ETH zirich

Chair of Software Engineering

Concepts of Concurrent Computation

Bertrand Meyer
Sebastian Nanz

Lecture 4: Semaphores

Today's lecture

In this lecture you will learn about:

* the type of semaphores, an important synchronization
primitive,

* implementation variants of semaphores, in particular
weak and strong semaphores,

- uses of semaphores, in particular solutions to problems
involving mutual exclusion, condition synchronization (the
producer-consumer problem), and barriers.

ETH zirich

Chair of Software Engineering

The type of semaphores

The need for a new synchronization primitive ©

* The synchronization algorithms can provide process
synchronization using atomic read and write only

* As a low-level synchronization primitive, they also have a
number of disadvantages

they rely on busy waiting (inefficient for
multitasking)

their synchronization variables are freely accessible
within the program (no encapsulation)

they can become very complex (difficult to
implement)

Semaphores

« Semaphores: a higher-level synchronization primitive (not
really high-level though) that alleviates some of the
problems of synchronization algorithms

* A very important primitive, widely implemented and with
many uses

* This comes at a price: the implementation of semaphores
needs stronger atomic operations

* Invented by E.W. Dijkstra in 1965

* In other contexts, "semaphore" means traffic signal, e.g.
to keep rail tracks free in railroad traffic control

General semaphores ©

* A general semaphore is an object that consists of a
variable count and two operations down and up:

if a process calls down where count > O, then count is
decremented; otherwise the process waits until
count is positive.

if a process calls up then count is incremented.

* Atomicity requirements: testing and decrementing, as
well as incrementing have to be atomic

* A general semaphore is sometimes also called a counting
semaphore

* Value of a semaphore: value of its count variable

Simple implementation of a general semaphore ©

class SEMAPHORE
feature
count : INTEGER
down
do
await count > O
count := count -1
end
up
do
count := count + 1
end
end

Comments on the simple implementation ©

* We have used the await statement: this is busy waiting -
we'll get rid of it in more refined implementations

* We use object-oriented / Eiffel-like syntax, but in
pseudo-code style

* We will also write for a semaphore s
s.count -- value of variable count of s
s.down, s.up -- calls to routines of s

* Of course, when semaphores were invented, object-
orientation was not yet around

Mutual exclusion for two processes (1)

* Providing mutual exclusion with semaphores: initialize
s.count to 1, and enclose the critical section as follows

s.down
critical section
s.up

* Presented in the style of the mutual exclusion problem:

count := 1

P1 P2
while true loop while true loop

1 await count > 0 1 await count > 0

count := count -1 count := count -1

2 critical section 2 critical section

3 count := count + 1 3 count := count + 1

4 non-critical section |4 non-critical section
end end

Mutual exclusion for two processes (2)

 Mutual exclusion and deadlock-freedom are easy to prove
* Remember atomicity of test/decrement and increment

« Starvation-freedom is not satisfied, however we will see
later how a different implementation fixes this problem

©

10

Binary semaphores

* A binary semaphore is a semaphore whose value is O or 1
* Implementation using a boolean variable is possible

b: BOOLEAN
down
do
await b
b := false
end
up
do
b := true
end

©

11

ETH zirich

Chair of Software Engineering

Implementation of semaphores

Avoiding busy waiting

* Busy-wait semaphores are unsatisfactory:
not starvation-free
inefficient when multitasking

* Instead we want a solution where processes block
themselves when having to wait, thus freeing processing
resources as early as possible

13

Efficiency: blocking of processes

blocked

Context switch

running

* A process can be in the following states:
- hew: being created.
running. instructions are being executed.
blocked: currently waiting for an event.

- ready: ready to be executed, but not been assigned
a processor yeft.

- terminated: finished executing.

14

Starvation-freedom: process collections ©

* In order to avoid starvation, blocked processes are kept
in a collection blocked with the following operations:

add(P) inserts a process P into the collection

remove selects and removes an item from the
collection, and returns it

is_empty determines whether the collection is
empty

A semaphore where blocked is implemented as a set is
called a weak semaphore

« Assume for now a weak semaphore

15

Semaphore implementation (1)

count : INTEGER
blocked: CONTAINER
down
do
if count > O then
count := count -1

else
blocked.add(P) -- P is the current process
P.state := blocked -- block process P
end
end
up
do
if blocked.is_empty then
count := count + 1
else
Q := blocked.remove -- select some process Q
Q.state := ready -- unblock process Q
end
end

16

Semaphore implementation (2) ©

* Note the differences to the simple implementation:
Blocking instead of busy waiting
Increment only if there are no blocked processes

