Software Architecture Exam

Spring Semester 2009
Prof. Dr. Bertrand Meyer
Date: 26 May 2009

Family name, firsSt Name:coooiiiiiiiiiiieiiiiiiiee e
StUAENt NUIMDET: ooiviiiiei i e e e e e e

I confirm with my signature, that I was able to take this exam under regular
circumstances and that I have read and understood the directions below.

STGNATUTE! ..eviiiiiieiee ittt e e et

Directions:
e Exam duration: 120 minutes.

e Except for a dictionary you are not allowed to use any supplementary
material.

e Use a pen (not a pencil)!
e Please write your student number onto each sheet.

e All solutions can be written directly onto the exam sheets. If you need
more space for your solution ask the supervisors for a sheet of official
paper. You are not allowed to use other paper.

e Only one solution can be handed in per question. Invalid solutions need
to be crossed out clearly.

e Please write legibly! We will only correct solutions that we can read.

e Manage your time carefully (take into account the number of points for
each question).

e Don’t forget to add comments to features.

e Please immediately tell the supervisors of the exam if you feel disturbed
during the exam.

Good luck!

ETHZ D-INFK

Prof. Dr. B. Meyer

Software Architecture — Exam

Question | Number of possible points | Points
1 18
2 20
3 22
4 16

1 Multiple choice questions (18 points)

For each statement found below, indicate through a checkmark in the corre-
sponding column whether it is false or true. For each statement, you can mark
at most one square. A correctly set checkmark is worth 1 point, an incorrectly
set checkmark is worth 0 points.

Example:

Which of the following statements are true and which are
false for objects and classes of Eiffel?

True False Statement

X g Classes exist only in the software text; objects exist only
during the execution of the software.

O X Each object is an instance of its generic class.

O X An object is deferred if it has at least one deferred feature.

1.1 Which of the following statements are true and which are false for
the Unified Modeling Language?

True False Statement

(]] a. A UML model is a set of classes and relations between them.

O O b. The general semantics of the dependency relation is that if
the independent entity changed, the dependent one may also
change.

(|] c. State diagrams are intended for describing dynamic behavior
of the system.

O (| d. An association between two classes on a class diagram means
that they are different implementations of the same abstrac-
tion.

O O e. Aggregation expresses the "part-of” relation, which means
that the part is always created and destroyed together with
the aggregate.

U (| f. In contrast to communication diagrams, on sequence dia-

grams not only the set of entities and relations between them
matters, but also the spatial placement of elements.

1.2 Which of the following statements are true and which are false for
the Eiffel exception mechanism?

True False Statement

O | a. The execution of a rescue clause must in all cases re-establish
the class invariant.

O O b. If a retry succeeds, the program execution continues nor-
mally.

O O c. If a rescue clause only contains a retry, then the retry will
be executed at most once.

O O d. If a rescue clause only contains a retry, then the retry will
be repeatedly executed until there is no failure any more.

O O e. If an exception is triggered in a routine that doesn’t have a

rescue clause, then the exception is passed to the caller.

ETHZ D-INFK
Prof. Dr. B. Meyer Software Architecture — Exam

1.3 If a software element C (client) needs a service from a software
element S (supplier), the following four possibilities exist:

1. C must know the identity of S and S must know the identity of C.

2. C must know the identity of S, but S does not have to know the identity
of C.

3. S must know the identity of C, but C does not have to know the identity
of S.

4. Neither needs to know the identity of the other.

State which one of 1, 2, 3 or 4 applies to the following architecture styles:
Statement

Batch-sequential

Pipe-and-filter

Call-and-return

Event-based (Publish-Subscribe)
Blackboard

Hierarchically layered
Client-Server

ooooooo-
OOoOooOoooaogw
OOoO0oOooooe«
Ooooooog»
@™m0 a0 o

2 Abstract Data Types and Design by Contract
(20 Points)

2.1 Incompleteness in contracts (3 Points)

Tic-Tac-Toe game is played on a 3-by-3 board, which is initially empty. There
are two players: a “cross” player and a “circle” player. They take turns; each
turn changes exactly one cell on the board from empty to the symbol of the
current player (cross or circle). The “cross” player always starts the game. The
rules that define when the game ends and which player wins are omitted from
the task for simplicity.

