ETH zirich

Chair of Software Engineering

Concepts of Concurrent Computation

Bertrand Meyer
Sebastian Nanz

Lecture 5: Monitors

Today's lecture

In this lecture you will learn about:

* the type of monitors, an important synchronization
mechanism that separates the issues of mutual exclusion
and condition synchronization,

* implementation variants of monitors, in particular various
signaling disciplines,

* uses of monitors, in particular the readers-writers
problem and the sleeping barber problem.

E-'" Ziirich

Chair of Software Engineering

The monitor type

Why semaphores are not good enough

* We have seen that semaphores provide a simple yet
powerful synchronization primitive: they are conceptually
simple, efficient, and versatile

- However, one can argue that semaphores provide "too
much" flexibility:
We cannot determine the correct use of a

semaphore from the piece of code where it occurs;
potentially the whole program need be considered

Forgetting or misplacing a down or up operation
compromises correctness

It is easy to intfroduce deadlocks into programs

» We would like an approach that supports programmers
better in these respects, enabling them to apply
synchronization in a more structured manner

Monitors

* Monitors are an approach to providing synchronization
that is based in object-oriented principles, especially the
notions of class and encapsulation

* A monitor class fulfills the following conditions:
All its attributes are private
Its routines execute with mutual exclusion
* A monitoris an object instantiating a monitor class
* Intuition:
Attributes correspond to shared variables, i.e.
threads can only access them via the monitor

Routine bodies correspond to critical sections, as at
most one routine is active inside a monitor at any
Time

Notation

monitor class MONITOR_NAME
feature

—- attribute declarations
01 . WPEl

—- routine declarations
r, (argy, ..., arg,) do ... end

invariant
-- monitor invariant
end

Ensuring mutual exclusion in monitors (1)

* The condition that at most one routine is active inside a
monitor at any time is ensured by the implementation of
monitors (not burdened on the programmer)

« We show an implementation based on semaphores - other
implementation variants exist

« With every monitor, associate a strong semaphore as the
monitor's lock:

entry : SEMAPHORE

Ensuring mutual exclusion in monitors (2)

* The semaphore entry is initialized to 1
 Any monitor routine must acquire the semaphore before
executing its body:

r (argy, ..., arg,)
do

entry.down

body..

entry.up
end

* The process queue entry.blocked of the semaphore entry
is also called the entry gqueue of the monitor

Solution to the mutual exclusion problem (1) ©

monitor class CS
feature
x_1:TYPE, ... x_m:TYPE, --shared data
critical 1
do
critical section,
end

critical_n
do
critical section,
end
end

Solution to the mutual exclusion problem (2)

* As shown on the previous slide, the critical sections of
the n threads are taken as the bodies of routines
critical_1, ..., critical_n

* Then the mutual exclusion problem is solved as

create cs.make

while true loop
cs.critical _i
non-critical section
end

HAwnrpp—|O

where cs is an instance of the monitor class CS

» Mutual exclusion and starvation freedom follow from the
properties of a strong semaphore

10

Condition variables (1)

« We have seen how monitors can provide mutual exclusion

* What about other forms of synchronization, e.g.
condition synchronization?

* For this monitors offer condition variables, which can be
compared to semaphores as used for condition
synchronization

» However, their semantics is much different from
semaphores and deeply intertwined with the monitor
concept

11

Condition variables (2) ©

* A condition variable consists of a queue blocked and
three (atomic) operations:

wait releases the lock on the monitor, blocks the
executing thread and appends it to blocked

signal has no effect if blocked is empty; otherwise it
unblocks a thread, but can have other side effects
that depend on the signaling discipline used

iIs_empty returns true if blocked is empty, false
otherwise

* The operations wait and signal can only be called from
the body of a monitor routine

12

Implementation of condition variables

class CONDITION_VARIABLE

feature
blocked: QUEUE
wait
do
entry.up -- release the lock on the monitor
blocked.add(P) -- P is the current process
P.state := blocked -- block process P
end
signal deferred end -- behavior depends on signaling discipline
is_empty: BOOLEAN
do
result := blocked.is_empty
end

end

13

Signaling disciplines

« When a process signals on a condition variable, it still
executes inside the monitor

* As only one process may execute within a monitor at any
time, an unblocked process cannot enter the monitor
immediately

 Two main choices for continuation:

the signaling process continues, and the signaled
process is moved to the entry of the monitor

the signaling process leaves the monitor, and lets
the signaled process continue

* The decision of the behavior of signal is expressed in
signaling disciplines

14

Signaling disciplines: Signal and Continue (1)

