ETH

Eidgendssische Technische Hochschule Ziirich
Swiss Federal Institute of Technology Zurich

Chair of Software Engineering
Bertrand Meyer

Software Architecture

4. July 2005

NaME, FirSt NaAmME: oo aee

| confirm with my signature, that | was able to take this exam under regular
conditions and that | have read and understood the instructions below.

SIGNATUME: e

Instructions:

e Except for a dictionary you are not allowed to use any supplementary
material.

e Use a pen (not a pencil)!

e Please write your legi number onto each sheet.

e Write your solutions directly onto the exam sheets. If you need more
space for your solution ask your supervisor for more sheets. You are not
allowed to use your own paper.

e Only one solution can be handed in per question. Invalid solutions need to
be crossed out clearly.

e Please write legibly! We will only correct solutions that we can read.

e Manage your time carefully (take into account the number of points for
each question).

e Please immediately tell the supervisors of the exam if you feel disturbed
during the exam.

Good Luck!

Number of Points
possible points
1 10
2 18
3 15
4 7
5
6
T

17
20
otal 87

(= (o [T TR

1 Software Quality Principles (10 Points)

1.1 Correctness vs. Robustness (3 Points)
Define Software Correctness:

Give an example illustrating the difference between Software Robustness and
Correctness:

1.2 External quality factors (3 Points)

Software Correctness and Software Robustness are two external quality factors. List
four more external quality factors (no explanation of the factors required):

1.3 Principles (4 Points)

Typically a DVD-Player only has a few buttons on the case and does not allow modifying
the internal parameters of the electronic device. What modularity principle does this
reflect? Explain the advantage of applying this principle.

NamMe Of PrINCIPIE: ... e s s e e e e e s e s e e e e e e e e anns

Explanation of advantage: ...

2 Design by Contract (18 Points)

2.1 True or false (8 Points)

Consider the following statements. For each of the statements tell whether it is true or
false by writing “T” for true or “F” for false.

Answer

Statement

Contracts of software elements are explicit declarations of the element’s goal
that are stored separately from the software element.

Preconditions are obligations for the client but benefits for the supplier.

The class invariant must be satisfied before and after object creation and
before and after qualified feature calls.

Preconditions only have to hold for qualified feature calls.

A descendant class may strengthen but not weaken a postcondition.

A postcondition violation is a bug in the client.

The invariant of a class automatically includes the invariant clauses from all its
parents, “or’-ed (disjunction).

The execution of a rescue clause must re-establish the class invariant unless
it re-triggers the exception.

2.2 Class completion (10 Points)

Consider the class COFFEE_MACHINE below. Complete the creation procedure make
and provide all preconditions, postconditions, and invariants. Use the given lines,
but note that the number of lines provided does not indicate the number of lines of code
required. Make sure that your implementation achieves the following coffee machine
operating modes:

e One can only refill coffee or water if the coffee container or water tank is not
completely filled up.
e One can only brew a coffee or espresso if there is enough coffee and water.

class
COFFEE_MACHINE

create
make

feature -- Initialization
make is

-- Create a new coffee machine.
do

feature -- Access

container_capacity: INTEGER is 20
-- Maximal number of units the coffee container can contain

tank_capacity: INTEGER is 20
-- Maximal number of units the water tank can contain

coffee_units: INTEGER is 2
-- Amount of coffee units needed to brew a coffee

espresso_units: INTEGER is 1
-- Amount of coffee units needed to brew an espresso

coffee_water: INTEGER is 2
-- Amount of water units needed to brew a coffee

espresso_water: INTEGER is 1
-- Amount of water units needed to brew an espresso

feature -- Measurement

coffee_in_container: INTEGER
-- Number of coffee units in container

water_in_tank: INTEGER
-- Number of water units in tank

feature -- Element change
refill_coffee is
-- Refill coffee container.
require

do
coffee_in_container := container_capacity
ensure

refill_water is
-- Refill water tank.
require

do
water_in_tank := tank_capacity
ensure

feature -- Basic operations
brew_coffee is
-- Brew coffee.
require

do
coffee_in_container := coffee_in_container - coffee_units
water_in_tank := water_in_tank - coffee_water

ensure

brew_espresso is
-- Brew espresso.
require

do
coffee_in_container := coffee_in_container - espresso_units
water_in_tank := water_in_tank - espresso_water

ensure

3 Inheritance (15 Points)

Assume we have the following inheritance hierarchy that describes the classes used for
a movie and video game rental place. A RENTABLE is an item that can be rented by a
customer of the rental company.

