Software Architecture Exam

Summer Semester 2006
Prof. Dr. Bertrand Meyer
Date: 5 July 2006

Family name, first Name:coooiiiiiiiiiieiiiiiiiee e
SEUAENt NUIMDET: ooiiiiiiiiiii e e e e e e

I confirm with my signature, that I was able to take this exam under regular
circumstances and that I have read and understood the directions below.

STGNATUTE! .evitiiiieiee et e e

Directions:
e Exam duration: 90 minutes.

e Except for a dictionary you are not allowed to use any supplementary
material.

e Use a pen (not a pencil)!
e Please write your student number onto each sheet.

e All solutions can be written directly onto the exam sheets. If you need
more space for your solution ask the supervisors for a sheet of official
paper. You are not allowed to use other paper.

e Only one solution can be handed in per question. Invalid solutions need
to be crossed out clearly.

e Please write legibly! We will only correct solutions that we can read.

e Manage your time carefully (take into account the number of points for
each question).

e Don’t forget to add comments to features.

e Please immediately tell the supervisors of the exam if you feel disturbed
during the exam.

Good luck!

ETHZ D-INFK
Prof. Dr. B. Meyer Software Architecture — Exam

Question | Number of possible points | Points
1 9
2 9
3 22
4 18
5

6

10
21

1 Design by Contract, software lifecycle model,
configuration management (9 points)

Put checkmarks in the checkboxes corresponding to the correct answers. Multi-
ple correct answers are possible; there is at least one correct answer per question.
A correctly set checkmark is worth 1 point, an incorrectly set checkmark is worth
-1 point. If the sum of your points is negative, you will receive 0 points.

Example:

1. Which of the following statements are true?
a. Classes exist only in the software text; objects exist only X
during the execution of the software.
b. Each object is an instance of its generic class. O
c. An object is deferred if it has at least one deferred feature. O

1. Design by Contract. The class invariant must be satisfied...
a. after any qualified call to any feature of the class.
b. after any call to any feature of a class.
c. after object creation.
d. only after calls to features exported to ANY.

oooo

2. Lifecycle models. Which of the following statements are true?
a. The waterfall model is synchronous and has the disadvantage [
that the actual code appears late in the development process.

b. The cluster model adds a generalization task to the waterfall [J
model. Therefore the steps in the cluster model can be paral-
lelized.

c. Lifecycle models aim at improving the quality of the software [
system in general and the process of software development in
particular.

d. When the lifecycle of a software system is over, it transits to O
a new lifecycle model.

3. Configuration management. Version numbers...
a. must be part of the file name.
. form a partial ordering.
are always INTEGER numbers, starting with 1.
. are linked to a point in time.

oooao

b
c.
d

4. Configuration management. Which parts of the development
process are part of configuration management:

UML design diagrams

project budget

daily /nightly build results

bug reports by users

eo o
oooo

ETHZ D-INFK
Prof. Dr. B. Meyer Software Architecture — Exam

2 Modularity and reusability (9 points)

2.1 Correctness vs. robustness (4 points)

Define Software Correctness:

Give an example illustrating the difference between Software Robustness and
Correctness:

2.2 Modularity principles I (2 points)

The inheritance mechanism of Eiffel implements one of the modularity princi-
ples. Mention which one and explain how inheritance is used in this principle.

2.3 Modularity principles II (3 points)

For the code snippet below explain which modularity principle it violates. Ex-
plain the principle and then show how to correct the code snippet.

1 class DATABASE
3 ...
5 feature —— Element change

7 store (key: INTEGER; value: ANY) is

do
9 .

end
11

feature —— Access
13
select (key: INTEGER): ANY is
15 require
key_valid: table.has(key)

17 do
19 end

21 table: HASH_TABLE [ANY, INTEGER)
—— Data storage

23 ...

25 end

Modularity principle that is violated:

Explanation of the modularity principle:

ETHZ D-INFK
Prof. Dr. B. Meyer Software Architecture — Exam

3 Abstract Data Types (22 Points)

The following abstract data type models a file system. The file system stores
data under filenames. Write operations either create files or overwrite exist-
ing ones. It is not possible to change only parts of an existing file. The file
system does not offer directories. Types NAME and DATA are assumed to be
defined separately; their actual content is not visible and does not matter for
the exercise.

