1 ADT: Map

A map (also called associative array) is a collection of unique keys and a collection of values, where each key is associated with a single value. Supported operations are:

- creating an empty map;
- querying whether a map contains a given key;
- lookup of a value associated with a given key, if the key is present;
- inserting a key and a value to be associated with it, if the key is *not* already present;
- removing a key (together with the associated value), if the key is present.

Design an abstract data type MAP that corresponds to the specification given above.

TYPES

MAP [K, V]

FUNCTIONS

- new: MAP[K, V]
- $has(m,k): MAP[K,V] \times K \rightarrow BOOLEAN$
- $item(m,k): MAP[K,V] \times K \not\rightarrow V$
- put(m, k, x): $MAP[K, V] \times K \times V \not\rightarrow MAP[K, V]$
- $\bullet \ remove(m,k) \colon MAP[K,V] \times K \not\to MAP[K,V]$

PRECONDITIONS

```
P1 item(m, k) require has(m, k)
```

P2 put(m, k, x) require $\neg has(m, k)$

P3 remove(m, k) require has(m, k)

AXIOMS

```
A1 \neg has(new, k)
```

A2 has(put(m, k, x), k)

A3 has(put(m, k, x), l) = has(m, l), if $l \neq k$

A4 $\neg has(remove(m, k), k)$

A5 has(remove(m, k), l) = has(m, l), if $l \neq k$

A6 item(put(m, k, x), k) = x

A7 $item(put(m, k, x), l) = item(m, l), if <math>l \neq k \land has(m, l)$

A8 $item(remove(m, k), l) = item(m, l), if <math>l \neq k \land has(m, l)$

1.1 Proof of sufficient completeness

Prove that your ADT is sufficiently complete.

For all terms T of type MAP there exist resulting terms not involving any functions of the ADT when evaluating has(T, k) and item(T, k).

Induction basis

For all creators above holds.

• $has(new, k) \stackrel{A1}{=} False$

We don't have to check item(new, k), because the precondition is never satisfied.

Induction hypothesis

Assume for any T_{sub} being a subterm of T that this is true.

Induction step

• For $T = put(T_{sub}, k, x)$:

$$has(put(T_{sub}, k, x), l) = \begin{cases} \stackrel{A2}{=} True & \text{if } k = l\\ \stackrel{A3}{=} has(T_{sub}, l) & \text{if } k \neq l \end{cases}$$

$$item(put(T_{sub}, k, x), l) = \begin{cases} \stackrel{A6}{=} x \text{ if } k = l\\ \stackrel{A7}{=} item(T_{sub}, l) \text{ if } k \neq l \land has(T_{sub}, l) \end{cases}$$

• For $T = remove(T_{sub}, k)$:

$$has(remove(T_{sub}, k), l) = \begin{cases} \stackrel{A4}{=} False \text{ if } k = l\\ \stackrel{A5}{=} has(T_{sub}, l) \text{ if } k \neq l \end{cases}$$

$$item(remove(T_{sub}, k), l) \stackrel{A8}{=} has(T_{sub}, l) \text{ if } k \neq l \land has(T_{sub}, l)$$