
Chair of Software Engineering

Concepts of Concurrent Computation

Bertrand Meyer
Sebastian Nanz	

Lecture 5: Monitors

2

Today's lecture

In this lecture you will learn about:

•  the type of monitors, an important synchronization
mechanism that separates the issues of mutual exclusion
and condition synchronization,
•  implementation variants of monitors, in particular various
signaling disciplines,
•  uses of monitors, in particular the readers-writers
problem and the sleeping barber problem.

Chair of Software Engineering

The	 monitor	 type	

4

Why semaphores are not good enough

•  We have seen that semaphores provide a simple yet
powerful synchronization primitive: they are conceptually
simple, efficient, and versatile
•  However, one can argue that semaphores provide "too
much" flexibility:

•  We cannot determine the correct use of a
semaphore from the piece of code where it occurs;
potentially the whole program need be considered

•  Forgetting or misplacing a down or up operation
compromises correctness

•  It is easy to introduce deadlocks into programs
•  We would like an approach that supports programmers
better in these respects, enabling them to apply
synchronization in a more structured manner

5

Monitors

•  Monitors are an approach to providing synchronization
that is based in object-oriented principles, especially the
notions of class and encapsulation
•  A monitor class fulfills the following conditions:

•  All its attributes are private
•  Its routines execute with mutual exclusion

•  A monitor is an object instantiating a monitor class
•  Intuition:

•  Attributes correspond to shared variables, i.e.
threads can only access them via the monitor

•  Routine bodies correspond to critical sections, as at
most one routine is active inside a monitor at any
time

6

Notation

monitor class MONITOR_NAME
 feature
 −− attribute declarations
 a1 : TYPE1

 . . .

 −− routine declarations
 r1 (arg1, ..., argk) do ... end

 . . .

 invariant
 −− monitor invariant
end

7

Ensuring mutual exclusion in monitors (1)

•  The condition that at most one routine is active inside a
monitor at any time is ensured by the implementation of
monitors (not burdened on the programmer)
•  We show an implementation based on semaphores – other
implementation variants exist
•  With every monitor, associate a strong semaphore as the
monitor's lock:

 entry : SEMAPHORE

8

Ensuring mutual exclusion in monitors (2)

•  The semaphore entry is initialized to 1
•  Any monitor routine must acquire the semaphore before
executing its body:

 r (arg1, ..., argk)
 do
 entry.down
 bodyr

 entry.up
 end

•  The process queue entry.blocked of the semaphore entry
is also called the entry queue of the monitor

9

Solution to the mutual exclusion problem (1)

monitor class CS
 feature
 x_1 : TYPE1 . . . x_m : TYPEm −− shared data
 critical_1
 do
 critical section1
 end

 . . .
 critical_n
 do
 critical sectionn

 end
end

10

Solution to the mutual exclusion problem (2)

•  As shown on the previous slide, the critical sections of
the n threads are taken as the bodies of routines
critical_1, ..., critical_n
•  Then the mutual exclusion problem is solved as

where cs is an instance of the monitor class CS
•  Mutual exclusion and starvation freedom follow from the
properties of a strong semaphore

create cs.make
Pi

1
2
3
4

while true loop
 cs.critical_i
 non-critical section
end

11

Condition variables (1)

•  We have seen how monitors can provide mutual exclusion
•  What about other forms of synchronization, e.g.
condition synchronization?
•  For this monitors offer condition variables, which can be
compared to semaphores as used for condition
synchronization
•  However, their semantics is much different from
semaphores and deeply intertwined with the monitor
concept

12

Condition variables (2)

•  A condition variable consists of a queue blocked and
three (atomic) operations:

•  wait releases the lock on the monitor, blocks the
executing thread and appends it to blocked

•  signal has no effect if blocked is empty; otherwise it
unblocks a thread, but can have other side effects
that depend on the signaling discipline used

•  is_empty returns true if blocked is empty, false
otherwise

•  The operations wait and signal can only be called from
the body of a monitor routine

13

Implementation of condition variables

class CONDITION_VARIABLE
feature
 blocked: QUEUE
 wait
 do
 entry.up −− release the lock on the monitor
 blocked.add(P) −− P is the current process
 P.state := blocked −− block process P
 end
 signal deferred end −− behavior depends on signaling discipline
 is_empty: BOOLEAN
 do
 result := blocked.is_empty
 end
end

14

Signaling disciplines

•  When a process signals on a condition variable, it still
executes inside the monitor
•  As only one process may execute within a monitor at any
time, an unblocked process cannot enter the monitor
immediately
•  Two main choices for continuation:

•  the signaling process continues, and the signaled
process is moved to the entry of the monitor

•  the signaling process leaves the monitor, and lets
the signaled process continue

