
DO IT WITH STYLE – A Guide to the Eiffel Style

The following text is a summary of chapter 26 of Bertrand Meyer’s book
Object-Oriented Software Construction, second edition. The whole chapter is
available on http://archive.eiffel.com/doc/manuals/language/style/style.pdf.

If you have any corrections or comments, please send an e-mail to Marcel
Kessler (kesslema@student.ethz.ch).

CHOOSING THE RIGHT NAMES

• For feature and class names, use full words, not abbreviations, call
number, not num.

• Do not hesitate to use several words connected by underscores, as in
ANNUAL_RATE.

• For features, there is seldom a need for more than two or possibly three
underscore-connected words.

• Do not include in a feature name the name of the underlying data
abstraction (which should serve as the class name).

o The feature giving the part number in class PART should be
called just number, not part_number.

• Sometimes, every instance of a certain class contains a field
representing an instance of another class. Although you should try to
find a more specific name, you may, if this fails, just declare the feature
as rate: RATE.

• Local entities and arguments of a routine only have a local scope, so
they do not need to be as evocative.

move (i: INTEGER) is

-- Move cursor i positions, or after if i is too large.
local

c: CURSOR; counter: INTEGER; p: like FIRST_ELEMENT
…

remove is
-- Remove current item; move cursor to right neighbor.

local
succ, pred, removed: like first_element

…

• If succ and pred had been features they would have been called
successor and predecessor.

Letter case

• Class names appear in all upper case: POINT, LINKED_LIST…

http://archive.eiffel.com/doc/manuals/language/style/style.pdf
mailto:kesslema@student.ethz.ch

• Names of attributes, routines etc. appear in all lower case: balance,
deposit, succ, i.

• Constant attributes have their first letter in upper case and the rest in
lower lower case: Pi: INTEGER is 3.1415926524; Welcome_message:
STRING is "Welcome!"

• A few reserved words are written with an initial upper case since they
are similar to constants, they include Current, Result, Precursor, True
and False.

Grammatical categories

• For class names, you should always use a noun, possibly qualified as in
LONG_TERM_SAVINGS_ACCOUNT.

• Routine names should faithfully reflect the Command-Query separation
principle:

o Procedures (commands) should be verbs in the infinitive or
imperative: make, move, deposit, set_color.

o Attributes and functions (queries) should never be imperative or
infinitive verbs; never call a query get_value, but just value.

• Non-boolean query names should be nouns, such as number.
• A frequent convention for boolean queries is the is_ form, as in

is_empty.

HEADER COMMENTS AND INDEXING CLAUSES
Instead of the long comment in
tangent_from (p: POINT): LINE is

-- Return the tangent line to the circle going through the point p,
-- if the point is outside of the current circle.

require
outside_circle: not has (p)

…
just write
 -- Tangent from p.
because of the following reasons:

• The comment for a query, as here, should not start with “Return the…”
or “Compute the…”. Simply name what the query returns, typically
using a qualified noun.

• We can get rid of the auxiliary words, especially the, where they are not
required for understandability.

• Another mistake is to have used the words line to refer to the result and
point to refer to the argument: this information is immediately obvious
from the declared types, LINE and POINT.

• Header comments for commands (procedures) should end with a period.

For boolean-valued queries, the comment should always be in the form of a
question, terminated by a question mark:

has (v: G): BOOLEAN is
-- Does `v’ appear in list?

…
• Software entities — attributes, arguments — appearing in comments in

the source text should always appear between an opening quote
(“backquote”) and a closing quote.

Because an exported attribute should be externally indistinguishable from
argumentless functions — remember the Uniform Access principle — it should
also have a comment:

count: INTEGER
-- Number of students in course

TEXT LAYOUT AND PRESENTATION
The textual layout of the notation follows a comb-like structure; the idea is
that a syntactically meaningful part of a class, such as an instruction or an
expression, should either:

• Fit on a line together with a preceding and succeeding operators.
• Be indented just by itself on one or more lines.

if c then a else b end

or
if

c
then

a
else

b
end

or
if c then

a
else b end

Spaces
You will use a space:

• Before an opening parenthesis, but not after: f (x).
• After a closing parenthesis unless the next character is a period or

semicolon; but not before. Hence: proc1 (x); x := f1 (x) + f2 (y).
• After a comma but not before: g (x, y, z).

Spaces should appear before and after arithmetic operators, as in a + b.

A layout example

indexing

description: "Example for formating"
class

EXAMPLE
 inherit

MY_PARENT
redefine f1, f2 end

MY_OTHER_PARENT
rename

g1 as old_g1, g2 as old_g2
redefine

g1
select

g2
end

create
make

feature -- Initialization
make is

-- Do something.
require

some_condition: correct (x)
local

my_entity: MY_TYPE
do

if a then
b; c

else
other_routine
new_value := old_value / (max2 – max1)

end
end

feature -- Access
my_attribute: SOME_TYPE

-- Explanation of its role (aligned with comment for make)
…

invariant
upper_bound: x <= y

end