Below you will find an interface view of GAME class representing Tic-Tac-Toe
games.

class GAME

create make

feature —— Initialization
make
—— Create an empty 3—by—3 board
ensure
cross_turn: mext_turn = Cross
end
feature —— Constants

Empty: INTEGER is 0
Cross: INTEGER is 1
Circle: INTEGER is 2
—— Symbolic constants for players and states of board cells

feature —— Access

next_turn: INTEGER
—— Player that will do the next turn

item (i, j: INTEGER): INTEGER
—— Value in the board cell (i, j)
require
iin_bounds: 1 >=1and i <=3
j-in_bounds: j >=1and j <=3
ensure

valid_value : Result = Empty or Result = Cross or Result = Circle
end
feature —— Basic operations

put_cross (i, j: INTEGER)
—— Put cross into the cell (i, j)
require
cross_turn: next_turn = Cross
izin_bounds: 1 >=1and i <=3
j-in-bounds: j >=1and j <=3
empty: item (i, j) = Empty
ensure
cross_put: item (i, j) = Cross
circle_turn : next_turn = Circle
end

put_circle (i, j: INTEGER)
—— Put circle into the cell (i, j)
require
circle_turn : next_turn = Circle
iin_bounds: 1 >=1and i <=3
j-in_bounds: j >=1and j <=3
empty: item (i, j) = Empty

ensure
circle_put : item (i, j) = Circle
cross-turn: next_turn = Cross
end
invariant
valid_player: next_turn = Cross or next_turn = Clircle
end

The contract of this class is incomplete with respect to the game description
given above. In which contract elements does the incompleteness reside? FEx-
press in natural language what the missing parts of the specification are. Give
an example of a scenario that is allowed by the above contract, but should not
happen in Tic-Tac-Toe:

ETHZ D-INFK
Prof. Dr. B. Meyer Software Architecture — Exam

2.2 ADT GAME (10 Points)
Create an ADT that describes Tic-Tac-Toe games. The ADT functions should

correspond one-to-one to the features of the GAME class above. The axioms of
the ADT should be sufficiently complete, overcoming the incompleteness of the
class contracts.

TYPES
GAME

FUNCTIONS

°

=
IS
g
Q
~.
3
Q
&
®

O Dty

0 0SS 1ot e

2.3 Proof of sufficient completeness (7 Points)

Prove that your specification is sufficiently complete.

ETHZ D-INFK
Prof. Dr. B. Meyer Software Architecture — Exam

3 Design patterns I (22 Points)

Given is a class hierarchy that models a very simple forum system. It con-
sists of three classes: class FORUM_ENTITY, class POST and class THREAD (see

Listings and .

Question 1: The classes FORUM_ENTITY, POST and THREAD have been pre-
pared for the implementation of a Visitor pattern, but they also implement a
second pattern from the lecture. Which design pattern? Give its name.

Listing 1: Class FORUM_ENTITY
deferred class FORUM_ENTITY

2
feature —— Access
4
title : STRING
6 —— Title of entity

8 owner: STRING
—— Username of person that initiated the thread/post

10
output: STRING
12 —— Textual description
deferred
14 end
16 feature —— Status report

18 is_private: BOOLEAN
—— Is entity read restricted ?

20
feature —— Element setting
22
set_title_and_owner (t, o: STRING)
24 —— Set ‘title’ to ‘t’ and ‘owner’ to ‘o’.
require
26 t_valid: t /= Void and then not t.is_empty
o-valid: o /= Void and then not o.is_empty
28 do
title ==t
30 owner := o
ensure
32 title_set : t. is_equal (title)
owner_set: o.is_equal (owner)
34 end

36 set_private (b: BOOLEAN)
—— Set ‘is_private .

