
Chair of Software Engineering

Concepts of Concurrent Computation

Bertrand Meyer
Sebastian Nanz	

Lecture 8: SCOOP advanced concepts

2

Today’s lecture

In this lecture you will learn about:

•  Lock passing, a mechanism implemented in SCOOP for

deadlock avoidance
•  The changed semantics of contracts in SCOOP,

especially that of postconditions
•  Inheritance in SCOOP
•  Definition and use of agents (function objects) in

SCOOP
•  The semantics of once functions in SCOOP

3

EiffelSoftware SCOOP capabilities

•  Processor tags: not supported
•  Asynchronous postcondition evaluation: not supported
•  (Deep) Import operation for expanded types: not

supported
•  Lock passing: supported
•  Separate callbacks: not supported
•  Valid feature redeclaration with respect to

separateness: supported
•  Object tests that incorporate processor locality: not

supported
•  Agents: not supported
•  Once routines: supported

Chair of Software Engineering

Lock passing

5

The need for lock passing

r (x: separate X; y: separate Y)
 local

 z: separate ANY

 do

 x ● f

 x ● g (y)

 y ● f

 z := x ● some_query

 end

Waits for y to become available

y is locked by Current

Deadlock: wait for
some_query to finish

6

Lock passing

…

x.f

x.g (y)

…

y.f

Pc Px Py

x.f

x.g (y)

y.f

g (y: separate Y)

 do
 y.f
 …
 …
 …
 end

y.f

7

Lock passing

Ø  If a call x.f (a1, ... , an) occurs in a routine r where one or more
ai are controlled, the client's handler (the processor executing
r) passes all currently held locks to the handler of x, and waits
until f terminates

Ø  When f terminates, the client resumes its computation.

r (x: separate X; y: separate Y)
 local

 z: separate ANY
 do
 x ● f
 x ● g (y)
 y ● f
 z := x ● some_query
 end

Pass locks to g and wait
for g to finish

Synchronous

Synchronous

8

Lock passing combinations

Formal →
↓ Actual

 Attached Detachable

Reference, controlled

Lock passing

no

Reference, uncontrolled

no

no

Expanded

no

no

9

Lock passing: example
class C feature

 x1: X
 z1: separate Z
 c1: separate C
 i: INTEGER

 r (x: separate X; y: separate Y)
 do
 x1.f (5)
 x1.g (x)
 i := x1.h (Current)
 x.f (10)
 x.g (z1)
 x.g (y)
 x.m (y)
 i := x.h (c1)
 i := x.h (Current)
 end
 p (…) do ... end

end

class X feature
 f (i: INTEGER) do ... end
 g (a: separate ANY) do ... end
 h (c: separate C): INTEGER do c.p (...) end
 m (a: detachable separate ANY) do ... end

end

Non-separate, no wait by necessity, no lock passing

Non-separate, no wait by necessity, lock passing (vacuous)
Non-separate, wait by necessity, lock passing (vacuous)

Separate, wait by necessity, lock passing

Separate, no wait by necessity, no lock passing
Separate, no wait by necessity, no lock passing

Separate, no wait by necessity, lock passing
Separate, no wait by necessity, no lock passing

Separate, wait by necessity, no lock passing

Chair of Software Engineering

Contracts

11

Preconditions

•  In sequential context: precondition is correctness
condition

•  In concurrent context: feature call and feature
application do not usually coincide

•  A supplier cannot assume that a property
satisfied at the call time still holds at the
execution time.

12

Preconditions

store (b: separate BUFFER [INTEGER]; i: INTEGER)
 -- Store i in buffer.
 require
 not b l is_full
 i > 0
 do
 b l put (i)
 end

my_buffer: separate BUFFER [INTEGER]
ns_buffer: BUFFER [INTEGER]
…
store (my_buffer, 24)
store (ns_buffer, 24)
my_buffer := ns_buffer
store (my_buffer, 79)

13

Preconditions

•  A precondition expresses the necessary requirements
for a correct feature application.

•  Precondition viewed as synchronization mechanism:
•  A called feature cannot be executed unless the

preconditions holds
•  A violated precondition delays the feature’s

execution
•  The guarantee given to the supplier is exactly the same

as with the traditional semantics.

14

Postconditions

•  A postcondition describes the result of a feature’s
application.

•  Postconditions are evaluated asynchronously; wait by
necessity does not apply.

•  After returning from the call the client can only assume
the controlled postcondition clauses.

