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Today’s lecture 

In this lecture you will learn about: 
 
•  Lock passing, a mechanism implemented in SCOOP for 

deadlock avoidance 
•  The changed semantics of contracts in SCOOP, 

especially that of postconditions 
•  Inheritance in SCOOP 
•  Definition and use of agents (function objects) in 

SCOOP  
•  The semantics of once functions in SCOOP 
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EiffelSoftware SCOOP capabilities 

•  Processor tags: not supported 
•  Asynchronous postcondition evaluation: not supported 
•  (Deep) Import operation for expanded types: not 

supported 
•  Lock passing: supported 
•  Separate callbacks: not supported 
•  Valid feature redeclaration with respect to 

separateness: supported 
•  Object tests that incorporate processor locality: not 

supported 
•  Agents: not supported 
•  Once routines: supported  
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The need for lock passing 

r (x: separate X; y: separate Y) 
 local 

   z: separate ANY 

 do 

   x ● f 

   x ● g (y) 

   y ● f 

   z := x ● some_query 

 end  
 

Waits for y to become available 

y is locked by Current 

Deadlock: wait for 
some_query to finish 
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Lock passing 

… 
 
x.f 
 
x.g (y) 
 
… 
 
y.f 
 
 

Pc Px Py 

x.f 

x.g (y) 

y.f 

 
 
 
 
 
g (y: separate Y) 

 do 
  y.f 
  … 
  … 
  … 
 end 

y.f 
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Lock passing 

Ø  If a call x.f (a1, ... , an) occurs in a routine r where one or more 
ai are controlled,  the client's handler (the processor executing 
r) passes all currently held locks to the handler of x, and waits 
until f terminates 

Ø  When  f terminates, the client resumes its computation. 

r (x: separate X; y: separate Y) 
 local 

  z: separate ANY 
 do 
  x ● f 
  x ● g (y) 
  y ● f 
  z := x ● some_query 
 end 

Pass locks to g and wait 
for g to finish 

Synchronous 

Synchronous 
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Lock passing combinations 

Formal → 
↓ Actual 

 Attached Detachable 

  
Reference, controlled  

  
Lock passing 

 
no 
 

 
Reference, uncontrolled  

 

 
no 

 
no 

 
Expanded 

 

 
no 

 
no 
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Lock passing: example 
class C feature 

 x1: X 
 z1: separate Z 
 c1: separate C 
 i: INTEGER 

 
 r (x: separate X; y: separate Y) 
  do 
   x1.f (5) 
   x1.g (x) 
   i := x1.h (Current) 
   x.f (10) 
   x.g (z1) 
   x.g (y) 
   x.m (y) 
   i := x.h (c1) 
   i := x.h (Current) 
  end 
 p (…) do ... end  

end 
 
 
 

class X feature 
 f (i: INTEGER) do ... end 
 g (a: separate ANY) do ... end 
 h (c: separate C): INTEGER do c.p (... ) end 
 m (a: detachable separate ANY) do ... end 

end 

Non-separate, no wait by necessity, no lock passing 

Non-separate, no wait by necessity, lock passing (vacuous) 
Non-separate, wait by necessity, lock passing (vacuous) 

Separate, wait by necessity, lock passing 

Separate, no wait by necessity, no lock passing 
Separate, no wait by necessity, no lock passing 

Separate, no wait by necessity, lock passing 
Separate, no wait by necessity, no lock passing 

Separate, wait by necessity, no lock passing 
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Preconditions 

•  In sequential context: precondition is correctness 
condition 

•  In concurrent context: feature call and feature 
application do not usually coincide 

•  A supplier cannot assume that a property 
satisfied at the call time still holds at the 
execution time. 
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Preconditions 

store (b: separate BUFFER [INTEGER]; i: INTEGER) 
  --  Store i in buffer. 
 require 
  not b l is_full 
  i > 0 
 do 
  b l put (i) 
 end 
   

my_buffer: separate BUFFER [INTEGER] 
ns_buffer: BUFFER [INTEGER] 
… 
store (my_buffer, 24) 
store (ns_buffer, 24) 
my_buffer := ns_buffer 
store (my_buffer, 79) 
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Preconditions 

•  A precondition expresses the necessary requirements 
for a correct feature application. 

