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SCOOP mechanism 

Simple Concurrent Object-Oriented Programming 
 

Evolved through last decade; CACM (1993) and chap. 32 of 
Object-Oriented Software Construction, 2nd edition, 1997 
 

Protoype-implementation at ETH 
 
Ongoing integration into EiffelStudio by EiffelSoftware 
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SCOOP preview: a sequential program 

transfer (source, target:                      ACCOUNT; 
   amount: INTEGER) 
  -- If possible, transfer amount from source to target. 
 do 

  if source ! balance >= amount then 
   source ! withdraw  (amount) 
   target ! deposit     (amount) 

  end 
 end 

 
Typical calls: 

  transfer (acc1, acc2, 100) 
  transfer (acc1, acc3, 100)   
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In a concurrent setting, using SCOOP 

transfer (source, target:                      ACCOUNT; 
   amount: INTEGER) 
  -- If possible, transfer amount from source to target. 
 do 

  if source ! balance >= amount then 
   source ! withdraw  (amount) 
   target ! deposit     (amount) 

  end 
 end 

 
Typical calls: 

  transfer (acc1, acc2, 100) 
  transfer (acc1, acc3, 100)   

separate 
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A better SCOOP version 

transfer (source, target:                      ACCOUNT; 
   amount: INTEGER) 
  -- Transfer amount from source to target. 
 require 

   source ! balance >= amount  
 do 

  source ! withdraw  (amount) 
  target ! deposit     (amount) 

 ensure 
  source ! balance = old source ! balance – amount 
  target ! balance = old target! balance + amount 

 end 
 

separate 



put (b :                [G ] ; v : G ) 
  -- Store v into b. 
 require 
  not b.is_full 
 do 
  … 
 ensure 
  not b.is_empty 

  end 

QUEUE   BUFFER   

my_queue :               [T ] 
…  

if not my_queue.is_full then 
 
 

 put (my_queue, t ) 
end 

BUFFER   QUEUE   

put 

item, remove 
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Processors in SCOOP 

Processor: Thread of control supporting sequential 
execution of instructions on one or more objects  
 
Can be implemented as: 

"  Computer CPU 
"  Process 
"  Thread 
 
 

Will be mapped to computational resources. 

Processor 

Actions Objects 
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Handler rule 

•  The computational model of SCOOP relies on the 
following fundamental rule: 

•  A call is “targeted” to an object in the sense of object-
oriented programming: the call x.r applies the routine r 
to the target object identified by x. 

All calls targeted to a given object are performed 
by a single processor, called the object’s handler. 
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Regions 

•  The set of objects handled by a given processor is 
called a region. 

•  The Handler rule implies a one-to-one correspondence 
between processors and regions. 
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Separate declarations 

•  SCOOP introduces the keyword separate, which is a 
type modifier 

•  If x is declared separate T for some type T, then the 
associated object will normally be handled by a 
different processor.  

•  For example, if a processor p executes a call x.r, and x 
is handled by processor q, then q (rather than p itself) 
will execute r. 

•  Terminology: a call x.r is a separate call if its target x is 
separate. 

•  The usual semantics remains: If x is declared as just T, 
not separate, the current processor p will execute r. 
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Separate call (asynchronous) 

•  Separate calls are executed asynchronously:  
•  A client executing separate call x.r(a) logs the call 

with the handler of x (who will execute it) 
•  The client can proceed executing the next 

instructions without waiting 

previous 

x.r (a) 
 
next 

r (x : A) 
 do 
  … 
 end 

Client’s handler Supplier’s handler 
Region boundary 
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Ordinary call (synchronous) 

•  With non-separate calls, the semantics is the same as in 
sequential computation 

•  The client waits for the call to finish (synchronous) 

Client Supplier 

previous 

x.r (a) 
 
next 

r (x : A) 
 do 
  … 
 end 
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Routine call and routine application 

•  The introduction of asynchrony highlights a difference 
between two notions: 

•  A routine call, such as x.r executed by a certain 
processor p. 

•  A routine application, which — following a call — is 
the execution of the routine r by a processor q. 

•  While the distinction exists in sequential programming, 
it is especially important in SCOOP, as processors p and 
q might be different from each other. 
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Summary: the fundamental difference 

To wait or not to wait: 
"  If same processor, synchronous 
"  If different processor, asynchronous 

 
Difference is captured by type system: 

"  x: T 
"  x: separate T   -- Potentially different processor 

Fundamental semantic rule: x.r (a) waits for non-
separate x, doesn’t wait for separate x. 
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Why potentially separate? 

•  A separate declaration does not specify the processor; 
it only specifies that the corresponding object might be 
handled by a processor that is not the same as the 
current object’s handler. 

•  In class A:  x: separate B 
•  In class B:  y: separate A 
•  In some execution the value of x.y might be a 

reference to an object handled by the current 
object, or even the current object itself. 
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Lazy wait (1) 

•  What if a client needs to resynchronize with a separate 
object on which you have launched a separate call? 

 x.f 
 x.g (a) 
 y.f 
 … 
 value!:=!x.some_query 

•  In SCOOP, we resynchronize only on queries – the client 
only waits if it needs to (lazy wait) 

•  Recap: 
•  A command does not return a result (procedure). 
•  A query returns a result (function or attribute). 
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Lazy wait (2) 

•  Lazy wait changes the rule for separate calls as follows: 
•  A processor executing a separate call to a query 

will not proceed until the result of the query has 
been computed. 

•  For a separate call to a command, the processor 
can proceed without waiting as soon as it has 
logged the call. 