title, rented, output

RENTABLE

director,
ourput*

platform,
outputt

code, outputt

3.1 Polymorphic assignments (6 Points)

Furthermore assume that we have declared the following variables:
video_game: VIDEO_GAME
dvd: DVD_MOVIE
rentable: RENTABLE
vhs: VHS_MOVIE
movie: MOVIE

For each of the following assignment instructions write a “T” if and only if it is valid
according to the rules of type conformance and general syntax requirements of Eiffel. If it
is invalid write an “F”.

Answer | Assignment instruction

video_game = rentable

dvd := movie

rentable := movie

rentable := dvd

movie := vhs

movie := video_game

3.2 Implementation (6 Points)
Below you see the class text of RENTABLE. Read through it carefully.

class RENTABLE

create
make

feature -- Initialization

make (an_id: like id; a_title: like title) is
-- Instantiate object with "a_title' and "an_id".
require
an_id_valid: an_id >0
a_title_valid: a_title /= Void and then not a_title.is_empty

do
id :=an_id
title := a_title
ensure
id set:id=an_id
title_set: title = a_title
end

feature -- Access

id: INTEGER
-- |ID number

title: STRING
-- Title

rented: BOOLEAN
-- |s the item rented out?

feature -- Basic operations

outputis
-- Output information on this item.
do
io.put_string (id.out + "%N")
io.put_string (title + "%N")
end
invariant
id_valid: id >0

title_valid: title /= Void and then not title.is_empty

end

10

Fill in the text below that is needed to override the feature output in the classes MOVIE
and DVD_MOVIE. Read the comments of output to see what information should be
written onto the console. Try to write the features as concisely as possible.

class MOVIE inherit
L AV AN = 1 I TR

create
make_with_director

feature -- All features

make_with_director (an_id: like id; a_title: like title; a_director: like director) is
-- Instantiate object with "a_title', "an_id"' and "a_director'.
require
an_id_valid: an_id >0
a_title_valid: a_title /= Void and then not a_title.is_empty
a_director: a_director /= Void and then not a_director.is_empty
do
make (an_id, a_title)
director := a_director
ensure
id set:id=an_id
title_set: title = a_title
director_set: director = a_director
end

director: STRING
-- Director of this movie

outputis

-- Output information on current movie.
-- (First output the id and a line break. Then write the title and on a
-- new line output the name of the director followed by a line
-- break.)

do

end

invariant

director_valid: director /= Void and then not director.is_empty

end

11

class DVD_MOVIE inherit

create make_with_code
feature -- All features

make_with_code (an_id: like id; a_title: like title;
a_director: like director; a_code: like code) is
-- Instantiate object with "a_title', "an_id', "a_director' and "a_code'".
require
an_id_valid: an_id >0
a_title_valid: a_title /= Void and then not a_title.is_empty
a_director: a_director /= Void and then not a_director.is_empty
code_valid: code >= 0 and code <= 6
do
make_with_director (an_id, a_title, a_director)
code := a_code
ensure
id set:id=an_id
title_set: title = a_title
director_set: director = a_director
code_set: code = a_code
end

code: INTEGER
-- Region code of dvd

outputis
-- Output information on current movie.
-- (First output the id and a line break. Then write the title and on a
-- new line output the code followed by a line break.)
do
end
invariant

code_valid: code >= 0 and code <= 6

end

12

3.3 Dynamic binding (3 Points)

Give the exact output (i.e. the lines that are displayed in the console window) as a result
of executing the following feature make.

make is
-- Cration procedure.
local
dvd: DVD_MOVIE
vhs: VHS_MOVIE
movie: MOVIE
do
create dvd.make_with_code
(1, "House of Flying Daggers", "Yimou Zhang", 1)
create vhs.make_with_director
(2, "Hero", "Yimou Zhang")
create movie.make_with_director
(3, "Spiderman 2", "Sam Raimi")
movie.output
movie = vhs
movie.output
dvd.output
end

13

4 Adding good contracts to an existing design pattern
(7 points)
The Chain of Responsibility pattern addresses situations where several objects may

possibly handle a client request but one does not know in advance which object will
eventually treat the request.