•  Precondition viewed as synchronization mechanism: 
•  A called feature cannot be executed unless the 

preconditions holds 
•  A violated precondition delays the feature’s 

execution 
•  The guarantee given to the supplier is exactly the same 

as with the traditional semantics. 
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Postconditions 

•  A postcondition describes the result of a feature’s 
application. 

•  Postconditions are evaluated asynchronously; wait by 
necessity does not apply.  

•  After returning from the call the client can only assume 
the controlled postcondition clauses. 
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Postconditions 

spawn_two (l1, l2: separate LOCATION) 
 do 
  l1 l do_job 
  l2 l do_job  
 ensure 
  post_1: l1 l is_ready 
  post_2: l2 l is_ready 
 end 
   

 
 
 

tokyo, zurich: separate LOCATION 
 
r (l: separate LOCATION) 

 do 
  spawn_two (l, tokyo) 
  do_local_stuff 
  get_result (l) 
  do_local_stuff 
  get_result (tokyo) 
 end 

… 
r (zurich) 
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Inheritance 

•  Can we use inheritance as in the sequential world? 
•  Is multiple inheritance allowed? 
•  Does SCOOP suffer from inheritance anomalies? 
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Example: Dining Philosophers 

class PHILOSOPHER inherit 
 GENERAL_PHILOSOPHER 
 PROCESS 
  rename 
   setup as getup  
  undefine  
   getup 
  end 

feature 
 step 
   -- Perform a philosopher’s tasks. 
  do 
   think  ;  eat (left, right) 
  end 
  
 eat (l, r: separate FORK) 
   -- Eat, having grabbed l and r. 
  do … end  

end 
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Dining Philosophers 
deferred class PROCESS feature 

 over: BOOLEAN 
   -- Should execution terminate now? 
       deferred end   

 
 setup 
   -- Prepare to execute process operations. 
  deferred end 

 
 step 
   -- Execute basic process operations. 
  deferred end 

   
 wrapup 
   -- Execute termination operations (default: nothing). 
        do   end  

 
 live 
   -- Perform process lifecycle. 
  do 
   from setup until over loop 
    step 
   end 
   wrapup 
  end 

end 
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Dining Philosophers 

class GENERAL_PHILOSOPHER create 
 make 

feature -- Initialization 
 make (l, r: separate FORK) 
   -- Define l as left and r 
   -- as right forks. 
  do 
   left := l 
   right := r 
  end 
   

class 
 FORK 

end 
 

feature {NONE} -- Implementation 
 left: separate FORK 
 right: separate FORK 

 
 getup  
   -- Take initialization actions. 
  do end 
   
 think 
   -- Philosopher’s act. 
  do end 

end 
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Inheritance 

•  Full support for inheritance (including multiple 
inheritance) 

•  Most inheritance anomalies eliminated thanks to the 
proper use of OO mechanisms 
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Inheritance and Contracts 

•  Preconditions may be kept or weakened. 
•  Less waiting 

•  Postconditions may me kept or strengthened. 
•  More guarantees to the client 

•  Invariants may be kept or strengthened 
•  More consistency conditions 

•  See Piotr Nienaltowski, Bertrand Meyer, Jonathan S. 
Ostroff: Contracts for concurrency. Formal Aspects of 
Computing,  21(4): 305-318 (2009); see 
se.ethz.ch/~meyer/publications/concurrency/
contracts_for_concurrency.pdf 
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Inheritance: Result type redeclaration (functions) 

class C feature 
 r (x: X) 

  do … end 

 

 s (y: separate Y) 

  do … end 

end 

class A feature 
 x: X 

 y: separate Y 

end 

 

class B 

inherit A redefine x, y end 

feature 

 x: separate X 

 y: Y 

end 

--Would lead to a traitor: 
c: C  a: A 
create {B} a 

c . r (a l x) 