15

Postconditions

spawn_two (l1, l2: separate LOCATION)
 do
 l1 l do_job
 l2 l do_job
 ensure
 post_1: l1 l is_ready
 post_2: l2 l is_ready
 end

tokyo, zurich: separate LOCATION

r (l: separate LOCATION)

 do
 spawn_two (l, tokyo)
 do_local_stuff
 get_result (l)
 do_local_stuff
 get_result (tokyo)
 end

…
r (zurich)

Chair of Software Engineering

Inheritance

17

Inheritance

•  Can we use inheritance as in the sequential world?
•  Is multiple inheritance allowed?
•  Does SCOOP suffer from inheritance anomalies?

18

Example: Dining Philosophers

class PHILOSOPHER inherit
 GENERAL_PHILOSOPHER
 PROCESS
 rename
 setup as getup
 undefine
 getup
 end

feature
 step
 -- Perform a philosopher’s tasks.
 do
 think ; eat (left, right)
 end

 eat (l, r: separate FORK)
 -- Eat, having grabbed l and r.
 do … end

end

19

Dining Philosophers
deferred class PROCESS feature

 over: BOOLEAN
 -- Should execution terminate now?
 deferred end

 setup
 -- Prepare to execute process operations.
 deferred end

 step
 -- Execute basic process operations.
 deferred end

 wrapup
 -- Execute termination operations (default: nothing).
 do end

 live
 -- Perform process lifecycle.
 do
 from setup until over loop
 step
 end
 wrapup
 end

end

20

Dining Philosophers

class GENERAL_PHILOSOPHER create
 make

feature -- Initialization
 make (l, r: separate FORK)
 -- Define l as left and r
 -- as right forks.
 do
 left := l
 right := r
 end

class
 FORK

end

feature {NONE} -- Implementation
 left: separate FORK
 right: separate FORK

 getup
 -- Take initialization actions.
 do end

 think
 -- Philosopher’s act.
 do end

end

21

Inheritance

•  Full support for inheritance (including multiple
inheritance)

•  Most inheritance anomalies eliminated thanks to the
proper use of OO mechanisms

22

Inheritance and Contracts

•  Preconditions may be kept or weakened.
•  Less waiting

•  Postconditions may me kept or strengthened.
•  More guarantees to the client

•  Invariants may be kept or strengthened
•  More consistency conditions

•  See Piotr Nienaltowski, Bertrand Meyer, Jonathan S.
Ostroff: Contracts for concurrency. Formal Aspects of
Computing, 21(4): 305-318 (2009); see
se.ethz.ch/~meyer/publications/concurrency/
contracts_for_concurrency.pdf

23

Inheritance: Result type redeclaration (functions)

class C feature
 r (x: X)

 do … end

 s (y: separate Y)

 do … end

end

class A feature
 x: X

 y: separate Y

end

class B

inherit A redefine x, y end

feature

 x: separate X

 y: Y

end

--Would lead to a traitor:
c: C a: A
create {B} a

c . r (a l x)

-- This one is OK:
c: C a: A
create {B} a
c l s (a l y)

•  Result types may be redefined covariantly for functions.
For attributes the result type may not be redefined.

24

Inheritance: formal argument redeclaration

class A feature
 r (x: separate X)
 do … end

s (x: X)

 do … end
end

class B inherit

 A redefine r, s end

feature

 r (x: X)

 do … end

 s (x: separate X)

 do … end

end

-- x could be a traitor:
a: A x: separate X
create {B} a
a l r (x)

-- OK

•  Formal argument types may be redefined
contravariantly w.r.t. processor tags.

25

Inheritance: formal argument redeclaration

class A feature
 r (x: detachable separate X)
 do … end

 s (x: separate X)
 do … end

end

class B inherit

 A redefine r, s end

feature

 r (x: separate X)

 do … end

 s (x: detachable separate X)

 do … end

end

Additional locking for
client: not acceptable

Less locking for
client: acceptable

•  Formal argument types may be redefined
contravariantly w.r.t detachable tags. The client waits
less.

Chair of Software Engineering

Agents

27

What is an agent?

Ø  An agent represents an operation ready to be called.

Ø  Agents can be created by one object, passed to another
one, and called by the latter

x: X
op1: ROUTINE [X, TUPLE]

op1 := agent x l f

op1 l call ([])

28

What is an agent?

•  Arguments can be closed (fixed) or open.

•  They are based on generic classes:

op1 := agent io.put_string (”Hello World!”)
op1.call ([])

op1 := agent io.put_string (?)
op1 l call ([”Hello World!”])

Empty tuple as argument

One-argument tuple

ROUTINE [BASE_TYPE, OPEN_ARGS -> TUPLE]
PROCEDURE [BASE_TYPE, OPEN_ARGS -> TUPLE]
FUNCTION [BASE_TYPE, OPEN_ARGS -> TUPLE, RESULT_TYPE]

29

Use of agents

Object-oriented wrappers for operations
Ø  Strongly-typed function pointers (C++)
Ø  Similar to .NET delegates

Used in event-driven programming
Ø  Subscribe an action to an event type
Ø  The action is executed when event occurs

Loose coupling of software components
Replace several patterns

Ø  Observer
Ø  Visitor
Ø  Model - View – Controller

. . .

