
Software Architecture Exercise: Design Patterns 

1. Write classes that represent a file system. It should at least contain 
two classes: FOLDER and FILE. Both classes define queries name 
and size. The size of objects of type FILE should store its size as an 
attribute, while the size of objects of type FOLDER calculate it as 
the sum of all recursively included file sizes. A folder may contain 
other folders or files. Your implementation should make sure the 
folder hierarchy is a tree structure (no cycles and every element is 
contained by at most one folder) and should use one of the variants 
of the composite pattern. 

 

 
 
 

2. Add an attribute is_text_file: BOOLEAN to the FILE class. Use a 
visitor pattern to count the number of text files in your hierarchy. 
(You may need to adapt the FOLDER and FILE classes). 

 



 
 

3. Support both NTFS and EXT files and folders. Use the abstract 
factory pattern to make clients’ creation of files and folders 
independent of the file system type. Let NTFS_FACTORY create 
NTFS files and folders, and EXT_FACTORY create EXT files and 
folders. Every factory creates products (files and folders) of one 
family (NTFS or EXT), so mixing products of incompatible families 
will not happen frequently. 

 

 


