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Today's lecture 

In this lecture you will learn about: 
 
•  the type of semaphores, an important synchronization 
primitive, 
•  implementation variants of semaphores, in particular 
weak and strong semaphores, 
•  uses of semaphores, in particular solutions to problems 
involving mutual exclusion, condition synchronization (the 
producer-consumer problem), and barriers. 
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The need for a new synchronization primitive 

•  The synchronization algorithms can provide process 
synchronization using atomic read and write only 
•  As a low-level synchronization primitive, they also have a 
number of disadvantages 

•  they rely on busy waiting (inefficient for 
multitasking) 

•  their synchronization variables are freely accessible 
within the program (no encapsulation) 

•  they can become very complex (difficult to 
implement) 
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Semaphores 

•  Semaphores: a higher-level synchronization primitive (not 
really high-level though) that alleviates some of the 
problems of synchronization algorithms 
•  A very important primitive, widely implemented and with 
many uses 
•  This comes at a price: the implementation of semaphores 
needs stronger atomic operations 
•  Invented by E.W. Dijkstra in 1965 
•  In other contexts, "semaphore" means traffic signal, e.g. 
to keep rail tracks free in railroad traffic control 
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General semaphores 

•  A general semaphore is an object that consists of a 
variable count and two operations down and up: 

•  if a process calls down where count > 0, then count is 
decremented; otherwise the process waits until 
count is positive. 

•  if a process calls up then count is incremented. 
•  Atomicity requirements: testing and decrementing, as 
well as incrementing have to be atomic 
•  A general semaphore is sometimes also called a counting 
semaphore 
•  Value of a semaphore: value of its count variable 
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Simple implementation of a general semaphore 

class SEMAPHORE 
feature 
    count : INTEGER 
    down 
        do 
            await count > 0 
            count := count − 1 
        end 
    up 
        do 
            count := count + 1 
        end 
end 
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Comments on the simple implementation 

•  We have used the await statement: this is busy waiting – 
we'll get rid of it in more refined implementations 
•  We use object-oriented / Eiffel-like syntax, but in 
pseudo-code style 
•  We will also write for a semaphore s 

•  s.count  -- value of variable count of s 
•  s.down, s.up   -- calls to routines of s 

•  Of course, when semaphores were invented, object-
orientation was not yet around 
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Mutual exclusion for two processes (1) 

•  Providing mutual exclusion with semaphores: initialize 
s.count to 1, and enclose the critical section as follows 

s.down 
critical section 
s.up 

•  Presented in the style of the mutual exclusion problem: 

count := 1 
P1 P2 
 
1 
 
2 
3 
4 
 

while true loop 
    await count > 0 
    count := count − 1 
    critical section 
    count := count + 1 
    non-critical section 
end 

 
1 
 
2 
3 
4 
 

while true loop 
    await count > 0 
    count := count − 1 
    critical section 
    count := count + 1 
    non-critical section 
end 
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Mutual exclusion for two processes (2) 

•  Mutual exclusion and deadlock-freedom are easy to prove 
•  Remember atomicity of test/decrement and increment 
•  Starvation-freedom is not satisfied, however we will see 
later how a different implementation fixes this problem 
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Binary semaphores 

•  A binary semaphore is a semaphore whose value is 0 or 1 
•  Implementation using a boolean variable is possible 

b : BOOLEAN 
down  
    do 
        await b 
            b := false  
    end 
up  
    do  
        b := true  
    end 
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Avoiding busy waiting 

•  Busy-wait semaphores are unsatisfactory: 
•  not starvation-free 
•  inefficient when multitasking 

•  Instead we want a solution where processes block 
themselves when having to wait, thus freeing processing 
resources as early as possible 
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Efficiency: blocking of processes 

•  A process can be in the following states: 
•  new: being created. 
•  running: instructions are being executed. 
•  blocked: currently waiting for an event. 
•  ready: ready to be executed, but not been assigned 

a processor yet. 
•  terminated: finished executing. 

