
The following is the feature duplicate and some other features from class 

TWO_WAY_SORTED_SET, which is a set containing an internal iterator. Try  to devise a set of 

test cases such that:  

(1) All branches in duplicate are covered. 

(2) All clauses in duplicate are covered. 

(3) Try to devise a test case to reveal a bug in duplicate. Hint: analysis the preconditions of the 

given features. Is this test case included in the test suite you devised in (1) or (2)? What do you 

think about the used coverage criteria? 

 

duplicate (n: INTEGER): like Current 

             -- Copy of sub-set beginning at cursor position 

             -- and having min (`n', `count' - `index' + 1) items 

      local 

             pos: CURSOR 

             counter: INTEGER 

      do 

            pos := cursor;  Result := new_chain;  Result.finish;  Result.forth 

            from  until (counter = n) or else after loop 

                       Result.put_left (item) 

                       forth 

                       counter := counter + 1 

            end 

            go_to (pos) 

    end 

item: G 

                    -- Current item 

            require         

                     not_off: not off 

forth 

         -- Move cursor to next position, if any. 

      require 

         not_after: not after 

     ensure 

        moved_forth: index = old index + 1 

 

off: BOOLEAN 

            -- Is there no current item? 

        ensure 

            Result = after or before 



Solution 

(1)  There is only one branching statement, which is the loop. 

s: TWO_WAY_SORTED_SET [INTEGER] 

create s. make 

s.extend (1) 

s.start 

s.duplicate (10) 

 

(2)  There are two clauses, namely, counter = n, after. We need to come up with test cases 

triggering both True and False for all the clauses. 

TC1: counter=n: True/False 

s: TWO_WAY_SORTED_SET [INTEGER] 

create s. make 

s.extend (1) 

s.extend (2) 

s.start 

s.duplicate (1) 

 

TC2: after: True/False 

s: TWO_WAY_SORTED_SET [INTEGER] 

create s. make 

s.extend (1) 

s.start 

s.duplicate (10) 

(3) 

s: TWO_WAY_SORTED_SET [INTEGER] 

create s. make 

s.duplicate (1) – calling duplicate when `s’ is before will violates the precondition of item in the 

first iteration of the loop body. 

Both the branch coverage and clause coverage may miss this case, thus, they are weak. 

 

 