•  Lazy wait is also called wait by necessity (D. Caromel). 
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Mutual exclusion in SCOOP 

•  SCOOP has a simple way to express mutual exclusive 
access to objects by way of argument passing 

•  The SCOOP runtime system makes sure that the 
application of a call x.r (a1, a2, ...) will wait until it has 
been able to lock all the separate objects associated 
with the arguments a1, a2, ... . 

•  Within the routine body, the access to the separate 
objects associated with the arguments a1, a2, ... is thus 
mutually exclusive. 

•  Note that in difference to other formalisms, SCOOP 
thus provides a simple way to lock a group of objects at 
the same time. 
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Example: Mutual exclusion 

•  For example, in the execution of the following routine 
we can rely on the runtime system to lock the separate 
argument b: 

   put (b : separate QUEUE[T ]; value : T )  
             -- Add value, FIFO-style, to b. 
          do 
   b.put (value) 
          end 

•  Hence the modification of the buffer b.put (value) will 
be executed safely (in mutual exclusion with other 
accesses) 
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Example: dining philosophers in SCOOP 

class PHILOSOPHER inherit 
 PROCESS 
  rename 
          setup as getup 
  redefine step end 

 
feature {BUTLER} 

 step  
  do 
            think ;   eat (left, right) 

           end   
 

 eat (l, r : separate FORK)  
                -- Eat, having grabbed l and r. 

           do … end  
end 
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The separate argument rule 

•  Argument passing is enforced in SCOOP, to protect 
modifications on separate objects 

•  The following rule expresses this: 

•  For example the following code would give an compile 
time error since b is not an argument of put: 

b: separate QUEUE[T] 
 put (value : T)  
         do 
    b.put (value) 
         end 

The target of a separate call  
must be an argument of the enclosing routine 



22 

Condition synchronization in SCOOP 

•  Condition synchronization is provided in SCOOP by 
reinterpreting routine preconditions as wait conditions. 

•  This means that the execution of the body of a routine 
is delayed until its separate preconditions are satisfied 

•  A separate precondition is a precondition that involves a 
call to a separate target. 

put (buf : separate QUEUE[INTEGER] ; v : INTEGER)  
  -- Store v into buffer. 
 require 
  not buf.is_full 
  v > 0 
 do 
  buf.put (v) 
 ensure 
  not buf.is_empty 
 end 

 
 

     Precondition becomes 
wait condition 

Correctness 
condition  
(no wait 
semantics) 
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Wait rule 

•  The behavior of the SCOOP runtime system with 
respect to waiting for a routine application is 
summarized in the following rule: 

A call with separate arguments waits until the 
corresponding objects’ handlers are all available, 
and the separate conditions all satisfied. It 
reserves the handlers for the duration of the 
routine’s execution. 
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SCOOP runtime system: request queues 

•  When a processor makes a separate feature call, it 
sends a feature request. 

•  Each processor has a request queue to keep track of 
these feature requests. 

put (2) 

test (a_buffer: separate BUFFER [INTEGER]) 
  -- Test the buffer ‘a_buffer’. 
 require 
  a_buffer_is_empty: a_buffer.count = 0 
 local 
  l: INTEGER 
 do 
  a_buffer.put (2) 
  a_buffer.put (6) 
  l := a_buffer.item 
  l := a_buffer.item 
 end 

buffer processor 
request queue: put (6) item item 
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SCOOP runtime system: scheduler 

•  Before a processor can process a feature request it 
must: 

•  Obtain the necessary locks 
•  Satisfy the precondition 

•  The processor sends a locking request to a scheduler. 
•  The scheduler keeps track of the locking request. It 

approves locking requests according to a scheduling 
algorithm. 

•  Several scheduling algorithms are possible: 
•  Centralized vs. decentralized 
•  Different levels of fairness 
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SCOOP runtime system: separate callbacks 
class CONSUMER ... 

id: INTEGER 
 
check_id (a_buffer: separate BUFFER [INTEGER]) 

  -- Check whether ‘a_buffer’ has the consumer’s identifier. 
 local 
  l: BOOLEAN 
 do 
  l := a_buffer.has_id (Current) 
 end 

end 

class BUFFER [G] ... 
has_id (a_consumer: separate CONSUMER): BOOLEAN 

  -- Is the identifier of ‘a_consumer’ in the buffer? 
 do 
  Result := area.has (a_consumer.id) 
 end 

end 

The consumer processor waits 
for the query to return.  

Separate callback: the 
buffer processor waits for 

the query to return. 

deadlock 
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SCOOP runtime system: separate callbacks 

•  Solution: 
•  The buffer processor interrupts the consumer 

processor from waiting. 
•  The buffer processor asks the consumer 

processor to execute the feature request right 
away. 

•  How to detect a separate callback? 
•  The consumer processor has a lock on the buffer 

processor. 
•  This means that the consumer processor is 

(potentially) waiting for the buffer processor. 
•  The buffer processor can detect this at the 

moment of the separate callback. 
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What can SCOOP do for us? 

Beat enemy number one in concurrent world: atomicity 
violations 

"  Data races 
"  Illegal interleaving of calls 

 
Data races cannot occur in SCOOP 

"  Why? See computational model ... 
 
Separate call rule does not protect us from bad 

interleaving of calls! 
"  How can this happen? 
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Why SCOOP? 
 

"  Simple (one new keyword) yet powerful 
"  Easier and safer than common concurrent 

techniques, e.g. Java Threads 
"  Full concurrency support 
"  Full use of O-O and Design by Contract 
"  Retains ordinary thought patterns, modeling power 

of O-O 
"  Supports  wide range of platforms and concurrency 

architectures 
"  Programmers need to sleep better! 

 