30

Problematic agents

•  Which processor should handle an agent? Is it the
target processor or the client processor?

•  Let‘s assume it is the client processor.

x
a1

target

P1 P2

separate reference

non-separate
reference

a1: PROCEDURE [separate ANY, TUPLE]
x: separate X

. . .

a1 := agent x.f

a1.call ([])

Like x.f without locking x
Traitor

31

Let’s make the agent separate!

•  The agent needs to be on the target processor.

x
a1

target

P1 P2

separate reference

non-separate
reference

a1: separate PROCEDURE [X, TUPLE]
x: separate X

. . .

a1 := agent x.f

a1.call ([])

This agent will be handled by x’s processor

Invalid

32

Let’s make the agent separate!

•  No special type rules for separate agents
•  Semantic rule: an agent is created on its target’s

processor
•  Agents pass processors’ boundaries just as other

objects do
 a1: separate PROCEDURE [X, TUPLE]

x: separate X
a1 := agent x.f

call (a1)
call (an_agent: separate PROCEDURE [ANY, TUPLE])

 do
 an_agent.call ([])
 end

 Valid separate call

33

First benefit: convenience

•  Without agents, enclosing routines are necessary for
every separate call.

•  With agents, we can write a universal enclosing routine.

x1: separate X
r (x1)
s (x1)

s (x: separate X)
 do

 x.g (5, ”Hello”)

 end

r (x: separate X)
 do
 x.f
 end

call (agent x1.f); call (agent x1.g (5, ”Hello”))

call (an_agent: separate PROCEDURE [ANY, TUPLE])
 -- Universal enclosing routine.

 do
 an_agent.call ([])

 end

34

Second benefit: full asynchrony

•  Without agents, full asynchrony cannot be achieved

•  With agents it works

x1, y1: separate X
r (x1)
do_local_stuff

r (x: separate X)
 do
 x.f
 end

Blocking
Asynchronous

asynch (agent x1.f)
do_local_stuff

asynch (a: detachable separate PROCEDURE [ANY, TUPLE])

 -- Call a asynchronously.
 do
 . . .
 end

Non-blocking

35

Full asynchrony

The feature asynch can be implemented as follows:

An asynchronous call on a non-separate targets (including
Current) will be executed when the current processor becomes
idle.

asynch (a : detachable separate PROCEDURE [ANY, TUPLE])
 -- Call a asynchronously.

 -- Note that a is not locked.
 local
 executor: separate EXECUTOR
 do
 create executor.make (a)
 launch (executor)
 end

36

Third benefit: waiting faster

•  What if x1 or y1 is busy?
•  What if x1.b is false but y1.b is true?
•  What if evaluation of x1.b takes ages whereas y1.b

evaluates very fast?

x1, y1: separate X

if or_else (x1, y1) then

 . . .
end

or_else (x, y: separate X): BOOLEAN
 do
 Result := x.b or else y.b
 end

37

Waiting faster

parallel_or (a1, a2: detachable separate FUNCTION [ANY, TUPLE, BOOLEAN]): BOOLEAN
 -- Result of a1 or else a2 computed in parallel.

 local

 ans_col: separate ANSWER_COLLECTOR [BOOLEAN]

 do

 create ans_col.make (a1, a2)

 Result := answer (ans_col)

 end

if parallel_or (agent x1.b, agent y1.b) then
 ...

end

answer (ac: separate ANSWER_COLLECTOR [BOOLEAN]): BOOLEAN
 -- Result returned by ac.

 require

 answer_ready: ac.is_ready

 do

 Result ?= ac.answer

 end

38

Agents wrap-up

•  Agents and concurrency
•  Tricky at first; easy in the end
•  Agents built on separate calls are separate
•  Agents treated just like any other object

•  Advantages brought by agents
•  Convenience: “universal” enclosing routine for

single calls
•  Full asynchrony: non-blocking calls
•  Truly parallel wait

Chair of Software Engineering

Once functions

40

Once Functions

•  Similar to constants
•  Always return the same value

•  Lazy evaluation
•  Body executed on first access

•  Once per thread or once per object semantic
•  Examples of use

•  Heavy computations
•  Stock market statistics

•  Common contact point for objects of one type
•  Feature io in class ANY

41

Once functions in a concurrent context

•  Is once-per-system semantics always correct?

•  Separate functions are once-per-system.
•  Non-separate functions are once-per-processor.

local_printer: PRINTER
 once
 printer_pool.item (Current.location)
 end

barrier: separate BARRIER
 once
 create Result.make (3)
 end

