
Chair of Software Engineering

Concepts of Concurrent Computation

Bertrand Meyer
Sebastian Nanz	

Lecture 4: Semaphores

2

Today's lecture

In this lecture you will learn about:

•  the type of semaphores, an important synchronization
primitive,
•  implementation variants of semaphores, in particular
weak and strong semaphores,
•  uses of semaphores, in particular solutions to problems
involving mutual exclusion, condition synchronization (the
producer-consumer problem), and barriers.

Chair of Software Engineering

The	 type	 of	 semaphores	

4

The need for a new synchronization primitive

•  The synchronization algorithms can provide process
synchronization using atomic read and write only
•  As a low-level synchronization primitive, they also have a
number of disadvantages

•  they rely on busy waiting (inefficient for
multitasking)

•  their synchronization variables are freely accessible
within the program (no encapsulation)

•  they can become very complex (difficult to
implement)

5

Semaphores

•  Semaphores: a higher-level synchronization primitive (not
really high-level though) that alleviates some of the
problems of synchronization algorithms
•  A very important primitive, widely implemented and with
many uses
•  This comes at a price: the implementation of semaphores
needs stronger atomic operations
•  Invented by E.W. Dijkstra in 1965
•  In other contexts, "semaphore" means traffic signal, e.g.
to keep rail tracks free in railroad traffic control

6

General semaphores

•  A general semaphore is an object that consists of a
variable count and two operations down and up:

•  if a process calls down where count > 0, then count is
decremented; otherwise the process waits until
count is positive.

•  if a process calls up then count is incremented.
•  Atomicity requirements: testing and decrementing, as
well as incrementing have to be atomic
•  A general semaphore is sometimes also called a counting
semaphore
•  Value of a semaphore: value of its count variable

7

Simple implementation of a general semaphore

class SEMAPHORE
feature
 count : INTEGER
 down
 do
 await count > 0
 count := count − 1
 end
 up
 do
 count := count + 1
 end
end

8

Comments on the simple implementation

•  We have used the await statement: this is busy waiting –
we'll get rid of it in more refined implementations
•  We use object-oriented / Eiffel-like syntax, but in
pseudo-code style
•  We will also write for a semaphore s

•  s.count -- value of variable count of s
•  s.down, s.up -- calls to routines of s

•  Of course, when semaphores were invented, object-
orientation was not yet around

9

Mutual exclusion for two processes (1)

•  Providing mutual exclusion with semaphores: initialize
s.count to 1, and enclose the critical section as follows

s.down
critical section
s.up

•  Presented in the style of the mutual exclusion problem:

count := 1
P1 P2

1

2
3
4

while true loop
 await count > 0
 count := count − 1
 critical section
 count := count + 1
 non-critical section
end

1

2
3
4

while true loop
 await count > 0
 count := count − 1
 critical section
 count := count + 1
 non-critical section
end

10

Mutual exclusion for two processes (2)

•  Mutual exclusion and deadlock-freedom are easy to prove
•  Remember atomicity of test/decrement and increment
•  Starvation-freedom is not satisfied, however we will see
later how a different implementation fixes this problem

11

Binary semaphores

•  A binary semaphore is a semaphore whose value is 0 or 1
•  Implementation using a boolean variable is possible

b : BOOLEAN
down
 do
 await b
 b := false
 end
up
 do
 b := true
 end

Chair of Software Engineering

Implementa1on	 of	 semaphores	

13

Avoiding busy waiting

•  Busy-wait semaphores are unsatisfactory:
•  not starvation-free
•  inefficient when multitasking

•  Instead we want a solution where processes block
themselves when having to wait, thus freeing processing
resources as early as possible

14

Efficiency: blocking of processes

•  A process can be in the following states:
•  new: being created.
•  running: instructions are being executed.
•  blocked: currently waiting for an event.
•  ready: ready to be executed, but not been assigned

a processor yet.
•  terminated: finished executing.

blocked

running ready

Context switch

new terminated

s.down s.up

15

Starvation-freedom: process collections

•  In order to avoid starvation, blocked processes are kept
in a collection blocked with the following operations:

•  add(P) inserts a process P into the collection
•  remove selects and removes an item from the

collection, and returns it
•  is_empty determines whether the collection is

empty
•  A semaphore where blocked is implemented as a set is
called a weak semaphore
•  Assume for now a weak semaphore

16

Semaphore implementation (1)
count : INTEGER
blocked: CONTAINER
down
 do
 if count > 0 then
 count := count − 1
 else
 blocked.add(P) −− P is the current process
 P.state := blocked −− block process P
 end
 end
up
 do
 if blocked.is_empty then
 count := count + 1
 else
 Q := blocked.remove -- select some process Q
 Q.state := ready −− unblock process Q
 end
 end

17

Semaphore implementation (2)