The Chain of Responsibility in detail:
Here is the class diagram of a typical application using the Chain of Responsibility:
* ﬂ @ Class A

HANDLER
@ Deferred class

APPLICATION =

handle y § .

can_handle* @ Effective class

dO_handIe* f Feature f

handled f*

set_next Deferred feature f

next f+ Effective feature f
can_handle+ can_handle+ T Inherits from
do_handle+ do_handle+ = Is a client of

+ +
AR HANDLER?

The APPLICATION sends a request to a HANDLER. A handler belongs to a chain of
handlers (the “chain of responsibility”). For example:

next ——f

(Void)

A

next

(HANDLERT) (HANDLER?2)

If the handler receiving the request (HANDLERL1 in the previous diagram) does not
know how to process this request, it simply forwards the request to its neighbor. The
neighbor may be able to handle the request; if yes, it handles it, otherwise it passes
the request again to the next handler on the chain. The request follows the “chain of
responsibility” until one HANDLER is able to handle the request (the HANDLER?2 in the
previous picture). Only one object handles the request.

A HANDLER only needs to know the next handler on the chain; it does not
need to know which handler will process the request in the end. Hence less coupling
between objects and more flexibility. It is also easy to change responsibilities or add or
remove potential handlers from a chain because other objects do not know which
handler will eventually take care of the request.

There is no guarantee that a request gets handled in the end. There may be no
handler with the right qualification to handle a special request. The boolean query
handled gives clients the ability to check whether their requests have been processed.

14

Contracts play an important role in implementing the Chain of Responsibility pattern:
e They express that some objects can_handle requests and others cannot;
e They provide some information to clients through query handled.

The goal of this exercise is to equip the class HANDLER with the appropriate contracts.
To do:

Add contracts (preconditions, postconditions) to the following class HANDLER.
Note: There is exactly one assertion clause missing per dotted line.

deferred class
HANDLER [G]-- G represents a request.
feature {NONE} -- Initialization

make (a_successor: like next) is
-- Set "next' to "a_successor'.
do
next := a_successor
ensure

feature -- Access
next: HANDLER [G]
-- Successor in the chain of responsibility

feature -- Status report

can_handle (a_request: G): BOOLEAN is
-- Can current handle "a_request'?
deferred
end

handled: BOOLEAN
-- Has request been handled?

feature -- Element change
set_next (a_successor: like next) is
-- Set "next' to "a_successor'.
do

next := a_successor
ensure

15

feature -- Basic operation

handle (a_request: G) is

-- Handle "a_request' if ‘can_handle' otherwise forward it to “next'.
-- If "next' is void, set "handled' to False.

do
if can_handle (a_request) then
do_handle (a_request)
handled := True
else
-- Cannot handle request.
if next /= Void then
-- Forward it to next handler.
next.handle (a_request)
handled := next.handled
else
-- Request not handled.
handled := False
end
end
ensure
end

feature {NONE} -- Implementation

do_handle (a_request: G) is
-- Handle "a_request'.
require

deferred
end

end

16

5 Genericity (17 Points)

In this task you are asked about the differences between two list classes. Then you have
to complete the interface of a class HASH_TABLE and a class LIST. Finally, you have to
decide if the given Eiffel statements compile or not.

5.1 Two lists (4 Points)

Consider the following two classes:
class LIST _1[G]

feature {NONE} -- Implementation
storage: ARRAY [G]

end

class LIST 2

feature {NONE} -- Implementation
storage: ARRAY [ANY]

end

For each of the following statements write one of: “L1” if it is true for LIST_1; “L2” if it is
true for LIST_2; “L1, L2” if it is true for both.

Answer | Statement

Is a generic class.

Is client of a generic class.

Can be used as a container for objects of types conforming to ANY.

Can be restricted to store a list of objects of types conforming to
STRING only.

