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Today's lecture 

In this lecture you will learn about: 
 
•  the mutual exclusion problem, a common framework for 
evaluating solutions to the problem of exclusive resource 
access 
•  solutions to the mutual exclusion problem (Peterson's 
algorithm, the Bakery algorithm) and their properties 
•  ways of proving properties for concurrent programs 
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Mutual exclusion 

•  As discussed in the last lecture, race conditions can 
corrupt the result of a concurrent computation if 
processes are not properly synchronized 
•  We want to develop techniques for ensuring mutual 
exclusion 
•  Mutual exclusion: a form of synchronization to avoid the 
simultaneous use of a shared resource 
•  To identify the program parts that need attention, we 
introduce the notion of a critical section 
•  Critical section: part of a program that accesses a 
shared resource. 



5 

The mutual exclusion problem (1) 

•  We assume to have n processes of the following form: 

•  Design the entry and exit protocols to ensure: 
•  Mutual exclusion: At any time, at most one process 

may be in its critical section 
•  Freedom from deadlock: If two or more processes 

are trying to enter their critical sections, one of 
them will eventually succeed 

•  Freedom from starvation: If a process is trying to 
enter its critical section, it will eventually succeed 

while true loop 
    entry protocol 
    critical section 
    exit protocol 
    non-critical section 
end 
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The mutual exclusion problem (2) 

 
•  Further important conditions: 

•  Processes can communicate with each other only via 
atomic read and write operations 

•  If a process enters its critical section, it will 
eventually exit from it 

•  A process may loop forever or terminate while being 
in its non-critical section 

•  The memory locations accessed by the protocols 
may not be accessed outside of them 

while true loop 
    entry protocol 
    critical section 
    exit protocol 
    non-critical section 
end 
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Locks 

•  Synchronization mechanisms based on the ideas of entry- 
and exit-protocols are called locks 
•  They can typically be implemented as a pair of functions: 

 lock 
     do 
         entry protocol 
     end 

 
 unlock 
     do 
         exit protocol 
     end 
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Towards a solution 

•  The mutual exclusion problem is quite tricky: in the 
1960's many incorrect solutions were published 
•  We will work along a series of failing attempts until 
establishing a solution 
•  We will start with trying to find a solution for only two 
processes 
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Busy waiting 

•  We will use the following statement in pseudo code 

await b 
 

which is equivalent to  
 

while not b loop end 
 

•  This type of waiting is called busy waiting or "spinning" 
•  Busy waiting is inefficient on multitasking systems 
•  Busy waiting makes sense if waiting times are typically so 
short that a context switch would be more expensive 
•  Therefore spin locks (locks using busy waiting) are often 
used in operating system kernels 
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Solution attempt I 

•  First idea: use two variables enter1 and enter2; if enteri 
is true, it means that process Pi intends to enter the 
critical section 
 

enter1 := false 
enter2 := false 
P1 P2 
 
1 
2 
3 
4 
5 

while true loop 
    await not enter2 
    enter1 := true 
    critical section 
    enter1 := false 
    non-critical section 
end 

 
1 
2 
3 
4 
5 

while true loop 
    await not enter1 
    enter2 := true 
    critical section 
    enter2 := false 
    non-critical section 
end 



11 

Solution attempt I is incorrect 

•  The solution attempt fails to ensure mutual exclusion 
•  The two processes can end up in their critical sections at 
the same time, as demonstrated by the following execution 
sequence 

P2 1 await not enter1 
P1 1 await not enter2 
P1 2 enter1 := true 
P2 2 enter2 := true 
P2 3 critical section 
P1 3 critical section 
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Solution attempt II 

•  When analyzing the failure, we see that we set the 
variable enteri only after the await statement, which is 
guarding the critical section 
•  Second idea: switch these statements around 
 

enter1 := false 
enter2 := false 
P1 P2 
 
1 
2 
3 
4 
5 

while true loop 
   enter1 := true 
    await not enter2 
    critical section 
    enter1 := false 
    non-critical section 
end 

 
1 
2 
3 
4 
5 

while true loop 
    enter2 := true 
    await not enter1 
    critical section 
    enter2 := false 
    non-critical section 
end 
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Solution attempt II is incorrect 

•  The solution provides mutual exclusion 
•  However, the processes can deadlock:  