38 do
is_private = b
40 ensure
is_private_set : is_private = b
42 end
44 feature —— Basic operations

46 process (v: VISITOR)

—— Process ‘Current’ with visitor ‘v’.
48 require

v_exists: v /= Void
50 deferred

end
52
end

Listing 2: Class POST

class POST inherit FORUM_ENTITY
2

create
4 set_title_and_owner

6 feature —— Access

8 text: STRING
—— Message of post

10
feature —— Element change
12
set_text (s: STRING)
14 —— Set ‘text’ to ‘s’.
require
16 s.valid: s /= Void and then not s.is_empty
do
18 text := s
ensure
20 text_set : s. is_equal (text)
end
22
feature —— Basic operations
24
output: STRING
26 —— Textual description
do
28 Result := 7 skskorskorskskokskx POST seksrskskorsknskk kO NTitle: ¥ + title +
?%NOwner: ” + owner + ”%N”
30 if text /= Void then
Result := Result + text + ? %N%N”
32 end
end
34
process (v: VISITOR)
36 —— Process ‘Current’ with visitor ‘v’.
do
B8
end
40 end

ETHZ D-INFK
Prof. Dr. B. Meyer Software Architecture — Exam

Listing 3: Class THREAD
class THREAD inherit

2
FORUM_ENTITY
4 redefine
set_title_and_owner
6 end
8 create
set_title_and_owner
10
feature —— Access
12
contents: ARRAYED_LIST [FORUM_ENTITY]
14 —— Contents of the thread
16 feature —— Element change

18 set-title_and_owner (t, o: STRING)
—— Set ‘title’ to ‘t’ and ‘owner’ to ‘o’.

20 do
Precursor (t, o)
22 create contents.make (5)
end
24
add_entity (e: FORUM_ENTITY)
26 —— Add ‘e’ to last position of ‘contents’.
require
28 not_there: not contents.has (e)
do
30 contents. force (e)
end
32
feature —— Basic operations
34
output: STRING
36 —— Textual description
do
38 Result := ? sxskxsknskskkkx THREAD sxskskrskrskkkkBNTitle: ? + title +

?%NOwner: ” + owner + ? %QN%N”
40 end

42 process (v: VISITOR)
—— Process ‘Current’ with visitor ‘v’.
44 do

46 end

Question 2: Complete the implementation of the visitor pattern by filling
in the missing lines in the classes POST and THREAD and by providing the
code of VISITOR and READ_VISITOR. The main goal of READ_VISITOR is the
generation of output for a hierarchy of threads and posts. It should show the
following characteristics:

e The call entity.process (v) with entity of type FORUM_ENTITY and v of type

READ_VISITOR should do a depth first traversal of the hierarchy attached
to entity.

10

e During the traversal, it calls output on a visited entity if either (a) the entity
is not private (see feature is_private of class FORUM_ENTITY) or (b) the
READ_VISITOR has access to private entities (see feature has_private_access
of class READ_VISITOR). The output is collected in the variable last_output
of READ_VISITOR.

11

ETHZ D-INFK
Prof. Dr. B. Meyer Software Architecture — Exam

Listing 4: Class VISITOR

deferred class VISITOR

10

12

16
18
20

22

26
28
30

32

36
38
40

42

46
48
50

52

12

Listing 5: Class READ_VISITOR

class READ_VISITOR inherit VISITOR
2

create
4 make

6 feature —— Initialization

8 make (b: BOOLEAN)

—— Initialize and set flag for reading private threads and posts.
10 do

last_output := 7"

12 has_private_access := b
ensure
14 output_exists: last_output /= Void
private_access_set : has_private_access = b
16 end

18 feature —— Access

20 last_output: STRING

22 feature —— Status report

24 has_private_access: BOOLEAN

26 feature {FORUM_ENTITY} —— Basic operations

13

ETHZ D-INFK
Prof. Dr. B. Meyer

Software Architecture — Exam

122 end

14

Question 3: Listing [f] shows the root class APPLICATION of a system that
provides a user interface to log in and out of the system and print the hierarchy
of threads and posts. The feature prepare reads a hierarchy of threads and posts
from a file (contents are omitted). Redesign the class to use a pattern that helps
removing the case distinctions between a logged in user and an anonymous user
found in the features login, logout and read_entity.