•  The decision of the behavior of signal is expressed in
signaling disciplines

15

Signaling disciplines: Signal and Continue (1)

•  Signal and Continue signaling discipline:
•  the signaling process continues
•  the signaled process is moved to the entry queue of

the monitor

signal
 do
 if not blocked.is_empty then
 Q := blocked.remove
 entry.blocked.add(Q)
 end
 end

16

Signaling disciplines: Signal and Continue (2)

entry.blocked

c1.blocked

cn.blocked

. . .

entry.down entry.up

c1.signal

c1.wait

Monitor

17

Signaling disciplines: Signal and Wait (1)

•  Signal and Wait signaling discipline:
•  the signaler is moved to the entry queue of the

monitor
•  the signaled process continues (the monitor's lock is

silently passed on)
signal
 do
 if not blocked.is_empty then
 entry.blocked.add(P) −− P is the current process
 Q := blocked.remove
 Q.state := ready −− unblock process Q
 P.state := blocked −− block process P
 end
 end

18

Signaling disciplines: Signal and Wait (2)

entry.blocked

c1.blocked

cn.blocked

. . .

entry.down entry.up

c1.signal

c1.wait

Monitor

19

"Signal and Continue" vs. "Signal and Wait"

•  If a thread executes a 'Signal and Wait' signal to
indicate that a certain condition is true, this condition will
be true for the signaled process
•  This is not the case for 'Signal and Continue', where the
signal is only a "hint" that a condition might be true now –
other threads might enter the monitor beforehand and
make the condition false
•  In monitors with a 'Signal and Continue' also an operation

 signal_all
is offered, to wake all waiting processes, i.e.

 while not blocked.is_empty do signal end
•  signal_all is typically inefficient, for many threads the
signaled condition might not be true any more

20

Other signaling disciplines

•  Urgent Signal and Continue: special case of Signal and
Continue, where a thread unblocked by a signal operation is
given priority over threads already waiting in the entry
queue
•  Signal and Urgent Wait: special case of Signal and Wait,
where a signaler is given priority over threads already
waiting in the entry queue

•  To implement these signaling disciplines a queue
urgent_entry can be introduced which has priority over
the standard entry queue

21

Summary: signaling disciplines

•  We can classify three sets of threads:
•  S Signaling threads
•  U Threads unblocked on the condition
•  B Threads blocked on the entry

•  Write X > Y to mean that threads in set X have priority
over threads in set Y
•  Then we can express the signaling disciplines concisely as
follows:

•  Signal and Continue: S > U = B
•  Urgent Signal and Continue: S > U > B
•  Signal and Wait: U > S = B
•  Signal and Urgent Wait: U > S > B

22

Monitors can simulate semaphores (1)

•  Nobody should want to implement semaphores using
monitors
•  The result is important theoretically: we don't lose
expressivity by using monitors instead of semaphores
•  However, this does not mean that we don't have to pay
more in terms of computational resources
•  In the following implementation, we assume a Signal and
Continue signaling discipline
•  By comparing with the definition of a strong semaphore,
it is easy to show that the code provides a correct
simulation

23

Monitors can simulate semaphores (2)

monitor class STRONG_SEMAPHORE
feature
 count : INTEGER
 count_positive : CONDITION_VARIABLE
 down
 do
 if count > 0 then count := count − 1
 else count_positive.wait end
 end
 up
 do
 if count_positive.is_empty then count := count + 1
 else count_positive.signal end
 end
end

24

Side remark: Monitors in Java (1)

•  Each object in Java has a mutex lock that can be
acquired and released within synchronized blocks:

 Object lock = new Object();

 synchronized (lock) {
 // critical section
 }

•  The following are equivalent:

synchronized type m(args) {

 // body

}

type m(args) {
 synchronized (this) {
 // body
 }
}

25

Side remark: Monitors in Java (2)

•  With synchronized methods, monitors can be emulated
•  However not the same protection from accidental errors
as in the original monitor idea is provided
•  Condition variables are not explicitly available, but the
following methods can be called on any synchronized
object:

wait()
notify() // signal
notifyAll() // signal_all

•  The Signal and Continue signaling discipline is used
•  Java "monitors" are not starvation-free – when notify() is
invoked, an arbitrary process is unblocked

Chair of Software Engineering

Uses	 of	 monitors	

27

The readers-writers problem

•  Motivation: ensure data consistency under read and
write accesses
•  Relevant for databases, shared files, heap structures
•  Consider shared data which can be accessed by two kinds
of processes:

•  Readers: Processes that may execute concurrently
with other readers, but need to exclude writers

