then process P2 gets ticket number 2, lets P1 exit
from its critical section and enters its own critical
section.

•  As P1 tries to re-enter its critical section it draws
ticket number 3.

•  In this manner two processes could alternatingly
draw ticket numbers until the maximum size of an
integer on the system is reached.

37

Space bounds for synchronization algorithms

•  Size and number of shared memory locations is an
important measure to compare synchronization algorithms
•  For Peterson’s algorithm, we count 2n − 1 registers
(bounded by n), and in the case of the Bakery algorithm 2n
registers (unbounded in size)
•  Large overhead: can we do better?
•  One can prove in general a lower bound: mutual exclusion
problem for n processes satisfying mutual exclusion and
global progress needs to use n shared one-bit registers
•  The bound is tight (Lamport's one bit algorithm)

38

Non-atomic memory access

•  The mutual exclusion problem makes the assumption that
memory accesses are executed atomically
•  This might not be a valid assumption on multiprocessor
systems, leading to inconsistencies
•  The Bakery algorithm can help here as well: each memory
location is only written by a single process, hence
conflicting write operations cannot occur

39

Other atomic primitives (1)

•  Having only atomic read and write to implement locks
makes efficient implementation difficult
•  Where available, locks can be built from more complex
atomic primitives

test-and-set (x, value)
 do

 temp := x
 x := value
 result := temp

 end

•  Note that x in this pseudo-code is treated as a reference

40

Other atomic primitives (2)

•  Using more powerful primitives, concise solutions to the
mutual exclusion problem can be obtained:

b := false
Pi

1
2
3
4

await not test-and-set(b, true)
critical section
b := false
non-critical section

41

Other atomic primitives (3)

fetch-and-add (x, value)
 do

 temp := x
 x := x + value
 result := temp

 end
compare-and-swap (x, old, new)
 do

 if x = old then
 x := new; result := true

 else
 result := false
 end
 end