What pattern would you use? Give its name.coiiiiiiii..
Draw a diagram of the involved classes and list the names of all their features.
A partial version of APPLICATION is given as a starting point. Explain in a cou-

ple of sentences how the involved classes interact and why the case distinctions
disappear.

APPLICATION

prepare
entity: ENTITY

15

ETHZ D-INFK
Prof. Dr. B. Meyer Software Architecture — Exam

Listing 6: Class APPLICATION

class APPLICATION
2

create
4 make

6 feature —— Access

8 is_logged_in : BOOLEAN
—— Is user logged in?
10
entity: FORUM_ENTITY
12 —— Top level entity

14 username: STRING
—— Username of logged in user (may be void)

16
feature —— Basic operations
18
login
20 —— Log in if not already logged in.
do
22 if not is_logged_in then
0. put_string (”Username:)
24 10.read-word
if not do0. last_string .is_empty then
26 username := 0. last_string
is_logged_in := True
28 else
0. put_string (” Username invalid”)
30 end
else
32 0. put_string (”You have to logout first.”)
end
34 ensure
username_set: username /= Void
36 end
38 logout
—— Log out if logged in.
40 do
if not is_logged_in then
42 0. put_string (”You have to login first.”)
else
44 username := Void
is_logged_in := False
46 end
ensure
48 username_set: username = Void
end
50
read_entity
52 —— Read entity contents.
local
54 v: READ_VISITOR
do
56 if is_logged_in then
create v.make (True)
58 else
create v.make (False)
60 end

entity . process (v)

16

62

64

66

68

70

72

74

76

78

80

82

84

86

88

90

92

94

96

98

100

102

104

106

108

110

112

i0. put_string (v. last_output)
end

feature —— Initialization

make is
—— Run application.
local
c: CHARACTER
do
prepare
from
0. put_string (” %0N>")
i0.read_character
¢ := 10. last_character
until
c = 7q7
loop
inspect ¢
when 7 then
login
when ’0’ then
logout
when '’ then
read_entity
else
if c.is_alpha then
0. put_string (” Available commands: %Ni: login%No: logout%Nr:
read entity%Nq: quit%N”)
end
end
if c.is_alpha then
0. put_string (”%N>")
end
i0.read_character
¢ := 10. last_character
end
end

feature { NONE} —— Implementation

prepare
—— Fill some threads and posts.
local
top, subl, sub2: THREAD
p: POST
do
—— Implementation removed to improve readability.
ensure
entity_exists : entity /= Void
end

end

4 Design Patterns II (16 Points)

A company selling furniture has an interactive program to show customers what
a furnished room would look like. Furniture pieces can be added and removed
from the room, and these actions can be undone and redone. Here is a typical

17

ETHZ D-INFK
Prof. Dr. B. Meyer

Software Architecture — Exam

top-level interaction with the system:

1 class SAMPLE_SYSTEM_USE

3 feature
5 interaction
—— A sample client interaction.
7 local
room: ROOM
9 chair_handle: INTEGER
desk_handle: INTEGER
11 do
create room.make_with_furniture_factory (create {
DIRECTX_FURNITURE_FACTORY?})
13 room.add_chair (create { COORDINATE}.make (14, 10))
chair_handle := room.added_chair_id
15 room.add_desk (create { COORDINATE}.make (1, 20))
desk_handle := room.added_desk_id
17 room.remove_chair (chair_handle)
room.undo
19 room.redo
end
21
end

The room uses an abstract factory (an instance of FURNITURE_FACTORY)
to create furniture pieces (instances of CHAIR and DESK). Assume the follow-

ing classes:

deferred class
2 FURNITURE_FACTORY

4 feature

6 make_chair (¢ COORDINATE)

deferred
8 ensure
made_chair /= Void
10 end

12 make_desk (c: COORDINATE)

deferred
14 ensure
made_desk /= Void
16 end

18 made_chair: CHAIR
—— The last made chair.

20

made_desk: DESK
22 —— The last made desk.
24 end

deferred class
2 FURNITURE_PIECE

4 feature
coordinate: COORDINATE
6
end

18

1 class
DESK
3
inherit
5 FURNITURE_PIECE

7 —— Implementation omitted.

