ETH zirich

Chair of Software Engineering

Concepts of Concurrent Computation

Bertrand Meyer
Sebastian Nanz

Lecture 8: SCOOP advanced concepts

©

Today’s lecture

In this lecture you will learn about:

* Lock passing, a mechanism implemented in SCOOP for
deadlock avoidance

« The changed semantics of contracts in SCOOP,
especially that of postconditions

e Inheritance in SCOOP

 Definition and use of agents (function objects) in
SCOQP

« The semantics of once functions in SCOQOP

©

EiffelSoftware SCOOP capabilities

* Processor tags: not supported
 Asynchronous postcondition evaluation: not supported

* (Deep) Import operation for expanded types: not
supported

* Lock passing: supported
 Separate callbacks: not supported

» Valid feature redeclaration with respect to
separateness: supported

« Object tests that incorporate processor locality: not
supported

 Agents: not supported
 Once routines: supported

E’" Ziirich

Chair of Software Engineering

Lock passing

The need for lock passing

r (x: separate X; y: separate Y)

local

y is locked by Current
z: separate ANY

x . f | Waits for y to become available |

x.g (y

y.f Deadlock: wait for
' some_query to finish

Z = X.some_que

do

end

Lock passing

Pc Py Px
x.f
x.f >
x.g (y)
x.g (y) — > g (;/: separate Y)
=" e~ 0
2 < vt APRA §
/ \

Lock passing

> If a call x.f (a;, ..., q,) occurs in a routine r where one or more
a;are controlled, the client's handler (the processor executing
r) passes all currently held locks to the handler of x, and waits

until f terminates
> When f terminates, the client resumes its computation.

r (x: separate X; y: separate Y)

local Pass locks to]g and wai‘r]
|

for g to finish

z: separate ANY

do
x . f “Synchronous]
x-g (y)
y.? ! A_\Synchronous]

Z = X.some_query
end

Lock passing combinations

Formal —-| Attached Detachable
| Actual
Reference, controlled |Lock passing no
Reference, uncontrolled no no
Expanded no no

Lock passing: example

class C feature class X feature
x1: X f (i: INTEGER) do ... end
z1: separate Z g (a: separate ANY) do ... end
cl: separate C h (c: separate C): INTEGER do c.p (...) end
i INTEGER m (a: detachable separate ANY) do ... end
end

r (x: separate X; y: separate Y)

do I Non-separate, no wait by necessity, no lock passing |
x1.f (5

Non-separate, ho wait by necessity, lock passing (vacuous)

x1l.g (x : : :

. 9 (Non-separate, wait by necessity, lock passing (vacuous
i := x1.h (Current) : : :

«.f (10 Separate, no wait by necessity, no lock passin

x.g (z1 Separate, ho wait by necessity, ho lock passin

x.g (y) ,;_,J Separate, no wait by necessity, lock passing |
X.m (y)% Separate, ho wait by necessity, no lock passing |

i = x.h(cl) ——__Separate, wait by necessity, no lock passing |

i := X.h (Current)

end l SeEara‘re, wait bz necessi’rz, lock Eassing |

p(..)do .. end
end

E'" Ziirich

Chair of Software Engineering

Contracts

Preconditions

« Insequential context: precondition is correctness
condition

« In concurrent context: feature call and feature
application do not usually coincide

A supplier cannot assume that a property
satisfied at the call time still holds at the
execution time.

©

11

Preconditions

store (b: separate BUFFER [INTEGER]; i: INTEGER)

-- Store i in buffer.

require
not b.is_full
i>0

do
b.put (i)

end

my_buffer: separate BUFFER [INTEGER]
ns_buffer: BUFFER [INTEGER]

store (my_buffer, 24)
store (ns_buffer, 24)
my_buffer := ns_buffer
store (my_buffer, 79)

12

Preconditions

A precondition expresses the necessary requirements
for a correct feature application.

Precondition viewed as synchronization mechanism:

A called feature cannot be executed unless the
preconditions holds

A violated precondition delays the feature's
execution

The guarantee given to the supplier is exactly the same
as with the traditional semantics.

©

13

Postconditions

» A postcondition describes the result of a feature's
application.

+ Postconditions are evaluated asynchronously; wait by
necessity does not apply.

« After returning from the call the client can only assume
the controlled postcondition clauses.