TYPES
FILE_SYSTEM, DATA, NAME
FUNCTIONS (all provisionally marked total)
format_disk: FILE_SYSTEM
write: NAME x DATA x FILE_ SYSTEM — FILE_.SYSTEM
read: NAME x FILE_.SYSTEM — DATA
file_exists: NAME x FILE.SYSTEM — BOOLEAN
PRECONDITIONS (n € NAME; f € FILE_SYSTEM)

read (n, f) require file_exists (n,f)
AXIOMS (d € DATA; n,m € NAME with n # m; f € FILE.SYSTEM)
file_exists (n,format_disk) = false (Axiom 1

file_exists (n,write (n,d,f)) = true

file_exists (n,write (m,d,f)) = file_exists (n,f)
read (n,write (n,d,f)) =d

read (n,write (m,d,f)) = read (n,f)

To Do:

1. In the FUNCTIONS paragraph above all functions are shown as total,
but some should be partial. Mark those which should be partial (by
crossing the corresponding arrow) (2 points).

2. In the following equations, d1,d2 € DATA with d1 # d2; n,m € NAME
with n # m; f € FILE. SYSTEM). For each of the equations, prove one
of the following: (1) the equation is not correct; (2) it is correct and does
not hold; (3) it is correct and holds (4 points).

(a) read (n,write (n,d1,f)) =d1

ETHZ D-INFK
Prof. Dr. B. Meyer Software Architecture — Exam

ETHZ D-INFK
Prof. Dr. B. Meyer Software Architecture — Exam

4. We want to extend the model with a function describing the deletion of
an existing file. A deleted file does not exist anymore and is thus not
readable.

(a) Add a new function that models this operation.

(b)

()

(d) Give an argument (a complete proof is not required) explaining why
your extension still satisfies sufficient completeness.

Adapt the existing preconditions accordingly.

Define the necessary axioms.

(8 points)

10

4 Design Patterns (18 Points)

The Mediator pattern“define[s] an object that encapsulates how a set of objects
interact. Mediator promotes loose coupling by keeping objects from referring
to each other explicitly, and it lets you vary their interaction independently”
(“Design Patterns. Elements of reusable Object-Oriented Software”, E. Gamma
et al., Addison-Wesley, 1995).

The Mediator pattern describes a way to control the interactions between a
set of objects called “colleagues”. Rather than having everyone know everyone
else, a central point of contract (the “mediator”) knows about its “colleagues”.

In a system designed according to the Mediator pattern, colleagues only
know about their mediator: they send requests to the mediator, which takes
care of forwarding them to the appropriate colleague; the requested colleague
also sends its answer back to the mediator, which forwards it to the originator
of the request. There is no direct interaction between colleagues. Everything
goes through the mediator.

Below you will find a possible implementation for an application using the
Mediator design pattern:

1 deferred class

MEDIATOR
3 feature —— Basic operations
update_colleagues (a_colleague: COLLEAGUE) is
5 —— Update colleagues because a_colleague changed.
deferred

11

ETHZ D-INFK
Prof. Dr. B. Meyer Software Architecture — Exam

-
Lro ot_cluster

Al
'
'
]

4

3 * mediator A K
MEDIATOR COLLEAGUE
+
MY _MEDIATOR
colleague 2 #

colleague_1

RS ———

Figure 1: Class diagram for the Mediator pattern

7 end
end —— class MEDIATOR
9
class
11 MY_MEDIATOR
inherit
13 MEDIATOR
create
15 make

17 feature { NONE} —— Initialization

make is
19 —— Create colleague_1 and colleague_2.
do
21 create colleague_1.make (Current)
create colleague_2.make (Current)
23 end
25 feature —— Access
colleague_1: COLLEAGUE_1
27 —— First colleague of mediator
colleague_2: COLLEAGUE_2
29 —— Second colleague of mediator
31 feature —— Basic operations
update_colleagues (a_colleague: COLLEAGUE) is
33 —— Update colleagues because a_colleague changed.
do
35 if a_colleague = colleague_1 then
colleague_2. do_something
37 elseif a_colleague = colleague_2 then
colleague_1.do_something
39 end
end
41
end —— class MY_MEDIATOR
43

deferred class
45 COLLEAGUE

47 feature { NONE} —— Initialization
make (a-mediator: like mediator) is

12

49 —— Set mediator to a_mediator.
require
51 a-mediator_not_void: a_mediator /= Void
do
53 mediator := a-mediator
ensure
55 mediator_set: mediator = a_-mediator
end
57
feature —— Access
59 mediator: MEDIATOR
—— Mediator
61
feature —— Mediator pattern

63 notify_mediator is
—— Notify mediator that current colleague has changed.