P1 1 enter1 := true 
P2 1 enter2 := true 
P2 2 await not enter1 
P1 2 await not enter2 



14 

Solution attempt III 

•  Third idea: let's try something new, namely a single 
variable turn that has value i if it's Pi's turn to enter the 
critical section 
 

turn := 1 or turn := 2 
P1 P2 
 
1 
2 
3 
4 
 

while true loop 
    await turn = 1 
    critical section 
    turn := 2 
    non-critical section 
end 

 
1 
2 
3 
4 
 

while true loop 
    await turn = 2 
    critical section 
    turn := 1 
    non-critical section 
end 
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Proving correctness of solution attempt III 

•  Solution attempt III looks good to us, let's try to prove 
it correct 
•  Draw the related transition system; states are labeled 
with triples (i, j, k): program pointer values P1⊳i and P2⊳j, 
and value of the variable turn = k. 



16 

Proving correctness of solution attempt III 

•  Solution attempt III satisfies mutual exclusion 

Proof. Mutual exclusion expressed as LTL formula: 
G ¬(P1⊳2 ∧ P2⊳2) 

 
 
•  Solution attempt III is deadlock-free 

Proof. Deadlock-freedom expressed as LTL formula: 
G ((P1⊳1 ∧ P2⊳1) -> F (P1⊳2 ⋁ P2⊳2)) 

Easy to see that this formula holds, as there are no 
states of the form (2, 2, k). 

We have to examine the states (1, 1, 1) and (1, 1, 2); in 
both cases, one of the processes is enabled to enter 
its critical section. 
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Another setback 

•  Let's check starvation-freedom 
•  Expressed as LTL formula: for i = 1, 2 

 G (Pi⊳1 -> F (Pi⊳2)) 
•  Recall: processes may terminate in non-critical section 
•  A problematic case is (1, 4, 2): variable turn = 2, P1 trying 
to enter critical section (although not its turn), P2 in non-
critical section 
•  If P2 terminates, turn will never be set to 1: P1 will 
starve  
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Peterson's algorithm 

•  Peterson’s algorithm combines the ideas of solution 
attempts II and III 
•  If both processes have set their enter-flag to true, then 
the value of turn decides who may enter the critical 
section 

enter1 := false 
enter2 := false 
turn := 1 or turn := 2 
P1 P2 
 
1 
2 
3 
4 
5 
6 
 

while true loop 
    enter1 := true 
    turn := 2 
    await not enter2 or turn = 1 
    critical section 
    enter1 := false 
    non-critical section 
end 

 
1 
2 
3 
4 
5 
6 
 

while true loop 
    enter2 := true 
    turn := 1 
    await not enter1 or turn = 2 
    critical section 
    enter2 := false 
    non-critical section 
end 
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Peterson's algorithm: mutual exclusion 

•  Peterson’s algorithm satisfies mutual exclusion 
Proof. 
•  Assume that both P1 and P2 are in their critical section 
and that P1 entered before P2 
•  When P1 entered the critical section we have enter1 = 
true, and P2 must thus have seen turn = 2 upon entering its 
critical section 
•  P2 could not have executed line 2 after P1 entered, as 
this sets turn = 1 and would have excluded P2, as P1 does 
not change turn while being in the critical section  
•  However, P2 could not have executed line 2 before P1 
entered either because then P1 would have seen enter2 = 
true and turn = 1, although P2 should have seen turn = 2 
•  Contradiction 
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Peterson's algorithm: starvation-freedom 

•  Peterson’s algorithm is starvation-free 
 
Proof. 
•  Assume P1 is forced to wait in the entry protocol forever 
•  P2 can eventually do only one of three actions:  

1.  Be in its non-critical section: then enter2 is 
false, thus allowing P1 to enter. 

2.  Wait forever in its entry protocol: impossible 
because turn cannot be both 1 and 2 

3.  Repeatedly cycle through its code: then P2 will 
set turn to 1 at some point and never change it 
back 
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Peterson's algorithm for n processes 

•  Up until now, we have only seen a solution to the mutual 
exclusion problem for two processes; the problem is 
however posed for n processes 
•  Peterson's algorithm has a direct generalization 

enter[1] := 0; ...; enter[n] := 0 
turn[1] := 0; ...; turn[n − 1] := 0 
Pi 

1 
2 
3 
4 
 
5 
6 
7 

for j = 1 to n − 1 do 
    enter[i] := j 
    turn[j] := i 
    await (for all k != i : enter[k] < j) or turn[j] != i 
end 
critical section 
enter[i] := 0 
non-critical section 
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Peterson's algorithm for n processes 