©

14

Postconditions

spawn_two (I1, 12: separate LOCATION) \
do
11.do_job
|2.do_job
ensure
post_1: I1.is_ready

post_2: |12.is_ready . |
end tokyo, zurich: separate LOCATION \
%& r (I. separa-‘-e LOCATION)
do

spawn_two (I, Tokyo)

do_local_stuff

get_result (1)

do_local_stuff

get_result (tokyo)
end

r (zurich)
15

E’" Ziirich

Chair of Software Engineering

Inheritance

Inheritance

« Can we use inheritance as in the sequential world?
« TIs multiple inheritance allowed?
« Does SCOOP suffer from inheritance anomalies?

©

17

Example: Dining Philosophers

class PHILOSOPHER inherit
GENERAL_PHILOSOPHER
PROCESS
rename
setup as getup
undefine
getup
end
feature
step

-- Perform a philosopher's tasks.

do
think ; eat (left, right)
end

eat (I, r: separate FORK)
-- Eat, having grabbed | and r.

do ... end
end

18

Dining Philosophers

deferred class PROCESS feature
over: BOOLEAN
-- Should execution terminate now?
deferred end

setup
-- Prepare to execute process operations.
deferred end

step
-- Execute basic process operations.
deferred end

wrapup .
-- Execute termination operations (default: nothing).
do end

live
o Perform process lifecycle.
o
from setup until over loop
step
end
wrapu
end PP
end

19

Dining Philosophers

class GENERAL_PHILOSOPHER create \ class
make FORK
feature -- Initialization end
make (I, r: separate FORK)
-- Define |l as left and r
-- as right forks.
do \
left := | feature {NONE} -- Implementation \
right = r left: separate FORK
\ end right: separate FORK
getup
-- Take initialization actions.
do end
think

-- Philosopher's act.

do end
\ end /
20

Inheritance

 Full support for inheritance (including multiple
inheritance)

« Most inheritance anomalies eliminated thanks to the
proper use of OO mechanisms

©

21

Inheritance and Contracts

* Preconditions may be kept or weakened.
Less waiting

* Postconditions may me kept or strengthened.
More guarantees to the client

« TInvariants may be kept or strengthened
More consistency conditions

« See Piotr Nienaltowski, Bertrand Meyer, Jonathan S.
Ostroff: Contracts for concurrency. Formal Aspects of
Computing, 21(4): 305-318 (2009); see
se.ethz.ch/~meyer/publications/concurrency/
contracts for_concurrency.pdf

22

Inheritance: Result type redeclaration (functions) ?

class C feature class A feature
r (x: X) x: X
do .. end y: separate Y
end

s (y: separate V)

do ... end class B
end inherit A redefine x, y end
--Would lead to a traitor: feature
c:C a A \x: separ-a're X W Th'S one is OK-
create {B} a y: Y Zc: C aA
end create {B} a
% C'S (a'Y)

» Result types may be redefined covariantly for functions.
For attributes the result type may not be redefined.

23

Inheritance: formal argument redeclaration

class A feature class B inherit

r (x: separate X) A redefine r, s end

do .. end ¢
-- X could be a ’rrai‘ror:%wre
a: A x: separate X r(x: X)

create {B} a do .. end

s (x: X) a.r (x) s (x: separate X)
.. end
do .. en do ... end
end

end

* Formal argument types may be redefined
contravariantly w.r.t. processor tags.

Inheritance: formal argument redeclaration

class A feature class B inherit
r (x: detachable separate X) A redefine r s end
do .. end
feature
s (x: separate X) r (x: separate X)
do .. end do _ end Additional locking for
end client: not accepfable

s (x: detachable separate X)
do .. end NLZSS locking for

client: acceptable

end

* Formal argument types may be redefined
contravariantly w.r.t detachable tags. The client waits
less.

25

E'" Ziirich

Chair of Software Engineering

Agents

What is an agent?

> An agent represents an operation ready to be called.
X: X
opl: ROUTINE [X, TUPLE]

opl := agent x.f

opl.call ([]1)

> Agents can be created by one object, passed to another
one, and called by the latter

27

What is an agent?

* Arguments can be closed (fixed) or open.
opl := agent io.put_string ("Hello World!")

opl.call ([1) ﬁJ Empty tuple as argument l
opl := agent io.put_string (?)ﬁ One-argument ’ruple\

opl.call (["Hello World!"])

« They are based on generic classes:
ROUTINE [BASE_TYPE, OPEN_ARGS -> TUPLE]

PROCEDURE [BASE_TYPE, OPEN_ARGS -> TUPLE]
FUNCTION [BASE_TYPE, OPEN_ARGS -> TUPLE, RESULT_TYPE]

28

©

Use of agents

Object-oriented wrappers for operations
> Strongly-typed function pointers (C++)
> Similar to .NET delegates
Used in event-driven programming
> Subscribe an action to an event type
> The action is executed when event occurs
Loose coupling of software components
Replace several patterns
> QObserver
> Visitor
> Model - View - Controller

29

Problematic agents

« Which processor should handle an agent? Is it the
target processor or the client processor?