•  Note the differences to the simple implementation:
•  Blocking instead of busy waiting
•  Increment only if there are no blocked processes

•  Mutual exclusion and deadlock-freedom preserved
•  Starvation-freedom in the two process scenario:

•  Assume P1 is blocked
•  When P2 exits the critical section, it unblocks P1

but does not increment the variable count
•  As the value of the semaphore remains 0, process P2

cannot enter before process P1

18

The semaphore invariant (1)

•  We make the following assumptions:
•  k ≥ 0: the initial value of the semaphore
•  count: current value of the semaphore
•  #down: number of completed down operations
•  #up: number of completed up operations

19

The semaphore invariant (2)

•  A semaphore satisfies the following invariants:
 (1) count ≥ 0
 (2) count = k + #up － #down

Proof. (1) easy. (2) is preserved by all operations:
down:

•  if count > 0 then #down is incremented and count
decremented

•  if count ≤ 0 then down does not complete and count
is unchanged

up:
•  if blocked is empty then #up and count are

incremented;
•  if blocked is not empty then #up and #down are

incremented and count is unchanged

20

Mutual exclusion for n processes

•  The mutual exclusion problem for n processes is solved
like the one for two processes: initialize count to 1,
protect critical sections with down and up
•  Starvation is possible in the case of weak semaphores:
the reason is that we select a process from blocked at
random
•  A semaphore where blocked is implemented as a queue is
called a strong semaphore
•  Using a strong semaphore we have a first-come-first-
served solution to the mutual exclusion problem for n
processes

21

Solution of the mutual exclusion problem

•  The strong semaphore provides a solution to the mutual
exclusion problem for n processes
Proof. Mutual exclusion:
•  Let #cs be the number of processes in critical sections
•  Show that #cs + count = 1 is an invariant [...]
•  Since count ≥ 0, we have #cs ≤ 1
Starvation-freedom:
•  Assume a process is starved with i processes ahead of it
and argue that in this case count = 0 [...]
•  Hence there must be a process in the critical section by
the above invariant
•  This process must eventually unblock one of the i processes
•  The result follows by induction on i.

22

Ensuring atomicity of the semaphore operations

•  How is the atomicity of down and up ensured?
•  Typically down and up are not provided by hardware, they
must be built in software from lower-level primitives
•  We could use synchronization algorithms
•  If we have a single processing unit, we may just disable
all interrupts; then the scheduler cannot remove the
process from the processing unit
•  This does not work on multiprocessors: disabling all
interrupts on all processing units is too expensive
•  Instead use test-and-set: for each semaphore, keep also
a test-and-set integer

23

Side remark: Semaphores in Java

•  Java Threads offers semaphores as part of the
java.util.concurrent.Semaphore package
•  Constructors:

•  Semaphore(int k), a weak semaphore
•  Semaphore(int k, boolean b), a strong semaphore if

b is set true
•  Operations:

•  acquire(), corresponds to down
–> throws InterruptedException

•  release(), corresponds to up

Chair of Software Engineering

Uses	 of	 semaphores	

25

Uses of semaphores

•  Semaphores are a very versatile mechanism, and can be
used not only for mutual exclusion
•  In the following we give examples of such uses

26

The k-exclusion problem

•  In the k-exclusion problem, we allow up to k processes to
be in their critical sections at the same time
•  A solution is easily obtained with general semaphores
•  The value of a semaphore corresponds intuitively to the
number of processes that are still allowed to proceed into
a critical section

s.count := k
Pi

1
2
3
4

while true loop
 s.down
 critical section
 s.up
 non-critical section
end

27

Barriers (1)

•  A barrier is a form of synchronization that determines a
point in the execution of a program which all processes in a
group have to reach before any of them may move on.
•  Barriers are important for iterative algorithms:

•  in each iteration processes work on different parts
of the problem

•  before starting the new iteration, all processes need
to have finished (e.g. to combine an intermediate
result)

28

Barriers (2)

•  A simple barrier for two processes:

•  Semaphore s1 provides the barrier for P2, and semaphore
s2 provides the barrier for P1

s1.count := 0
s2.count := 0
P1 P2
1
2
3
4

code before the barrier
s1.up
s2.down
code after the barrier

1
2
3
4

code before the barrier
s2.up
s1.down
code after the barrier

29

The producer-consumer problem

•  Consider two types of looping processes:
•  Producer: At each loop iteration, produces a data

item for consumption by a consumer
•  Consumer: At each loop iteration, consumes a data

item produced by a producer
•  Producers and consumers communicate via a shared
buffer implementing a queue
•  Producers append data items to the back of the queue
and consumers remove data items from the front
•  The problem consists in writing code for producers and
consumers such that the following conditions are satisfied:

•  Every data item produced is eventually consumed
•  The solution is deadlock-free
•  The solution is starvation-free

