
Chair of Software Engineering

Concepts of Concurrent Computation

Bertrand Meyer
Sebastian Nanz!

Lecture 6: SCOOP principles

2

SCOOP mechanism

Simple Concurrent Object-Oriented Programming

Evolved through last decade; CACM (1993) and chap. 32 of
Object-Oriented Software Construction, 2nd edition, 1997

Protoype-implementation at ETH

Ongoing integration into EiffelStudio by EiffelSoftware

3

SCOOP preview: a sequential program

transfer (source, target: ACCOUNT;
 amount: INTEGER)
 -- If possible, transfer amount from source to target.
 do

 if source ! balance >= amount then
 source ! withdraw (amount)
 target ! deposit (amount)

 end
 end

Typical calls:

 transfer (acc1, acc2, 100)
 transfer (acc1, acc3, 100)

4

In a concurrent setting, using SCOOP

transfer (source, target: ACCOUNT;
 amount: INTEGER)
 -- If possible, transfer amount from source to target.
 do

 if source ! balance >= amount then
 source ! withdraw (amount)
 target ! deposit (amount)

 end
 end

Typical calls:

 transfer (acc1, acc2, 100)
 transfer (acc1, acc3, 100)

separate

5

A better SCOOP version

transfer (source, target: ACCOUNT;
 amount: INTEGER)
 -- Transfer amount from source to target.
 require

 source ! balance >= amount
 do

 source ! withdraw (amount)
 target ! deposit (amount)

 ensure
 source ! balance = old source ! balance – amount
 target ! balance = old target! balance + amount

 end

separate

put (b : [G] ; v : G)
 -- Store v into b.
 require
 not b.is_full
 do
 …
 ensure
 not b.is_empty

 end

QUEUE BUFFER

my_queue : [T]
…

if not my_queue.is_full then

 put (my_queue, t)
end

BUFFER QUEUE

put

item, remove

7

Processors in SCOOP

Processor: Thread of control supporting sequential
execution of instructions on one or more objects

Can be implemented as:

"  Computer CPU
"  Process
"  Thread

Will be mapped to computational resources.

Processor

Actions Objects

8

Handler rule

•  The computational model of SCOOP relies on the
following fundamental rule:

•  A call is “targeted” to an object in the sense of object-
oriented programming: the call x.r applies the routine r
to the target object identified by x.

All calls targeted to a given object are performed
by a single processor, called the object’s handler.

9

Regions

•  The set of objects handled by a given processor is
called a region.

•  The Handler rule implies a one-to-one correspondence
between processors and regions.

10

Separate declarations

•  SCOOP introduces the keyword separate, which is a
type modifier

•  If x is declared separate T for some type T, then the
associated object will normally be handled by a
different processor.

•  For example, if a processor p executes a call x.r, and x
is handled by processor q, then q (rather than p itself)
will execute r.

•  Terminology: a call x.r is a separate call if its target x is
separate.

•  The usual semantics remains: If x is declared as just T,
not separate, the current processor p will execute r.

11

Separate call (asynchronous)

•  Separate calls are executed asynchronously:
•  A client executing separate call x.r(a) logs the call

with the handler of x (who will execute it)
•  The client can proceed executing the next

instructions without waiting

previous

x.r (a)

next

r (x : A)
 do
 …
 end

Client’s handler Supplier’s handler
Region boundary

12

Ordinary call (synchronous)

•  With non-separate calls, the semantics is the same as in
sequential computation

•  The client waits for the call to finish (synchronous)

Client Supplier

previous

x.r (a)

next

r (x : A)
 do
 …
 end

13

Routine call and routine application

•  The introduction of asynchrony highlights a difference
between two notions:

•  A routine call, such as x.r executed by a certain
processor p.

•  A routine application, which — following a call — is
the execution of the routine r by a processor q.

•  While the distinction exists in sequential programming,
it is especially important in SCOOP, as processors p and
q might be different from each other.

14

Summary: the fundamental difference

To wait or not to wait:
"  If same processor, synchronous
"  If different processor, asynchronous

Difference is captured by type system:

"  x: T
"  x: separate T -- Potentially different processor

Fundamental semantic rule: x.r (a) waits for non-
separate x, doesn’t wait for separate x.

15

Why potentially separate?

•  A separate declaration does not specify the processor;
it only specifies that the corresponding object might be
handled by a processor that is not the same as the
current object’s handler.

•  In class A: x: separate B
•  In class B: y: separate A
•  In some execution the value of x.y might be a

reference to an object handled by the current
object, or even the current object itself.

16

Lazy wait (1)

•  What if a client needs to resynchronize with a separate
object on which you have launched a separate call?

 x.f
 x.g (a)
 y.f
 …
 value!:=!x.some_query

•  In SCOOP, we resynchronize only on queries – the client
only waits if it needs to (lazy wait)

•  Recap:
•  A command does not return a result (procedure).
•  A query returns a result (function or attribute).

17

Lazy wait (2)

•  Lazy wait changes the rule for separate calls as follows:
•  A processor executing a separate call to a query

will not proceed until the result of the query has
been computed.

•  For a separate call to a command, the processor
can proceed without waiting as soon as it has
logged the call.