* Mutual exclusion and deadlock-freedom preserved

« Starvation-freedom in the two process scenario:
Assume P1 is blocked

When P2 exits the critical section, it unblocks P1
but does not increment the variable count

As the value of the semaphore remains O, process P2
cannot enter before process Pl

17

The semaphore invariant (1)

* We make the following assumptions:
k > O: the initial value of the semaphore

count: current value of the semaphore
#down: number of completed down operations

#up: number of completed up operations

18

The semaphore invariant (2)

* A semaphore satisfies the following invariants:
(1) count 2 0
(2) count = k + #up — #down
Proof. (1) easy. (2) is preserved by all operations:
down:

if count > O then #down is incremented and count
decremented

if count < O then down does not complete and count
is unchanged

up:
if blocked is empty then #up and count are
incremented;

if blocked is not empty then #up and #down are
incremented and count is unchanged

19

Mutual exclusion for n processes

* The mutual exclusion problem for n processes is solved
like the one for two processes: initialize count to 1,
protect critical sections with down and up

« Starvation is possible in the case of weak semaphores:
the reason is that we select a process from blocked at
random

A semaphore where blocked is implemented as a queue is
called a strong semaphore

* Using a strong semaphore we have a first-come-first-
served solution to the mutual exclusion problem for n
processes

20

Solution of the mutual exclusion problem ©

 The strong semaphore provides a solution to the mutual
exclusion problem for n processes

Proof. Mutual exclusion:

* Let #cs be the number of processes in critical sections
« Show that #cs + count = 1 is an invariant [...]

* Since count 2 0, we have #cs < 1

Starvation-freedom:

« Assume a process is starved with / processes ahead of it
and argue that in this case count =0 [...]

* Hence there must be a process in the critical section by
the above invariant

* This process must eventually unblock one of the i/ processes
* The result follows by induction on /.

21

Ensuring atomicity of the semaphore operations ©

* How is the atomicity of down and up ensured?

» Typically down and up are not provided by hardware, they
must be built in software from lower-level primitives

* We could use synchronization algorithms

 If we have a single processing unit, we may just disable
all interrupts; then the scheduler cannot remove the
process from the processing unit

» This does not work on multiprocessors: disabling all
intferrupts on all processing units is too expensive

* Instead use test-and-set: for each semaphore, keep also
a test-and-set integer

22

Side remark: Semaphores in Java

» Java Threads offers semaphores as part of the
java.util.concurrent.Semaphore package

* Constructors:
Semaphore(int k), a weak semaphore

Semaphore(int k, boolean b), a strong semaphore if
b is set true

 Operations:
acquire(), corresponds to down
-> throws InterruptedException
release(), corresponds to up

23

E'H Ziirich

Chair of Software Engineering

Uses of semaphores

Uses of semaphores

- Semaphores are a very versatile mechanism, and can be
used not only for mutual exclusion

* In the following we give examples of such uses

25

The k-exclusion problem

* In the k-exclusion problem, we allow up to k processes to
be in their critical sections at the same time

* A solution is easily obtained with general semaphores

* The value of a semaphore corresponds intuitively to the
number of processes that are still allowed to proceed into
a critical section

s.count := k
P.

while true loop
s.down
critical section
s.up
non-critical section
end

HAwnpn+—

26

Barriers (1)

* A barrieris a form of synchronization that determines a
point in the execution of a program which all processes in a
group have to reach before any of them may move on.
* Barriers are important for iterative algorithms:
in each iteration processes work on different parts
of the problem

before starting the new iteration, all processes need
to have finished (e.g. o combine an intermediate

result)

©

27

Barriers (2)

* A simple barrier for two processes:

sl.count := 0

s2.count := 0

P1 P2

1 | code before the barrier |1 | code before the barrier
2 |slup 2 |s2.up

3 |s2.down 3 |sl.down

4 | code after the barrier |4 |code after the barrier

« Semaphore sl provides the barrier for P2, and semaphore

s2 provides the barrier for P1

28

The producer-consumer problem ©

- Consider two types of looping processes:

Producer: At each loop iteration, produces a data
item for consumption by a consumer

Consumer: At each loop iteration, consumes a data
item produced by a producer

* Producers and consumers communicate via a shared
buffer implementing a queue

* Producers append data items to the back of the queue
and consumers remove data items from the front

* The problem consists in writing code for producers and
consumers such that the following conditions are satisfied:

Every data item produced is eventually consumed
The solution is deadlock-free

The solution is starvation-free
29

The producer-consumer problem: background ©

* The producer-consumer problem corresponds to issues
found in many variations on concrete systems