30

The producer-consumer problem: background

•  The producer-consumer problem corresponds to issues
found in many variations on concrete systems
•  Producers: devices and programs such as keyboards, word
processors produce data items such as characters or files
to print
•  Consumers: the operating system and printers are the
consumers of these data items
•  It has to be ensured that these different entities can
communicate with each other appropriately, such that no
data items get lost or the system enters a deadlock

31

The producer-consumer problem: variants

•  There are two variants of the producer-consumer
problem:

•  the shared buffer is assumed to be unbounded
•  the shared buffer is assumed to be bounded

•  We will work on the problem with unbounded buffers
first

32

Condition synchronization

•  In the producer-consumer problem, we have to ensure
that processes access the buffer properly

•  Consumers have to wait if the buffer is empty
•  Producers have to wait if the buffer is full (in the

bounded buffer version of the problem)
•  Condition synchronization is a form of synchronization
where processes are delayed until a certain condition is
true
•  In the producer consumer problem we have to use two
forms of synchronization

•  Mutual exclusion: to prevent races on the buffer
•  Condition synchronization: to prevent improper

access of the buffer (as described above)

33

Solution of the producer-consumer problem (1)

•  Two semaphores needed:
•  mutex: to ensure mutual exclusion
•  not_empty:

•  if not_empty.count = 0, then the buffer is empty
•  if not_empty.count = k > 0 then the buffer

contains k items
•  Idea:

•  Once a producer inserts an item, it executes
not_empty.up to wake up any blocked consumers or
to set the count right

•  Consumers may block on not_empty.down before
accessing the buffer

34

Solution of the producer-consumer problem (2)

•  To see that the algorithm is correct, prove that
not_empty.count = #items_in_buffer is an invariant that
holds at the beginning and end of each loop
•  Deadlock-freedom is also satisfied, and with a strong
semaphore also starvation-freedom

mutex.count := 1
not_empty.count := 0
Produceri Consumeri

1
2
3
4
5

while true loop
 d := produce
 mutex.down
 b.append(d)
 mutex.up
 not_empty.up
end

1
2
3
4
5

while true loop
 not_empty.down
 mutex.down
 d := b.remove
 mutex.up
 consume(d)
end

35

Solution for bounded buffers

•  To take care of the case that the buffer can also be
completely filled, a semaphore not_full is introduced,
making the solution more symmetric

mutex.count := 1
not_empty.count := 0
not_full.count := k
Produceri Consumeri

1
2
3
4
5

while true loop
 d := produce
 not_full.down
 mutex.down
 b.append(d)
 mutex.up
 not_empty.up
end

1
2
3
4
5

while true loop
 not_empty.down
 mutex.down
 d := b.remove
 mutex.up
 not_full.up
 consume(d)
end

36

Naming semaphores

•  It is good practice to name a semaphore used for
condition synchronization after the condition one wants to
be true:

•  not_empty: "wait until the buffer is not empty" and
"signal processes when the buffer is not empty"

37

Dining philosophers problem: solution attempt

•  Dining philosophers problem: n philosophers
•  Solution attempt:

•  Semaphore s[i] corresponds to the availability of the ith
fork
•  Problem?

s[1].count := 1, ..., s[n].count := 1
Philosopheri

1
2
3
4
5
6

while true loop
 think
 s[i].down
 s[(i mod n) + 1].down
 eat
 s[(i mod n) + 1].up
 s[i].up
end

1

2

3 4

5 1 2

3

4

5

38

Dining philosophers problem: a fix

•  Asymmetric solution: one philosopher picks up forks in a
different order

•  Hence the circular wait condition (Coffman) is broken: no
deadlock

Philosophern

1
2
3
4
5
6

while true loop
 think
 s[1].down
 s[n].down
 eat
 s[n].up
 s[1].up
end

Chair of Software Engineering

Simula1ng	 general	 semaphores	

40

General semaphores are superfluous

•  We have distinguished binary semaphores from general
(counting) semaphores
•  Having general semaphores is beneficial, it allows us to
solve problems like the k-exclusion problem effortlessly
•  However, from a theoretical perspective they are not
needed: we can implement general semaphores with binary
semaphores

41

Implementing general semaphores by binary ones

mutex.count := 1 -- binary semaphore
delay.count := 1 -- binary semaphore
count := k

general_down
 do
 delay.down
 mutex.down
 count := count − 1
 if count > 0 then
 delay.up
 end
 mutex.up
 end

general_up
 do
 mutex.down
 count := count + 1
 if count = 1 then
 delay.up
 end
 mutex.up
 end

42

Correctness idea for the simulation

•  The variable count represents the value of the general
semaphore
•  The binary semaphore mutex protects modifications on
count
•  The first k – 1 processes executing general_down will also
execute delay.up, but not the kth process
•  Hence further processes have to wait at the entry to
general_down
•  In this case count = 0, and the first process to execute
general_up will execute delay.up