blocked 

running ready 

Context switch 

new terminated 

s.down s.up 
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Starvation-freedom: process collections 

•  In order to avoid starvation, blocked processes are kept 
in a collection blocked with the following operations: 

•  add(P) inserts a process P into the collection 
•  remove selects and removes an item from the 

collection, and returns it 
•  is_empty determines whether the collection is 

empty 
•  A semaphore where blocked is implemented as a set is 
called a weak semaphore 
•  Assume for now a weak semaphore 
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Semaphore implementation (1) 
count : INTEGER 
blocked: CONTAINER 
down 
    do 
        if count > 0 then 
            count := count − 1 
        else 
            blocked.add(P)  −− P is the current process 
            P.state := blocked  −− block process P 
        end 
    end 
up 
    do 
        if blocked.is_empty then 
            count := count + 1 
        else 
            Q := blocked.remove  -- select some process Q 
            Q.state := ready  −− unblock process Q 
        end 
    end 
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Semaphore implementation (2) 

•  Note the differences to the simple implementation: 
•  Blocking instead of busy waiting 
•  Increment only if there are no blocked processes 

•  Mutual exclusion and deadlock-freedom preserved 
•  Starvation-freedom in the two process scenario: 

•  Assume P1 is blocked 
•  When P2 exits the critical section, it unblocks P1 

but does not increment the variable count 
•  As the value of the semaphore remains 0, process P2 

cannot enter before process P1  
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The semaphore invariant (1) 

•  We make the following assumptions: 
•  k ≥ 0: the initial value of the semaphore  
•  count: current value of the semaphore 
•  #down: number of completed down operations 
•  #up: number of completed up operations 
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The semaphore invariant (2) 

•  A semaphore satisfies the following invariants: 
 (1) count ≥ 0 
 (2) count = k + #up － #down 

Proof. (1) easy. (2) is preserved by all operations: 
down:  

•  if count > 0 then #down is incremented and count 
decremented 

•  if count ≤ 0 then down does not complete and count 
is unchanged 

up:  
•  if blocked is empty then #up and count are 

incremented;  
•  if blocked is not empty then #up and #down are 

incremented and count is unchanged 
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Mutual exclusion for n processes 

•  The mutual exclusion problem for n processes is solved 
like the one for two processes: initialize count to 1, 
protect critical sections with down and up 
•  Starvation is possible in the case of weak semaphores: 
the reason is that we select a process from blocked at 
random 
•  A semaphore where blocked is implemented as a queue is 
called a strong semaphore 
•  Using a strong semaphore we have a first-come-first-
served solution to the mutual exclusion problem for n 
processes 
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Solution of the mutual exclusion problem 

•  The strong semaphore provides a solution to the mutual 
exclusion problem for n processes 
Proof. Mutual exclusion: 
•  Let #cs be the number of processes in critical sections 
•  Show that #cs + count = 1 is an invariant [...] 
•  Since count ≥ 0, we have #cs ≤ 1 
Starvation-freedom: 
•  Assume a process is starved with i processes ahead of it 
and argue that in this case count = 0  [...] 
•  Hence there must be a process in the critical section by 
the above invariant 
•  This process must eventually unblock one of the i processes 
•  The result follows by induction on i. 
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Ensuring atomicity of the semaphore operations 

•  How is the atomicity of down and up ensured? 
•  Typically down and up are not provided by hardware, they 
must be built in software from lower-level primitives 
•  We could use synchronization algorithms 
•  If we have a single processing unit, we may just disable 
all interrupts; then the scheduler cannot remove the 
process from the processing unit 
•  This does not work on multiprocessors: disabling all 
interrupts on all processing units is too expensive 
•  Instead use test-and-set: for each semaphore, keep also 
a test-and-set integer 
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Side remark: Semaphores in Java 