•  Writers: Processes that have to exclude both
readers and other writers

The readers-writers problem consists in providing an
algorithm such that

•  the access requirements are observed
•  the solution is starvation-free

28

Towards a solution

•  We cannot use monitors in the classical way, i.e.
encapsulating the shared data as attributes of the monitor
•  Since all monitor routines execute under mutual
exclusion, we couldn't have multiple readers
•  We use the monitor only to coordinate access; shared
data accesses are enclosed by calls to monitor routines:
Readers: rw.read_entry

 read access to shared data
 rw.read_exit

Writers: rw.write_entry

 write access to shared data
 rw.write_exit

29

Monitor solution of the readers-writers problem (1)

monitor class READERS_WRITERS
 feature
 num_readers : INTEGER
 num_writers : INTEGER
 ok_to_read : CONDITION_VARIABLE

 -- signal if num_writers = 0
 ok_to_write : CONDITION_VARIABLE

 -- signal if num_readers = 0

 . . .

 invariant
 num_writers = 0 or (num_writers = 1 and num_readers = 0)
end

30

Monitor solution of the readers-writers problem (2)

•  The routines follow a simple scheme:
•  entry routines

•  increment the number of readers (writers)
•  potentially block the executing process on

ok_to_read or ok_to_write
•  exit routines

•  decrement the number of readers (writers)
•  potentially signal waiting readers and writers

•  Checking on ok_to_write.is_empty in read_entry gives
priority to writers over readers
•  Checking on ok_to_read.is_empty in write_exit gives
priority to readers over writers
•  Together: starvation-freedom for both readers and
writers

31

Monitor solution of the readers-writers problem (3)

 read_entry
 do
 if num_writers > 0 or not ok_to_write.is_empty do
 ok_to_read.wait
 end
 num_readers := num_readers + 1
 ok_to_read.signal
 end
read_exit
 do
 num_readers := num_readers - 1
 if num_readers = 0 then
 ok_to_write.signal
 end
 end

32

Monitor solution of the readers-writers problem (4)

write_entry
 do
 if num_writers > 0 or num_readers > 0 do
 ok_to_write.wait
 end
 num_writers := num_writers + 1
 end
write_exit
 do
 num_writers := num_writers - 1
 if ok_to_read.is_empty then
 ok_to_write.signal
 else
 ok_to_read.signal
 end
 end

33

Other access strategies for readers-writers

•  Instead of going for starvation-freedom for all
processes, it might be beneficial in certain applications to
give preference to either readers or writers
•  We have three strategies:

•  R = W: Readers and writers have equal priority
•  R > W: Readers have higher priority than writers
•  W > R: Writers have higher priority than readers

•  It is easy to derive implementations for the last two
strategies from the first, which we have implemented

34

The sleeping barber problem (1)

•  A barbershop has n chairs for waiting customers and the
barber’s chair. Rules of the barbershop:

•  If there are no customers waiting to be served, the
barber goes to sleep

•  If a customer enters the barbershop and finds the
barber sleeping, the customer wakes up the barber
and then gets a haircut

•  If the barber is busy but there are waiting chairs
available, the customer sits in one of the free chairs
until called to the barber’s chair by the barber

•  If all chairs are occupied, then the customer leaves
the shop

•  The problem consists in finding a starvation-free
algorithm that observes these rules

35

The sleeping barber problem (2)

•  Motivation: client-server relationships between
operating system processes
•  Generalization of a barrier:

•  two parties must arrive before any can proceed
•  however the second party is not predetermined: the

barber can serve any customer

36

Monitor solution to the sleeping barber problem

monitor class SLEEPING_BARBER
 feature
 num_free_chairs : INTEGER
 barber_available : CONDITION_VARIABLE
 customer_available : CONDITION_VARIABLE

 get_haircut
 do
 if num_free_chairs > 0 then
 num_free_chairs :=

 num_free_chairs - 1
 customer_available.signal
 barber_available.wait
 get a haircut
 end
 end

 do_haircut
 do
 while num_free_chairs = n do
 customer_available.wait
 end
 barber_available.signal
 num_free_chairs :=

 num_free_chairs + 1
 do a haircut
 end

end

37

Monitors: benefits

•  Benefits of monitors:
•  Structured approach: programmer does not have to

remember to follow a wait with a signal just to
implement mutual exclusion

•  Separation of concerns: mutual exclusion for free,
for condition synchronization we have condition
variables

38

Monitors: problems

•  Problems of monitors:
•  Performance concerns: trade-off between

programmer support and performance
•  Signaling disciplines: source of confusion; Signal and

Continue problematic as condition can change before
a waiting process enters the monitor

•  Nested monitor calls: Consider that routine r1 of
monitor M1 makes a call to routine r2 of monitor M2.
If routine r2 contains a wait operation, should
mutual exclusion be released for both M1 and M2, or
only for M2?