65 do
mediator.update_colleagues (Current)
67 end
do_something is
69 —— Do something.
deferred
71 end

73 invariant
mediator_not_void: mediator /= Void

75

end —— class COLLEAGUE
7

class
79 COLLEAGUE_1

inherit
81 COLLEAGUE

83 create
make
85
feature — Basic elements
87 do_something is
—— Do something.

89 do
io. put_string (”This is colleague 1”)
91 10.new_line
end

93 change is
—— Change the state of the object
95 do
97 notify_mediator
end
99
end —— class COLLEAGUE_1

101

103 class
COLLEAGUE_2
105 inherit

COLLEAGUE
107
create
109 make

13

ETHZ D-INFK
Prof. Dr. B. Meyer Software Architecture — Exam

111 feature — Basic elements
do_something is

113 —— Do something.

do
115 0. put_string (”This is colleague 2”)

10.new_line
117 end
change is

119 —— Change the state of the object

do
121 ——

notify-mediator
123 end

125 end —— class COLLEAGUE_2

The Mediator design pattern uses a notify-update mechanism like the Ob-
server pattern. Replace the notify-update mechanism by using the EVENT_TYPE
class for the above application. The interface of class EVENT_TYPE is given
below:

class
2 EVENT_.TYPE [EVENT_-DATA —> TUPLE create default_create end]

4 feature —— Element change

6 subscribe (an-action: PROCEDURE [ANY, EVENT_DATA]) is
—— Add an_action to the subscription list.

8 require
an_action_not_void: an_action /= Void
10 an_action_not_already_subscribed: not has (an_action)
ensure
12 an-action_subscribed: count = old count + 1 and has (an-action)
index_at_same_position: index = old index
14
unsubscribe (an-action: PROCEDURE [ANY, EVENT_DATA]) is
16 —— Remove an_action from the subscription list.
require
18 an_action_not-void: an_action /= Void
an-action_already_subscribed : has (an-action)
20 ensure
an-action_unsubscribed: count = old count — 1 and not has (an-action)
22 index_at_same_position: index = old index
end
24
feature —— Publication
26
publish (arguments: EVENT_DATA) is
28 —— Publish all not suspended actions from the subscription list .
require
30 arguments_not_void: arguments /= Void
32 feature —— Measurement

34 count: INTEGER
—— Number of items

36

index: INTEGER is
38 —— Index of current position in the list of actions
40 feature —— Access

42 has (v: PROCEDURE [ANY, EVENT_DATA]): BOOLEAN

14

—— Does the list of actions include v?
44
end —— class EVENT_TYPE

15

ETHZ D-INFK
Prof. Dr. B. Meyer Software Architecture — Exam

16

17

ETHZ D-INFK
Prof. Dr. B. Meyer Software Architecture — Exam

18

19

2

4

6

8

10

12

14

16

18

20

22

24

26

ETHZ D-INFK
Prof. Dr. B. Meyer Software Architecture — Exam

5 Design by Contract (10 Points)

A binary tree is a tree data structure in which each node has at most two
children. Typically the child nodes are called left and right. In the following
class implementing this notion, complete the contracts at the locations marked
by dotted lines.

indexing
description:
”Binary tree: each node may have a left child and a right child”
class
BINARY_TREE [G]
inherit
CELL [G]
undefine
copy, is_equal
end
TREE [G]
redefine
parent,
is_leaf |
subtree_has,
subtree_count,
fill_list
child_remove,
child_after ,
child_capacity ,
tree_copy,
child_start ,
child_forth

20

28 end
30 create
make
32
feature —— Initialization
34
make (v: like item) is
36 —— Create a root node with value ‘v’.
do
38 item (= v
ensure
40
42
44
46 end

48 feature —— Access

50 parent: BINARY_TREE [G]
—— Parent of current node
52
item: G
54 —— Item in current node

56 child_index: INTEGER
—— Index of cursor position
58
left_child : like parent
60 —— Left child, if any

62 right_child : like parent
—— Right child, if any

64
left_item : like item is
66 —— Value of left child
require
68
70 do
Result := left_child . item
72 end