•  Java Threads offers semaphores as part of the 
java.util.concurrent.Semaphore package 
•  Constructors: 

•  Semaphore(int k), a weak semaphore 
•  Semaphore(int k, boolean b), a strong semaphore if 

b is set true 
•  Operations: 

•  acquire(), corresponds to down  
–> throws InterruptedException 

•  release(), corresponds to up 
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Uses of semaphores 

•  Semaphores are a very versatile mechanism, and can be 
used not only for mutual exclusion 
•  In the following we give examples of such uses 
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The k-exclusion problem 

•  In the k-exclusion problem, we allow up to k processes to 
be in their critical sections at the same time 
•  A solution is easily obtained with general semaphores 
•  The value of a semaphore corresponds intuitively to the 
number of processes that are still allowed to proceed into 
a critical section 
 

s.count := k 
Pi 

 
1 
2 
3 
4 
 

while true loop 
    s.down 
    critical section 
    s.up 
    non-critical section 
end 
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Barriers (1) 

•  A barrier is a form of synchronization that determines a 
point in the execution of a program which all processes in a 
group have to reach before any of them may move on. 
•  Barriers are important for iterative algorithms: 

•  in each iteration processes work on different parts 
of the problem 

•  before starting the new iteration, all processes need 
to have finished (e.g. to combine an intermediate 
result) 
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Barriers (2) 

•  A simple barrier for two processes: 

•  Semaphore s1 provides the barrier for P2, and semaphore 
s2 provides the barrier for P1 

s1.count := 0 
s2.count := 0 
P1 P2 
1 
2 
3 
4 

code before the barrier 
s1.up 
s2.down 
code after the barrier 

1 
2 
3 
4 

code before the barrier 
s2.up 
s1.down 
code after the barrier 
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The producer-consumer problem 

•  Consider two types of looping processes: 
•  Producer: At each loop iteration, produces a data 

item for consumption by a consumer 
•  Consumer: At each loop iteration, consumes a data 

item produced by a producer 
•  Producers and consumers communicate via a shared 
buffer implementing a queue 
•  Producers append data items to the back of the queue 
and consumers remove data items from the front 
•  The problem consists in writing code for producers and 
consumers such that the following conditions are satisfied: 

•  Every data item produced is eventually consumed 
•  The solution is deadlock-free 
•  The solution is starvation-free 
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The producer-consumer problem: background 

•  The producer-consumer problem corresponds to issues 
found in many variations on concrete systems 
•  Producers: devices and programs such as keyboards, word 
processors produce data items such as characters or files 
to print 
•  Consumers: the operating system and printers are the 
consumers of these data items 
•  It has to be ensured that these different entities can 
communicate with each other appropriately, such that no 
data items get lost or the system enters a deadlock 
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The producer-consumer problem: variants 

•  There are two variants of the producer-consumer 
problem: 

•  the shared buffer is assumed to be unbounded 
•  the shared buffer is assumed to be bounded 

•  We will work on the problem with unbounded buffers 
first 
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Condition synchronization 

•  In the producer-consumer problem, we have to ensure 
that processes access the buffer properly 

•  Consumers have to wait if the buffer is empty 
•  Producers have to wait if the buffer is full (in the 

bounded buffer version of the problem) 
•  Condition synchronization is a form of synchronization 
where processes are delayed until a certain condition is 
true 
•  In the producer consumer problem we have to use two 
forms of synchronization 

•  Mutual exclusion: to prevent races on the buffer 
•  Condition synchronization: to prevent improper 

access of the buffer (as described above) 
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Solution of the producer-consumer problem (1) 

•  Two semaphores needed: 
•  mutex: to ensure mutual exclusion 
•  not_empty:  

•  if not_empty.count = 0, then the buffer is empty 
•  if not_empty.count = k > 0 then the buffer 

contains k items 
•  Idea: 

•  Once a producer inserts an item, it executes 
not_empty.up to wake up any blocked consumers or 
to set the count right 