-- This one is OK: 
c: C    a: A 
create {B} a 
c l s (a l y) 

•  Result types may be redefined covariantly for functions. 
For attributes the result type may not be redefined. 
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Inheritance: formal argument redeclaration 

class A feature 
 r (x: separate X)   
  do … end  

   
  

 
s (x: X) 

  do … end  
end 
 

class B inherit 

 A redefine r, s end 

feature 

 r (x: X) 

  do … end 

 s (x: separate X) 

  do … end    

end 

-- x could be a traitor: 
a: A  x: separate X 
create {B} a 
a l r (x) 

-- OK 

•  Formal argument types may be redefined 
contravariantly w.r.t. processor tags. 
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Inheritance: formal argument redeclaration 

class A feature 
 r (x: detachable separate X)   
  do … end  

   
 s (x: separate X) 
  do … end  

end 
 

class B inherit 

 A redefine r, s end 

feature 

 r (x: separate X) 

  do … end 

 

 s (x: detachable separate X) 

  do … end    

end 

Additional locking for  
client: not acceptable 

Less locking for  
client: acceptable 

•  Formal argument types may be redefined 
contravariantly w.r.t detachable tags. The client waits 
less. 
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What is an agent? 

Ø  An agent represents an operation ready to be called. 

Ø  Agents can be created by one object, passed to another 
one, and called by the latter 

 

x: X 
op1: ROUTINE [X, TUPLE] 

 

op1 := agent x l f  

op1 l call ([]) 
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What is an agent? 

•  Arguments can be closed (fixed) or open. 

•  They are based on generic classes: 

 

op1 := agent io.put_string (”Hello World!”) 
op1.call ([]) 

   
op1 := agent io.put_string (?) 
op1 l call ([”Hello World!”])  

Empty tuple as argument 

One-argument tuple 

ROUTINE [BASE_TYPE, OPEN_ARGS -> TUPLE]   
PROCEDURE [BASE_TYPE, OPEN_ARGS -> TUPLE] 
FUNCTION [BASE_TYPE, OPEN_ARGS -> TUPLE, RESULT_TYPE] 
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Use of agents 

Object-oriented wrappers for operations 
Ø  Strongly-typed function pointers (C++) 
Ø  Similar to .NET delegates 

Used in event-driven programming 
Ø  Subscribe an action to an event type 
Ø  The action is executed when event occurs 

Loose coupling of software components 
Replace several patterns 

Ø  Observer 
Ø  Visitor 
Ø  Model - View – Controller 

. . . 
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Problematic agents 

•  Which processor should handle an agent? Is it the 
target processor or the client processor? 

•  Let‘s assume it is the client processor. 

x 
a1 

target 

P1 P2 

separate reference 

non-separate 
reference 

a1: PROCEDURE [separate ANY, TUPLE] 
x: separate X 

. . .  

a1 := agent x.f 

a1.call ([]) 

Like x.f without locking x 
Traitor 
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Let’s make the agent separate! 

•  The agent needs to be on the target processor. 

x 
a1 

target 

P1 P2 

separate reference 

non-separate 
reference 

a1: separate PROCEDURE [X, TUPLE] 
x: separate X 

. . . 

a1 := agent x.f   

a1.call ([]) 

This agent will be handled by x’s processor 

Invalid  
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Let’s make the agent separate! 

•  No special type rules for separate agents 
•  Semantic rule: an agent is created on its target’s 

processor 
•  Agents pass processors’ boundaries just as other 

objects do 
 a1: separate PROCEDURE [X, TUPLE] 

x: separate X 
a1 := agent x.f 
 
call (a1)    
call (an_agent: separate PROCEDURE [ANY, TUPLE]) 

 do 
    an_agent.call ([]) 
 end 

 Valid separate call 
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First benefit: convenience 

•  Without agents, enclosing routines are necessary for 
every separate call. 