« Signal and Continue signaling discipline:
- the signaling process continues

- the signaled process is moved to the entry queue of
the monitor

signal
do
if not blocked.is_empty then
Q := blocked.remove
entry.blocked.add(Q)
end
end

©

15

Signaling disciplines: Signal and Continue (2)

entry.down

entry.up
<
entry.blocked
C1.5i9n0|
c,.blocked
ci.wait
Monitor c,.blocked

©

16

Signaling disciplines: Signal and Wait (1)

» Signal and Wait signaling discipline:
- the signaler is moved to the entry queue of the
monitor

- the signaled process continues (the monitor's lock is
silently passed on)

signal
do
if not blocked.is_empty then
entry.blocked.add(P) -- P is the current process
Q := blocked.remove

Q.state := ready -- unblock process Q
P.state := blocked -- block process P
end

end

Signaling disciplines: Signal and Wait (2)

entry.up entry.down
<
entry.blocked
c,.signal
<
c,.blocked
ci.wait

Monitor c,.blocked

"Signal and Continue” vs. "Signal and Wait"

* If a thread executes a 'Signal and Wait' signal to
indicate that a certain condition is true, this condition will
be true for the signaled process

* This is not the case for 'Signal and Continue’, where the
signal is only a "hint" that a condition might be true now -
other threads might enter the monitor beforehand and
make the condition false

* In monitors with a 'Signal and Continue’ also an operation
signal_all

is offered, to wake all waiting processes, i.e.
while not blocked.is_empty do signal end

» signal_all is typically inefficient, for many threads the
signaled condition might not be true any more

©

19

Other signaling disciplines

* Urgent Signal and Continue: special case of Signal and
Continue, where a thread unblocked by a signal operation is
given priority over threads already waiting in the entry
queue

» Signal and Urgent Wait: special case of Signhal and Wait,
where a signaler is given priority over threads already
waiting in the entry queue

* To implement these signaling disciplines a queue
urgent_entry can be introduced which has priority over
the standard entry queue

©

20

Summary: signaling disciplines

* We can classify three sets of threads:
S Signaling threads
U Threads unblocked on the condition
B Threads blocked on the entry

* Write X > Y to mean that threads in set X have priority
over threads in set Y

« Then we can express the signaling disciplines concisely as
follows:

Signal and Continue: S>U=B
Urgent Signal and Continue: S>U>B
Signal and Wait: U>S=B

Signal and Urgent Wait: U>S>B

21

Monitors can simulate semaphores (1)

* Nobody should want to implement semaphores using
monitors

* The result is important theoretically: we don't lose
expressivity by using monitors instead of semaphores

* However, this does not mean that we don't have to pay
more in terms of computational resources

* In the following implementation, we assume a Signal and
Continue signaling discipline

* By comparing with the definition of a strong semaphore,
it is easy to show that the code provides a correct
simulation

22

Monitors can simulate semaphores (2)

monitor class STRONG_SEMAPHORE
feature
count : INTEGER
count_positive : CONDITION_VARIABLE
down
do
if count > O then count := count - 1
else count_positive.wait end
end
up
do
if count_positive.is_empty then count := count + 1
else count_positive.signal end
end
end

23

Side remark: Monitors in Java (1) ©

* Each object in Java has a mutex lock that can be
acquired and released within synchronized blocks:
Object lock = new Object():

synchronized (lock) {
// critical section

}

* The following are equivalent:

synchronized type m(args) { type m(args) {
synchronized (this) {
// body // body

}
} }

24

Side remark: Monitors in Java (2)

« With synchronized methods, monitors can be emulated

« However not the same protection from accidental errors
as in the original monitor idea is provided

- Condition variables are not explicitly available, but the
following methods can be called on any synchronized
object:

wait()

notify() // signal

notifyAll() // signal_all
 The Signal and Continue signaling discipline is used

 Java "monitors" are not starvation-free - when notify() is
invoked, an arbitrary process is unblocked

25

E-'" Ziirich

Chair of Software Engineering

Uses of monitors

The readers-writers problem

* Motivation: ensure data consistency under read and
write accesses

* Relevant for databases, shared files, heap structures

» Consider shared data which can be accessed by two kinds
of processes:

Readers: Processes that may execute concurrently
with other readers, but need to exclude writers