•  Consumers may block on not_empty.down before 
accessing the buffer 
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Solution of the producer-consumer problem (2) 

 
 
 
 
 
 
 
•  To see that the algorithm is correct, prove that 
not_empty.count = #items_in_buffer is an invariant that 
holds at the beginning and end of each loop 
•  Deadlock-freedom is also satisfied, and with a strong 
semaphore also starvation-freedom 

mutex.count := 1 
not_empty.count := 0 
Produceri Consumeri 

 
1 
2 
3 
4 
5 

while true loop 
    d := produce 
    mutex.down 
    b.append(d) 
    mutex.up 
    not_empty.up 
end 

 
1 
2 
3 
4 
5 

while true loop 
    not_empty.down 
    mutex.down 
    d := b.remove 
    mutex.up 
    consume(d) 
end 
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Solution for bounded buffers 

 
 
 
 
 
 
 
 
 
•  To take care of the case that the buffer can also be 
completely filled, a semaphore not_full is introduced, 
making the solution more symmetric 

mutex.count := 1 
not_empty.count := 0 
not_full.count := k 
Produceri Consumeri 

 
1 
2 
3 
4 
5 

while true loop 
    d := produce 
    not_full.down 
    mutex.down 
    b.append(d) 
    mutex.up 
    not_empty.up 
end 

 
1 
2 
3 
4 
5 

while true loop 
    not_empty.down 
    mutex.down 
    d := b.remove 
    mutex.up 
    not_full.up 
    consume(d) 
end 



36 

Naming semaphores 

•  It is good practice to name a semaphore used for 
condition synchronization after the condition one wants to 
be true: 

•  not_empty: "wait until the buffer is not empty" and 
"signal processes when the buffer is not empty" 
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Dining philosophers problem: solution attempt 

•  Dining philosophers problem: n philosophers 
•  Solution attempt: 

•  Semaphore s[i] corresponds to the availability of the ith 
fork 
•  Problem? 

s[1].count := 1, ..., s[n].count := 1 
Philosopheri 

 
1 
2 
3 
4 
5 
6 
 

while true loop 
    think 
    s[i].down 
    s[(i mod n) + 1].down 
    eat 
    s[(i mod n) + 1].up 
    s[i].up 
end 

1 

2 

3 4 

5 1 2 

3 

4 

5 
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Dining philosophers problem: a fix 

•  Asymmetric solution: one philosopher picks up forks in a 
different order 
 

•  Hence the circular wait condition (Coffman) is broken: no 
deadlock 

Philosophern 

 
1 
2 
3 
4 
5 
6 
 

while true loop 
    think 
    s[1].down 
    s[n].down 
    eat 
    s[n].up 
    s[1].up 
end 
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General semaphores are superfluous 

•  We have distinguished binary semaphores from general 
(counting) semaphores 
•  Having general semaphores is beneficial, it allows us to 
solve problems like the k-exclusion problem effortlessly 
•  However, from a theoretical perspective they are not 
needed: we can implement general semaphores with binary 
semaphores 
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Implementing general semaphores by binary ones 

mutex.count := 1  -- binary semaphore 
delay.count := 1    -- binary semaphore 
count := k 
 
general_down 
    do 
        delay.down 
        mutex.down 
        count := count − 1 
        if count > 0 then 
            delay.up 
        end 
        mutex.up 
    end 

 
 
 
 
general_up 
    do 
        mutex.down 
        count := count + 1 
        if count = 1 then 
            delay.up 
        end 
        mutex.up 
    end 
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Correctness idea for the simulation 

•  The variable count represents the value of the general 
semaphore 
•  The binary semaphore mutex protects modifications on 
count 
•  The first k – 1 processes executing general_down will also 
execute delay.up, but not the kth process 
•  Hence further processes have to wait at the entry to 
general_down 
•  In this case count = 0, and the first process to execute 
general_up will execute delay.up 