9 end

1 class
CHAIR
3
inherit
5 FURNITURE_PIECE

7 —— Implementation omitted.

9 end

Your task is to implement the command pattern that supports the undo-
redo mechanism by filling in code in classes ROOM, ADD_ACTION and RE-
MOVE_ACTION. Since these classes cooperate closely, it’s a good idea to study
them carefully before writing the code. Some features of classes LINKED_LIST
and STACK that you might find useful are shown at the end.

1 deferred class

ACTION
3
feature
5
perform
7 deferred
end
9
unperform
11 deferred
end
13
end
class

2 ADD_ACTION

4 inherit
ACTION
6
create
8 make

10 feature

make (n: INTEGER; fp: FURNITURE_PIECE; I: LIST [TUPLE [id: INTEGER; f:

FURNITURE_PIECE]])

12 —— Initialize an add—action into ‘1’ of ‘fp’ with ID ‘n’.
require
14 furniture_list_exists :
do
16 piece_number := n
furniture_piece =
18 furniture_list
end

20

19

ETHZ D-INFK

Prof. Dr. B. Meyer Software Architecture — Exam
perform
22 —— Add the furniture piece to the room.
do
24
20 e
2
end
30
unperform
32 —— Undo the last ‘perform’.
do
34 furniture_list . prune_all ([piece-number, furniture_piece])
end
36

feature { NONE} —— Implementation

38 piece_number: INTEGER
furniture_piece : FURNITURE_PIECE
40 furniture_list : LIST [TUPLE [id: INTEGER; f FURNITURE_PIECE]]
—— The room’s contents.

42

invariant
44 furniture_list_ezists : furniture_list /= Void

46 end

class
2 REMOVE_ACTION

4 inherit

ACTION
6
create
8 make

10 feature
make (n: INTEGER; I LIST [TUPLE [id: INTEGER; f: FURNITURE_PIECE]])

12 —— Initialize an action to remove a furniture piece with ID ‘n’ from ‘1°.
require
14 Sfurniture_list_exists : | /= Void
do
16 piece_number := n
furniture_list =1
18 end

20 perform
—— Remove the furniture piece from the room, if possible.

22 local

found: BOOLEAN
24 furniture_item: TUPLE [n: INTEGER; fp: FURNITURE_PIECE)

do
26 from
Sfurniture_list . start

28 furniture_piece := Void

until
30 found or else furniture_list . off

loop

20

32 furniture_item = furniture_list .item
if furniture_item.n = piece_number then
34 furniture_piece := furniture_item. fp
furniture_list . remove
36 found := True
end
38 if not found then
Sfurniture_list . forth
40 end
end
42 end
44 unperform
—— Undo the last ‘perform’.
46 do
A
D0
15
5
end
56

feature { NONE} —— Implementation
58 piece_number: INTEGER
furniture_piece : FURNITURE_PIECE
60 furniture_list : LIST [TUPLE [id: INTEGER; f FURNITURE_PIECE]]

—— The room’s contents.

62
invariant
64 furniture_list_exists : furniture_list /= Void
66 end
class
2 ROOM
4 create
make_with_furniture_factory
6
feature
8
make_with_furniture_factory (f: FURNITURE_FACTORY)
10 —— Create an empty room.
require
12 factory_exists : f /= Void
do
14 furniture_factory := f

create {LINKED_LIST [TUPLE [INTEGER, FURNITURE_PIECE]|}
Sfurniture_list.make
16 furniture_list . compare_objects
—— Use object rather than reference comparison for elements.
18 id_counter :=1

21

20

22

24

26

28

30

32

34

ETHZ D-INFK
Prof. Dr. B. Meyer

create { LINKED_STACK [ACTION]} undoable_action_stack.make
create { LINKED_STACK [ACTION]} redoable_action_stack.make
ensure
room_empty: furniture_piece_count = 0
end

add_chair (¢: COORDINATE)
—— Add a chair to the room at coordinate ‘c’.
local
add_action: ADD_ACTION
chair: CHAIR
do
furniture_factory . make_chair (c)
chair := furniture_factory . made_chair