« Let's assume it is the client processor.

Py P,
—
v separate reference
o | >
d — —>
non-separate
reference

Targe‘r /
[—4 al: PROCEDURE [separate ANY, TUPLE]
Traitor
x: separate X

%x.fwi‘rhou’r locking x |

30

al := agent x.f
al.call ([])

Let’s make the agent separate!

The agent needs to be on the target processor.

P, P,
—
> separate reference

I% _—
non-separate
T reference
/ > Tar'geT

al: separate PROCEDURE [X, TUPLE]

x: separate X ‘ This agent will be handled by x's processor |

al := agent x.f

al.call ([]) { Invalid |

31

Let’s make the agent separate!

* No special type rules for separate agents
« Semantic rule: an agent is created on its target's
processor

» Agents pass processors’ boundaries just as other
objects do

al: separate PROCEDURE [X, TUPLE]
x: separate X
al := agent x.f

call (al)
call (an_agent: separate PROCEDURE [ANY, TUPLE])

do

an_agent.call ([1) <! Valid separate call

end

32

First benefit: convenience

Without agents, enclosing routines are necessary for

every separate call.
x1: separate X

r (x1)
s (x1)

r (x: separate X) S (x: separate X)
do do

x.f x.g (5, "Hello")

end end

With agents, we can write a universal enclosing routine.

call (agent x1.f); call (agent x1.g (5, "Hello"))

call (an_agent: separate PROCEDURE [ANY, TUPLE])
-- Universal enclosing routine.
do
an_agent.call ([])
end

33

Second benefit: full asynchrony

Without agents, full asynchrony cannot be achieved

x1, yl: separate X r (x: separate X)

r(x1) Blocking do

do_local_stuff x.f Asynchronous
end

With agents it works
asynch (agent x1.f)

do_local_stuff ogsolecking

asynch (a: detachable separate PROCEDURE [ANY, TUPLE])

-- Call a asynchronously.
do

end
34

Full asynchrony

The feature asynch can be implemented as follows:

asynch (a: detachable separate PROCEDURE [ANY, TUPLE])

-- Call a asynchronously.
-- Note that ais not locked.

local
executor: separate EXECUTOR

do
create executor.make (a)
launch (executor)

end

An asynchronous call on a non-separate targets (including
Current) will be executed when the current processor becomes
idle.

35

Third benefit: waiting faster

x1, yl: separate X or_else (x, y: separate X): BOOLEAN
do

if or_else (x1, y1) then Result := x.b or else y.b
end

end

» What if x1 or yl is busy?
* What if x1.b is false but yl.b is true?

* What if evaluation of x1.b takes ages whereas yl1.b
evaluates very fast?

36

Waiting faster

if parallel_or (agent x1.b, agent yl1.b) then

end

parallel_or (al, a2: detachable separate FUNCTION [ANY, TUPLE, BOOLEAN]): BOOLEAN
-- Result of al or else a2 computed in parallel.
local
ans_col: separate ANSWER_COLLECTOR [BOOLEAN]
do
create ans_col.make (al, a2)
Result := answer (ans_col)
end
answer (ac: separate ANSWER_COLLECTOR [BOOLEAN]): BOOLEAN
-- Result returned by ac.
require
answer_ready: ac.is_ready
do
Result ?= ac.answer

end

37

Agents wrap-up

« Agents and concurrency
Tricky at first; easy in the end
Agents built on separate calls are separate
Agents treated just like any other object

- Advantages brought by agents

Convenience: "universal” enclosing routine for
single calls

Full asynchrony: non-blocking calls
Truly parallel wait

©

38

E-'" Ziirich

Chair of Software Engineering

Once functions

Once Functions

« Similar to constants
Always return the same value
« Lazy evaluation
Body executed on first access
* Once per thread or once per object semantic
« Examples of use
Heavy computations
« Stock market statistics
Common contact point for objects of one type
« Feature io in class ANY

©

40

Once functions in a concurrent context

Is once-per-system semantics always correct?

barrier: separate BARRIER local_printer: PRINTER
once once
create Result.make (3) printer_pool.item (Current.location)
end end

Separate functions are once-per-system.
Non-separate functions are once-per-processor.

41