* Producers. devices and programs such as keyboards, word
processors produce data items such as characters or files
to print

« Consumers:. the operating system and printers are the
consumers of these data items

* It has to be ensured that these different entities can
communicate with each other appropriately, such that no
data items get lost or the system enters a deadlock

30

The producer-consumer problem: variants ©

* There are two variants of the producer-consumer
problem:

- the shared buffer is assumed to be unbounded
.- the shared buffer is assumed to be bounded

* We will work on the problem with unbounded buffers
first

31

Condition synchronization

* In the producer-consumer problem, we have to ensure
that processes access the buffer properly

Consumers have to wait if the buffer is empty

Producers have to wait if the buffer is full (in the
bounded buffer version of the problem)

* Condition synchronization is a form of synchronization
where processes are delayed until a certain condition is
True

* In the producer consumer problem we have to use two
forms of synchronization

Mutual exclusion: to prevent races on the buffer

Condition synchronization: o prevent improper
access of the buffer (as described above)

32

Solution of the producer-consumer problem (1) ©

« Two semaphores needed:
mutex: to ensure mutual exclusion
hot_empty:
* if not_empty.count = O, then the buffer is empty
* if not_empty.count = k > 0 then the buffer
contains k items
* Idea:

Once a producer inserts an item, it executes
not_empty.up to wake up any blocked consumers or

to set the count right

Consumers may block on not_empty.down before
accessing the buffer

33

Solution of the producer-consumer problem (2) ©

mutex.count := 1
not_empty.count := 0

Producer, Consumer:,
while true loop while true loop
1 d := produce 1 hot_empty.down
2 mutex.down 2 mutex.down
3 b.append(d) 3 d := b.remove
4 mutex.up 4 mutex.up
5 not_empty.up 5 consume(d)
end end

* To see that the algorithm is correct, prove that
not_empty.count = #Zitems_in_buffer is an invariant that
holds at the beginning and end of each loop

* Deadlock-freedom is also satisfied, and with a strong
semaphore also starvation-freedom

34

Solution for bounded buffers

mutex.count := 1
not_empty.count := 0
not_full.count := k
Producer, Consumer:,
while true loop while true loop
1 d := produce 1 not_empty.down
2 not_full.down 2 mutex.down
3 mutex.down 3 d := b.remove
4 b.append(d) 4 mutex.up
5 mutex.up 5 not_full.up
not_empty.up consume(d)
end end

* To take care of the case that the buffer can also be
completely filled, a semaphore not_full is introduced,
making the solution more symmetric

Naming semaphores ©

« It is good practice to hame a semaphore used for
condition synchronization after the condition one wants to
be true:

not_empty: "wait until the buffer is not empty" and
"signal processes when the buffer is not empty"

36

Dining philosophers problem: solution attempt

* Dining philosophers problem: n philosophers
» Solution attempt:

s[1].count := 1, ..., s[n].count := 1
Philosopher,

while true loop
think
s[i].down
s[(i mod n) + 1].down
eat
s[(i mod n) + 1].up
s[i].up

end

SOl WWN -

- Semaphore s[i] corresponds to the availability of the /th
fork

* Problem?

©

37

Dining philosophers problem: a fix ©

« Asymmetric solution: one philosopher picks up forks in a
different order

Philosopher,,

while true loop
think
s[1].down
s[n].down
eat
s[n].up
s[1].up

end

Ol -

« Hence the circular wait condition (Coffman) is broken: no
deadlock

38

ETH zirich

Chair of Software Engineering

Simulating general semaphores

General semaphores are superfluous

« We have distinguished binary semaphores from general
(counting) semaphores

* Having general semaphores is beneficial, it allows us to
solve problems like the k-exclusion problem effortlessly

* However, from a theoretical perspective they are not
needed: we can implement general semaphores with binary
semaphores

40

Implementing general semaphores by binary one§’

mutex.count := 1 -- binary semaphore

delay.count :=1 -- binary semaphore

count := Kk

general_down general _up

do do
delay.down mutex.down
mutex.down count := count + 1
count := count - 1 if count = 1 then
if count > O then delay.up
delay.up end

end mutex.up
mutex.up end

end

41

Correctness idea for the simulation ©

* The variable count represents the value of the general
semaphore

* The binary semaphore mutex protects modifications on
count

* The first k - 1 processes executing general_down will also
execute delay.up, but not the kth process

 Hence further processes have to wait at the entry to
general_down

* In this case count = 0, and the first process to execute
general_up will execute delay.up

42