Writers: Processes that have to exclude both
readers and other writers

The readers-writers problem consists in providing an
algorithm such that

the access requirements are observed
the solution is starvation-free

27

Towards a solution ©

« We cannot use monitors in the classical way, i.e.
encapsulating the shared data as attributes of the monitor

 Since all monitor routines execute under mutual
exclusion, we couldn’t have multiple readers

« We use the monitor only to coordinate access; shared
data accesses are enclosed by calls to monitor routines:

Readers: rw.read_entry
read access to shared data
rw.read_exit

Writers: rw.write_entry
write access to shared data
rw.write_exit

28

Monitor solution of the readers-writers problem (1)

monitor class READERS_WRITERS
feature

num_readers : INTEGER

num_writers : INTEGER

ok_to_read : CONDITION_VARIABLE
-- signal if num_writers = 0

ok_to_write : CONDITION_VARIABLE
-- signal if num_readers = 0

invariant
num_writers = 0 or (num_writers = 1 and num_readers = 0)
end

©

29

Monitor solution of the readers-writers problem (2)

* The routines follow a simple scheme:
entry routines
 increment the number of readers (writers)

« potentially block the executing process on
ok_to_read or ok_to_write

exit routines
« decrement the number of readers (writers)
» potentially signal waiting readers and writers
* Checking on ok_to_write.is_empty in read_entry gives
priority o writers over readers
* Checking on ok_to_read.is_empty in write_exit gives
priority to readers over writers

* Together: starvation-freedom for both readers and
writers

©

30

Monitor solution of the readers-writers problem (3)

read_entry
do
if num_writers > 0O or not ok_to_write.is_empty do
ok_to_read.wait
end
hum_readers := num_readers + 1
ok_to_read.signal
end
read_exit
do
hum_readers := num_readers - 1
if num_readers = O then
ok_to_write.signal
end
end

©

31

Monitor solution of the readers-writers problem (4)

write_entry
do
if num_writers > 0 or num_readers > 0 do
ok_to_write.wait
end
hum_writers := hum_writers + 1
end
write_exit
do
hum_writers := hum_writers - 1
if ok_to_read.is_empty then
ok_to_write.signal
else
ok_to_read.signal
end
end

©

32

Other access strategies for readers-writers

* Instead of going for starvation-freedom for all
processes, it might be beneficial in certain applications to
give preference to either readers or writers

« We have three strategies:
R = W: Readers and writers have equal priority
R > W: Readers have higher priority than writers
W > R: Writers have higher priority than readers

* It is easy to derive implementations for the last two
strategies from the first, which we have implemented

©

33

The sleeping barber problem (1)

* A barbershop has n chairs for waiting customers and the
barber’s chair. Rules of the barbershop:

If there are no customers waiting to be served, the
barber goes to sleep

Ifa

customer enters the barbershop and finds the

barber sleeping, the customer wakes up the barber
and then gets a haircut

If the barber is busy but there are waiting chairs

avai
unti

able, the customer sits in one of the free chairs
called to the barber’s chair by the barber

Ifa

| chairs are occupied, then the customer leaves

the shop

* The problem consists in finding a starvation-free
algorithm that observes these rules

34

The sleeping barber problem (2) ©

 Motivation: client-server relationships between
operating system processes

* Generalization of a barrier:
two parties must arrive before any can proceed

however the second party is not predetermined: the
barber can serve any customer

35

Monitor solution to the sleeping barber problem ©

monitor class SLEEPING_BARBER
feature
num_free_chairs : INTEGER
barber_available : CONDITION_VARIABLE
customer_available : CONDITION_VARIABLE

get_haircut do_haircut

do
if num_free_chairs > O then

num_free_chairs :=
num_free_chairs - 1

customer_available.signal
barber_available.wait
get a haircut
end
end

end

do
while num_free_chairs = n do
customer_available.wait
end
barber_available.signal

num_free_chairs :=
num_free_chairs + 1

do a haircut
end

36

Monitors: benefits

* Benefits of monitors:
Structured approach. programmer does not have to
remember to follow a wait with a signal just to
implement mutual exclusion
Separation of concerns. mutual exclusion for free,
for condition synchronization we have condition
variables

37

Monitors: problems

* Problems of monitors:

Performance concerns. trade-off between
programmer support and performance

Signaling disciplines: source of confusion; Signhal and
Continue problematic as condition can change before
a waiting process enters the monitor

Nested monitor calls: Consider that routine rl of

monitor M1 makes a call to routine r2 of monitor M2.

If routine r2 contains a wait operation, should
mutual exclusion be released for both M1 and M2, or
only for M2?

38