•  Every process has to go through n – 1 stages to reach the 
critical section: variable j indicates the stage 
•  enter[i]: stage the process Pi is currently in 
•  turn[j]: which process entered stage j last 
•  Waiting: Pi waits if there are still processes at higher 
stages, or if there are processes at the same stage unless 
Pi is no longer the last process to have entered this stage 
•  Idea for mutual exclusion proof: 
at most n – j processes can have  
passed stage j =>  
at most n – (n - 1) = 1 processes  
can be in the critical section  

max. n processes 

max. n-1 processes 

max. 2 

max. 3 

CS 

Stage: 

1 

2 

 
n – 2 
n - 1 

... ... 
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Fairness again 

•  Freedom from starvation still allows that processes may 
enter their critical sections before a certain, already 
waiting process is allowed access 
•  We study an algorithm that has very strong fairness 
guarantees 
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Bounded waiting 

•  The following definitions help analyze the fairness with 
respect to process waiting in mutual exclusion algorithms 
•  Bounded waiting: If a process is trying to enter its 
critical section, then there is a bound on the number of 
times any other process can enter its critical section 
before the given process does so. 
•  r-bounded waiting: If a process tries to enter its critical 
section then it will be able to enter before any other 
process is able to enter its critical section r + 1 times. 
•  This means: bounded waiting = there exists an r such 
that the waiting is r-bounded 
•  First-come-first-served: 0-bounded waiting 
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Relating the definitions 

•  starvation-freedom       deadlock-freedom 
•  starvation-freedom      bounded waiting 
•  bounded waiting      starvation-freedom 
•   

    starvation-freedom 

deadlock-freedom   If two or more processes are trying 
to enter their critical sections, one of them will eventually 
succeed. 

starvation-freedom   If a process is trying to enter its 
critical section, it will eventually succeed.  

bounded waiting   If a process is trying to enter its 
critical section, then there is a bound on the number of 
times any other process can enter its critical section 
before the given process does so. 

⇒ 
⇏ 

⇏ 

⇒ 
bounded waiting + deadlock-freedom  
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Peterson's algorithm: no bounded waiting 

•  Assume a scenario with three competing processes 

•  P2 and P3 can overtake P1 unboundedly often 
•  Still P1 is not starved as it eventually (fairness) executes 
turn[1] := 1 and can proceed into the critical section 

P1 2 enter[1] := 1 
P2 2 enter[2] := 1 
P2 3 turn[1] := 2 
P3 2 enter[3] := 1 
P3 3 turn[1] := 3 turn[1] != 2: P2 can proceed 
P2 ... enters + leaves critical section 
P2 2 enter[2] := 1 
P2 3 turn[1] := 2 turn[1] != 3: P3 can proceed 
P3 ... enters + leaves critical section 

... P3 can unblock P2 etc. 
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The bakery algorithm: first attempt 

•  Idea: ticket systems for customers, at any turn the 
customer with the lowest number will be served 
•  number[i]: ticket number drawn by a process Pi 
•  Waiting: until Pi has the lowest number currently drawn 

•  Where is the problem? 

number[1] := 0; ...; number[n] := 0 
Pi 

1 
2 
3 
 
4 
5 
6 

number[i] := 1 + max(number[1], ..., number[n]) 
for all j != i do 
    await number[j] = 0 or number[i] < number[j] 
end 
critical section 
number[i] := 0 
non-critical section 
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Problem with the first attempt 

•  Line 1 may not be executed atomically 
•  Hence two processes may get the same ticket number 
•  Then a deadlock can happen in line 3, as none of the 
processes' ticket numbers is less than the other 
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A suggestion for a fix 

•  Replace the comparison number[i] < number[j] by  
(number[i], i) < (number[j], j) 
•  The "less than" relation is defined in this case as  

 (a, b) < (c, d)     if     (a < c) or ((a = c) and (b < d)) 
 
•  Idea: if two ticket numbers turn out to be the same, the 
process with the lower identifier gets precedence 
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The fix doesn't work 

•  Unfortunately, with the fix we no longer have mutual 
exclusion: 