74 right_item: like item is
—— Value of right child

76 require

8
do

80 Result := right_child. item
end

82

84 feature —— Measurement

21

86

88

90

92

94

96

98

100

102

104

106

108

110

112

114

116

118

120

122

124

126

128

130

132

134

136

138

140

142

ETHZ D-INFK

Prof. Dr. B. Meyer Software Architecture — Exam
arity: INTEGER is
—— Number of children
do
if has_left then
Result := Result + 1
end
if has_right then
Result := Result + 1
end
ensure
end
child_capacity : INTEGER is 2
—— Maximum number of children
feature —— Status report
is_leaf , has_none: BOOLEAN is
—— Are there no children?
do
Result := left_child = Void and right_child = Void
end
has_left: BOOLEAN is
—— Does current node have a left child?
do
Result := left_child /= Void
ensure
end
has_right: BOOLEAN is
—— Does current node have a right child?
do
Result := right_child /= Void
ensure
end
has_both: BOOLFEAN is
—— Does current node have two children?
do
Result := left_child /= Void and right_child /= Void
ensure
end
feature —— Removal

22

144

146

148

150

152

154

156

158

160

162

164

166

168

170

172

174

176

remove_left_child is

—— Remove left child.

do
if left_child /= Void then

left_child . attach_to_parent (Void)

end
left_child := Void

ensure

feature —— Status report

is_root: BOOLEAN is
—— Is there no parent?
do
Result := parent = Void
end

valid_cursor_index (i: INTEGER): BOOLEAN is
——Is ‘i’ correctly bounded for cursor movement?
do
Result := (i >= 0) and (i <= child_capacity + 1)
ensure

invariant

end —— class BINARY_TREE

6 Testing (21 Points)

6.1 General concepts (9 Points)

Put checkmarks in the checkboxes corresponding to the correct answers. Multi-
ple correct answers are possible; there is at least one correct answer per question.
A correctly set checkmark is worth 1 point, an incorrectly set checkmark is worth
-1 point. If the sum of your points is negative, you will receive 0 points.

1. The purpose of performing regression testing is to check that
a. obsolete features have been removed from recent versions of [J
the software.
b. changes made to the software have not introduced new bugs. 0O
c. bugs that were eliminated before have not re-appeared as a [
result of changes made to the software.

2. When doing black-box testing, the tester

23

ETHZ D-INFK
Prof. Dr. B. Meyer Software Architecture — Exam

a. uses the specification of the software under test. O
b. cannot use the specification, because then he would be doing [
white-box testing.

c. can inspect the implementation of the features exported to [
ANY.

3. If a routine r1 calls another routine 2 without satisfying its precondition

a. there is a bug in r1. |
b. there is a bug in r2. O
c. there are bugs both in r7 and in r2.]

4. If a routine r1 of a class A calls a routine r2 of a class B (where there is no
inheritance relationship between A and B), and, when 2 finishes execut-
ing, it does not fulfill the invariant of class B, then

a. there is a bug in r1. O
b. there is a bug in r2. O
c. there are bugs both in r7 and in r2. a

5. Which of the following statements are true about the term failure?
a. A failure occurs when the implementation under test produces [
incorrect output.
b. A failure occurs when the execution of the software under test [J
takes longer than the specified time.
c. A failure is a problem in the source code (incorrect or missing O
code).

6. Mutation testing involves
a. changing a test case so that it exercises a different part of the [J
software under test than the original.
b. introducing bugs in the software under test to see if a test [
suite finds them.
c. changing both the test suite and the software under test so [
that we increase test coverage.

7. Which steps of the testing process does JUnit automate?
a. generation of input values.
b. test execution.
c. the oracle.

ooo

6.2 Contract-based testing (12 Points)

Define contract-based testing and then discuss whether it is an efficient way of
finding bugs in the software. Show both its strengths and weaknesses.

24

25

	Design by Contract, software lifecycle model, configuration management (9 points)
	Modularity and reusability (9 points)
	Correctness vs. robustness (4 points)
	Modularity principles I (2 points)
	Modularity principles II (3 points)

	Abstract Data Types (22 Points)
	Design Patterns (18 Points)
	Design by Contract (10 Points)
	Testing (21 Points)
	General concepts (9 Points)
	Contract-based testing (12 Points)