•  With agents, we can write a universal enclosing routine. 

x1: separate X 
r (x1) 
s (x1) 

         

s (x: separate X)  
 do 

  x.g (5, ”Hello”) 

 end 

r (x: separate X)  
 do         
  x.f  
 end 

call (agent x1.f); call (agent x1.g (5, ”Hello”)) 
   

call (an_agent: separate PROCEDURE [ANY, TUPLE]) 
   -- Universal enclosing routine. 

 do 
   an_agent.call ([])   

 end 
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Second benefit: full asynchrony 

•  Without agents, full asynchrony cannot be achieved 

 
•  With agents it works 

 

x1, y1: separate X 
r (x1) 
do_local_stuff  

r (x: separate X)     
 do     
  x.f 
 end 

Blocking  
Asynchronous 

asynch (agent x1.f) 
do_local_stuff  
 
asynch (a: detachable separate PROCEDURE [ANY, TUPLE]) 

  -- Call a asynchronously. 
 do 
  . . .   
 end 

Non-blocking  
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Full asynchrony 

The feature asynch can be implemented as follows: 

 
An asynchronous call on a non-separate targets (including 
Current) will be executed when the current processor becomes 
idle. 

asynch (a : detachable separate PROCEDURE [ANY, TUPLE]) 
      -- Call a asynchronously. 

  -- Note that a is not locked. 
 local 
  executor: separate EXECUTOR 
 do 
  create executor.make (a) 
  launch  (executor)  
 end 
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Third benefit:  waiting faster 

•  What if x1 or y1 is busy? 
•  What if x1.b is false but y1.b is true? 
•  What if evaluation of x1.b takes ages whereas y1.b 

evaluates very fast? 
 

x1, y1: separate X 
 
if or_else (x1, y1) then 

 . . . 
end 

or_else (x, y: separate X): BOOLEAN 
 do     
  Result := x.b or else y.b    
 end 
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Waiting faster 

parallel_or (a1, a2: detachable separate FUNCTION [ANY, TUPLE, BOOLEAN]): BOOLEAN 
  -- Result of a1 or else a2 computed in parallel. 

 local 

  ans_col: separate ANSWER_COLLECTOR [BOOLEAN] 

 do 

  create ans_col.make (a1, a2) 

  Result := answer (ans_col)   

 end 

if parallel_or (agent x1.b, agent y1.b) then 
 ... 

end 

answer (ac: separate ANSWER_COLLECTOR [BOOLEAN]): BOOLEAN 
  -- Result returned by ac. 

 require 

  answer_ready: ac.is_ready  

 do 

  Result ?= ac.answer    

 end 



38 

Agents wrap-up 

•  Agents and concurrency 
•  Tricky at first; easy in the end 
•  Agents built on separate calls are separate 
•  Agents treated just like any other object 

•  Advantages brought by agents 
•  Convenience: “universal” enclosing routine for 

single calls  
•  Full asynchrony: non-blocking calls 
•  Truly parallel wait 
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Once Functions 

•  Similar to constants 
•  Always return the same value 

•  Lazy evaluation 
•  Body executed on first access 

•  Once per thread or once per object semantic 
•  Examples of use 

•  Heavy computations 
•  Stock market statistics 

•  Common contact point for objects of one type 
•  Feature io in class ANY 
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Once functions in a concurrent context 

•  Is once-per-system semantics always correct? 

 
 
•  Separate functions are once-per-system. 
•  Non-separate functions are once-per-processor. 

 

local_printer: PRINTER 
 once 
  printer_pool.item (Current.location) 
 end 

barrier: separate BARRIER  
 once 
  create Result.make (3) 
 end 