Software Architecture — Exam

42

44

46

48

50

52

54

56

58

60

62

64

66

added_chair_id := id_counter

id_counter := id_counter + 1
ensure

added_chair: furniture_piece_count = old furniture_piece_count + 1
end

add_desk (c: COORDINATE)
—— Add a desk to the room.
local
add_action: ADD_ACTION
desk: DESK
do
—— Implementation not shown.
ensure
added_desk: furniture_piece_count = old furniture_piece_count + 1
end

remove_chair (n: INTEGER)
—— Remove chair with id ‘n’ from the room.
—— Do nothing if the chair is not inside the room.
local
remove_action: REMOVE_ACTION

22

68

70

72

74

76

78

80

82

84

86

88

90

92

94

96

98

100

102

104

106

108

110

ensure
possibly_removed_chair: furniture_piece_count <= old furniture_piece_count
end

remove_desk (n: INTEGER)
—— Remove desk with id ‘n’ from the room.
—— Do nothing if the desk is not inside the room.
local
remove_action: REMOVE_ACTION
do
create remove_action.make (n, furniture_list)
remove_action.perform
undoable_action_stack. put (remove_action)
redoable_action_stack . wipe_out
ensure
possibly_removed_desk: furniture_piece_count <= old furniture_piece_count
end

undo
—— Undo the last add or remove action.
local

action: ACTION
do

23

ETHZ D-INFK

Prof. Dr. B. Meyer Software Architecture — Exam
112 redo
—— Redo the last undone action.
114 local
action: ACTION
116 do
if not redoable_action_stack.is_empty then
118 action := redoable_action_stack .item
redoable_action_stack . remove
120 action. perform
undoable_action_stack. put (action)
122 end
end
124

added_chair_id: INTEGER
126 —— A handle for the last added chair.

128 added_desk_id: INTEGER
—— A handle for the last added desk.

130
furniture_piece_count: INTEGER
132 —— The number of furniture pieces inside.
do
134 Result := furniture_list . count
end
136

feature { NONE} —— Implementation
138 furniture_factory : FURNITURE_FACTORY
furniture_list : LIST [TUPLE [INTEGER, FURNITURE_PIECE])

140 id_counter: INTEGER

—— Internal counter to provide handles to created furniture pieces.
142 undoable_action_stack: STACK [ACTION)]

—— Stack storing done actions that can be undone.
144 redoable_action_stack: STACK [ACTION|

—— Stack storing undone actions that can be redone.

146
invariant
148 Sfurniture_factory_exists : furniture_factory /= Void
Sfurniture_list_exists : furniture_list /= Void
150 undoable_action_stack_exists : undoable_action_stack /= Void
redoable_action_stack_exists : redoable_action_stack /= Void
152
end
1 class
LINKED_LIST [G)
3
feature —— General operations.
5
force (v: G)
7 —— Add ‘v’ to end.
require
9 extendible: extendible
ensure
11 new-count: count = old count + 1
item_inserted: has (v)
13
prune_all (v: G)
15 —— Remove all occurrences of ‘v’.
17 feature —— Cursor—based operations.
19 start

24

—— Move cursor to first position.

21
off: BOOLEAN
23 —— Is there no current item?
25 forth
—— Move cursor to next position.
27
item
29 —— Item at the current cursor position.
31 remove
—— Remove item at current cursor position.
33 —— Move cursor to next position.

35 —— Other features omitted.

37 end
1 class
STACK [G]
3
feature
5
put (v: G)
7 —— Push ‘v’ onto top.
ensure
9 item_pushed: item = v
11
remove
13 —— Remove the top item.
15
wipe_out
17 —— Remove all items.
ensure
19 wiped_out: is_empty
21
item: G
23 —— The top element of the stack.
25

is_empty: BOOLEAN
27 —— Is the stack empty?

29 —— Other features omitted.

31 end

25

	Multiple choice questions (18 points)
	Abstract Data Types and Design by Contract (20 Points)
	Incompleteness in contracts (3 Points)
	ADT GAME (10 Points)
	Proof of sufficient completeness (7 Points)

	Design patterns I (22 Points)
	Design Patterns II (16 Points)