17

5.2 Fill in the types (8 Points)

Have a look at the following two partial class interfaces. Class HASH_TABLE represents
data structures where arbitrary objects (G) can be associated with hashable objects (H).
Class LIST represents a list of which no specific representation is known. In both class
interfaces type names have been replaced with (a dotted line). Fill in the
missing type information.

class interface HASH_TABLE [G, H -> HASHABLE]

feature
has_item (V:ooovvvvviininnnn.)
-- Does structure include value "v'?
item (K: .o,)
-- Entry of key 'K’
require
valid_key: valid_key (k)
valid_key (K: ...coooeviiiiiiennnnnns)
- Is k' a valid key?
PUL (Vi eeeriiiieeeeeeeee e, T K)
-- Assomate value V' with key “k'.
require
valid_key: valid_key (k)
ensure
associated: item (k) = v
end

class interface LIST [G]

feature
has (Vi ..ooooeviciiiee)
-- Does structure include "v'?
item: ...,
-- Iltem at current cursor position
require
not_off: not off
count: .ooveeeeeeiiiiiiis
-- Number of items in structure
IS_empty: cooovveeeeeeeeeeeenn,

18

-- |s structure empty?

Offi e
-- Is there no current item?
force (Vi .o)
-- Add 'V' to end.
ensure
new_count; count = old count + 1
item_inserted: has (v)
append (S: .ccooeevvrrrrnnnenenen.)
-- Append a copy of list 's'.
require
argument_not_void: s /= Void
ensure

new_count: count >= old count

end

19

5.3 Type checking (5 Points)

Given are the two classes from question 5.2 and the following local variables:

table: HASH_TABLE [INTEGER, STRING]
list: LIST [STRING]

(Note that class STRING inherits from class HASHABLE.)

For each of the following statements specify if it will compile or not. If it will not compile
explain why not:

BblepUt (3, Mooy

bleput (Istitem, 3)

BblepUt (3, listitom)

list.force (table.has ("bar"))

fstforce (@ble.tem (tbarry)

20

6 Abstract Data Type (20 points)

6.1 Terminology (6 points):

For each of the following statements write a “T” if it is true or write an “F” if it is false.

Answer | Statement

An ADT may be defined by functions, axioms and preconditions. The
axioms and preconditions express the syntax of a type.

An ADT specification is a formal, mathematical description specifying a
set of functions applicable to the instances of the type specified.

An ADT is used to provide a basis for modularizing software with
information hiding.

Object-oriented software construction is the construction of software
systems as structured collections of (possibly partial) abstract data
type implementations.

An ADT is a way of separating the specification and representation of
data types. The actual implementation is not defined, and does not
affect the use of the ADT.

Total functions provide a convenient mathematical model to describe
operations which are not always defined. Each operation has a
precondition, stating the condition under which the operation will yield a
result for any particular candidate argument.

21

6.2 Write an ADT (8 points)

Given is the following partial interface of class ARRAY [G]. Note that contracts are
omitted, but partially suggested by header comments.

Creation procedures:

make (I, u: INTEGER)
-- Create a new array with the lower bound 'I' and the upper bound "u’.
-- "I’ must be smaller or equal than "u’.

Exported features:

lower: INTEGER
-- Lower bound

upper: INTEGER
-- Upper bound

item (i: INTEGER): G
-- Value at index 'i’;
-- "I must be between “lower’ and ‘upper’ (inclusive).

put (v: G; i: INTEGER)
-- Replace value at index "’ with "v’.
-- "I must be between “lower’ and ‘upper’ (inclusive).

We assume that a newly created array has all its items initialized to the constant
default_value. You may use default_value in your ADT without specifying it.

Write an ADT specification for this concept of array. An ADT specification for the concept

of queue, as seen in the exercise, appears below and serves as illustration of the ADT
notation; use the same notation to express your answer.

22

TYPES
QUEUE [G]

FUNCTIONS
put: QUEUE [G] x G — QUEUE [G]
remove: QUEUE [G] -|— QUEUE [G]
item: QUEUE [G] —-|— G
empty: QUEUE [G] — BOOLEAN
new: QUEUE [G]

AXIOMS
For any x: G, q: QUEUE [G]
item (put (g, X)) = item (q) if not empty (q)
{] x if empty (q)
remove (put (q, X)) = put (remove (q), X) if not empty (q)
ﬂq if empty (a)

empty (new)
not empty (put (g, x))
PRECONDITIONS
remove (g: QUEUE [G]) require not empty (q)
item (g: QUEUE [G]) require not empty (q)

23

24

6.3 Sufficient completeness (6 points)

Assume that someone asks you to prove that you ADT specification, as obtained in task
6.2, is “sufficiently complete”. What properties would you have to prove? (You are not
asked in this task to do the proof, only to state what properties you would have to prove.)

25