•  Lazy wait is also called wait by necessity (D. Caromel).

18

Mutual exclusion in SCOOP

•  SCOOP has a simple way to express mutual exclusive
access to objects by way of argument passing

•  The SCOOP runtime system makes sure that the
application of a call x.r (a1, a2, ...) will wait until it has
been able to lock all the separate objects associated
with the arguments a1, a2,

•  Within the routine body, the access to the separate
objects associated with the arguments a1, a2, ... is thus
mutually exclusive.

•  Note that in difference to other formalisms, SCOOP
thus provides a simple way to lock a group of objects at
the same time.

19

Example: Mutual exclusion

•  For example, in the execution of the following routine
we can rely on the runtime system to lock the separate
argument b:

 put (b : separate QUEUE[T]; value : T)
 -- Add value, FIFO-style, to b.
 do
 b.put (value)
 end

•  Hence the modification of the buffer b.put (value) will
be executed safely (in mutual exclusion with other
accesses)

20

Example: dining philosophers in SCOOP

class PHILOSOPHER inherit
 PROCESS
 rename
 setup as getup
 redefine step end

feature {BUTLER}

 step
 do
 think ; eat (left, right)

 end

 eat (l, r : separate FORK)
 -- Eat, having grabbed l and r.

 do … end
end

21

The separate argument rule

•  Argument passing is enforced in SCOOP, to protect
modifications on separate objects

•  The following rule expresses this:

•  For example the following code would give an compile
time error since b is not an argument of put:

b: separate QUEUE[T]
 put (value : T)
 do
 b.put (value)
 end

The target of a separate call
must be an argument of the enclosing routine

22

Condition synchronization in SCOOP

•  Condition synchronization is provided in SCOOP by
reinterpreting routine preconditions as wait conditions.

•  This means that the execution of the body of a routine
is delayed until its separate preconditions are satisfied

•  A separate precondition is a precondition that involves a
call to a separate target.

put (buf : separate QUEUE[INTEGER] ; v : INTEGER)
 -- Store v into buffer.
 require
 not buf.is_full
 v > 0
 do
 buf.put (v)
 ensure
 not buf.is_empty
 end

 Precondition becomes
wait condition

Correctness
condition
(no wait
semantics)

23

Wait rule

•  The behavior of the SCOOP runtime system with
respect to waiting for a routine application is
summarized in the following rule:

A call with separate arguments waits until the
corresponding objects’ handlers are all available,
and the separate conditions all satisfied. It
reserves the handlers for the duration of the
routine’s execution.

24

SCOOP runtime system: request queues

•  When a processor makes a separate feature call, it
sends a feature request.

•  Each processor has a request queue to keep track of
these feature requests.

put (2)

test (a_buffer: separate BUFFER [INTEGER])
 -- Test the buffer ‘a_buffer’.
 require
 a_buffer_is_empty: a_buffer.count = 0
 local
 l: INTEGER
 do
 a_buffer.put (2)
 a_buffer.put (6)
 l := a_buffer.item
 l := a_buffer.item
 end

buffer processor
request queue: put (6) item item

25

SCOOP runtime system: scheduler

•  Before a processor can process a feature request it
must:

•  Obtain the necessary locks
•  Satisfy the precondition

•  The processor sends a locking request to a scheduler.
•  The scheduler keeps track of the locking request. It

approves locking requests according to a scheduling
algorithm.

•  Several scheduling algorithms are possible:
•  Centralized vs. decentralized
•  Different levels of fairness

26

SCOOP runtime system: separate callbacks
class CONSUMER ...

id: INTEGER

check_id (a_buffer: separate BUFFER [INTEGER])

 -- Check whether ‘a_buffer’ has the consumer’s identifier.
 local
 l: BOOLEAN
 do
 l := a_buffer.has_id (Current)
 end

end

class BUFFER [G] ...
has_id (a_consumer: separate CONSUMER): BOOLEAN

 -- Is the identifier of ‘a_consumer’ in the buffer?
 do
 Result := area.has (a_consumer.id)
 end

end

The consumer processor waits
for the query to return.

Separate callback: the
buffer processor waits for

the query to return.

deadlock

27

SCOOP runtime system: separate callbacks

•  Solution:
•  The buffer processor interrupts the consumer

processor from waiting.
•  The buffer processor asks the consumer

processor to execute the feature request right
away.

•  How to detect a separate callback?
•  The consumer processor has a lock on the buffer

processor.
•  This means that the consumer processor is

(potentially) waiting for the buffer processor.
•  The buffer processor can detect this at the

moment of the separate callback.

28

What can SCOOP do for us?

Beat enemy number one in concurrent world: atomicity
violations

"  Data races
"  Illegal interleaving of calls

Data races cannot occur in SCOOP

"  Why? See computational model ...

Separate call rule does not protect us from bad

interleaving of calls!
"  How can this happen?

29

Why SCOOP?

"  Simple (one new keyword) yet powerful
"  Easier and safer than common concurrent

techniques, e.g. Java Threads
"  Full concurrency support
"  Full use of O-O and Design by Contract
"  Retains ordinary thought patterns, modeling power

of O-O
"  Supports wide range of platforms and concurrency

architectures
"  Programmers need to sleep better!