•  P1 and P2 both compute the current maximum as 0 
•  P2 assigns itself ticket number 1 (number[2] := 1) 

and proceeds into critical section 
•  P1 assigns itself ticket number 1 (number[1] := 1) and 

proceeds into critical section, because  
(number[1], 1) < (number[2], 2) 
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The bakery algorithm 

•  Finally, we indicate with a flag if a process is currently 
calculating its ticket number 

number[1] := 0; ...; number[n] := 0 
choosing[1] := false, ..., choosing[n] := false 
Pi 

1 
2 
3 
4 
5 
6 
 
7 
8 
9 

choosing[i] := true 
number[i] := 1 + max(number[1], ..., number[n]) 
choosing[i] := false 
for all j != i do 
    await choosing[j] = false 
    await number[j] = 0 or (number[i], i) < (number[j], j) 
end 
critical section 
number[i] := 0 
non-critical section 

doorway 

bakery 
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Two lemmas 

Lemma 1. If processes Pi and Pk are in the bakery and Pi 
entered the bakery before Pk entered the doorway, then 
number[i] < number[k]. 
 
Lemma 2. If process Pi is in its critical section and process 
Pk is in the bakery then (number[i], i) < (number[k], k). 
For Pi choosing[k] = false when reading it in line 5 
If we have the situation of Lemma 1, we are finished. 
If Pk had left the doorway before Pi read number[k], it was 
reading its current value. 
Since process Pi went on into the critical section, it must 
have found (number[i], i) < (number[k], k).  
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Correctness of the bakery algorithm 

•  The Bakery algorithm satisfies mutual exclusion. 
Proof. Follows from Lemma 2. 
 
•  The Bakery algorithm is deadlock-free. 
Proof. Some waiting process Pi  has the minimum value of 
(number[i], i) among all the processes in the bakery. This 
process must eventually complete the for loop and enter 
the critical section. 
 
•  The Bakery algorithm is first-come-first-served. 
Proof. Follows from Lemmas 1 and 2. 
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Unbounded ticket numbers 

•  Drawback of the Bakery algorithm: values of the ticket 
numbers can grow unboundedly 

•  Assume P1 gets ticket number 1 and proceeds to its 
critical section.  

•  Then process P2 gets ticket number 2, lets P1 exit 
from its critical section and enters its own critical 
section.  

•  As P1 tries to re-enter its critical section it draws 
ticket number 3. 

•  In this manner two processes could alternatingly 
draw ticket numbers until the maximum size of an 
integer on the system is reached. 
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Space bounds for synchronization algorithms 

•  Size and number of shared memory locations is an 
important measure to compare synchronization algorithms 
•  For Peterson’s algorithm, we count 2n − 1 registers 
(bounded by n), and in the case of the Bakery algorithm 2n 
registers (unbounded in size) 
•  Large overhead: can we do better? 
•  One can prove in general a lower bound: mutual exclusion 
problem for n processes satisfying mutual exclusion and 
global progress needs to use n shared one-bit registers 
•  The bound is tight (Lamport's one bit algorithm) 
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Non-atomic memory access 

•  The mutual exclusion problem makes the assumption that 
memory accesses are executed atomically 
•  This might not be a valid assumption on multiprocessor 
systems, leading to inconsistencies 
•  The Bakery algorithm can help here as well: each memory 
location is only written by a single process, hence 
conflicting write operations cannot occur 
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Other atomic primitives (1) 

•  Having only atomic read and write to implement locks 
makes efficient implementation difficult 
•  Where available, locks can be built from more complex 
atomic primitives 

test-and-set (x, value) 
    do 

    temp := x 
    x := value 
    result := temp 

    end 
 
•  Note that x in this pseudo-code is treated as a reference 
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Other atomic primitives (2) 

•  Using more powerful primitives, concise solutions to the 
mutual exclusion problem can be obtained: 

b := false 
Pi 

1 
2 
3 
4 

await not test-and-set(b, true) 
critical section 
b := false 
non-critical section 
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Other atomic primitives (3) 

fetch-and-add (x, value) 
    do 

    temp := x 
    x := x + value 
    result := temp 

    end 
compare-and-swap (x, old, new) 
    do 

    if x = old then  
            x := new; result := true 

    else  
            result := false 
        end 
    end 


