Software Architecture Exam

Spring Semester 2010
Prof. Dr. Bertrand Meyer, Dr. Michela Pedroni
Date: 1 June 2010

Family name, first name: .......... ... i

I confirm with my signature, that I was able to take this exam under regular
circumstances and that I have read and understood the directions below.

SIGNATUTE: .ottt

Directions:

Exam duration: 105 minutes.

Except for a dictionary you are not allowed to use any supplementary
material.

Use a pen (not a pencil)!
Please write your student number onto each sheet.

All solutions must be written directly onto the exam sheets. If you need
more space for your solution, ask the supervisors for a sheet of official
paper. You are not allowed to use other paper.

Only one solution can be handed in per question. Invalid solutions need
to be crossed out clearly.

Please write legibly! We will only correct solutions that we can read.

Manage your time carefully (take into account the number of points for
each question).

Please immediately tell the supervisors of the exam if you feel disturbed
during the exam.

Good luck!



ETHZ D-INFK
Prof. Dr. B. Meyer, Dr. M. Pedroni Software Architecture — Exam

Question | Number of possible points | Points
1 13
2 11
3 15
4 20
5

6

17
22




1 Multiple choice questions (13 points)

For each statement found below, indicate through a checkmark in the corre-
sponding column whether it is false or true. For each statement, you can mark
at most one square. A correctly set checkmark is worth 0.5 points, an incorrectly
set checkmark is worth -0.5 points.

Example:

Which of the following statements are true and which are
false for objects and classes of Eiffel?

True False Statement

X g Classes exist only in the software text; objects exist only
during the execution of the software.

O X . Each object is an instance of its generic class.

t X

An object is deferred if it has at least one deferred feature.

1.1 Which of the following statements are true and which are false?

True False Statement

O | a. The MVC pattern completely removes coupling between the
model, view, and controller.

O O b. In the state pattern, you usually set the state only once.

O O c. In the strategy pattern, the strategy is independent of the
surrounding context.

O O d. In the strategy pattern, if a strategy does not work, there is
a fallback to the next strategy (if any).

O O e. In the chain of responsibility pattern, if a handler does not
handle an object, there is a fallback to the next handler (if
any).

O O f.  The abstract factory pattern uses the factory method pattern
for the creation of individual products.

O O g. In the flyweight pattern, you always need to have shared and

unshared flyweight objects.

1.2 Which of the following statements are true and which are false for
agile methods?

True False Statement

(| g a. In SCRUM, the length of a Sprint may vary.

(] ] b. In SCRUM, after every iteration the developers make a demo
of their software.

O O c. In SCRUM, work may be added and removed flexibly
throughout a SCRUM Sprint.

O O d. In XP (eXtreme Programming), every developer chooses his
tasks to work on.

O O e. XP requires customer representatives to be on site.

O O f.  Using pair programming, the more advanced programmer of

the team always writes code while the other watches and
learns from him or her.



ETHZ D-INFK

Prof. Dr. B. Meyer, Dr. M. Pedroni

Software Architecture — Exam

1.3 Which of the following statements are true and which are false for
concurrent computation?

True False Statement

(I O a. A thread can share memory with other threads.

O O b. One can always call a feature on a separate attribute in
SCOOP.

(] g c. The join method applicable to Java threads implements a
synchronization mechanism.

O O d. Every SCOOP program is free of data races.

| O e. Deadlock is possible with Java threads and not possible in
SCOOP.

a d f. Wait by necessity in SCOOP means that a processor may

continue execution even if all needed locks are not available.

1.4 Which of the following statements are true and which are false for

CMMI?

True False Statement

] 0 a. CMMI level 2 requires characterizing processes for organiza-
tions instead of individual projects.

(] g b. CMMI level 3 requires characterizing processes for organiza-
tions instead of individual projects.

(] O c. CMMI level 4 requires characterizing processes for organiza-
tions instead of individual projects.

O g d. Organizations at the CMMI Maturity Level 1 are ready for
ISO 9001:2000 registration with minor adjustments.

O O e. Organizations at the CMMI Maturity Level 2 are ready for
ISO 9001:2000 registration with minor adjustments.

O O f.  Organizations at the CMMI Maturity Level 3 are ready for
ISO 9001:2000 registration with minor adjustments.

] d g. Organizations at the CMMI Maturity Level 4 are ready for

ISO 9001:2000 registration with minor adjustments.



2 Abstract Data Types (11 Points)

In this task you will write an abstract data type for a simple tree structure
that stores integers in its nodes and whose nodes always have either no children
(leaves) or two children (inner nodes). The ADT for TREE should contain the
following six functions:

e make: Creation function that given an INTEGER argument i returns a
TREE with i stored in the root node.

e merge: Given two arguments ¢7 and ¢2 of type TREE and a third argument
i of type INTEGER, this function connects the two trees by adding a
new root node containing i and storing t1 as left subtree and t2 as right
subtree.

e root: Returns the INTEGER stored in the root node of a TREE.
e left: Returns the left subtree of a TREE.
e right: Returns the right subtree of a TREE.

® has_children: Returns True if the TREE has left and right subtrees, False
otherwise.

Example 1 Example 2

Q )
t = make (3)

root (t) =3

has_children (t) = False ° °
left (t) ——> not allowed

right (t) ——> not allowed right (t)

t = merge (make (4), merge (make (1), make (2), 3), 5)
root (t) =5

has_children (t) = True

left (t) ——> see Figure

right (t) ——> see Figure

root( left (t)) =4

Example 3

t = merge (merge (make (6), make (7), 8), right (merge (make (4), merge (make (1), make (2), 3), 5)), 9)

é Q root (t) =9

has_children (t) = True

ight (t
Cr & left (t) ——> see Figure
right (t) ——> see Figure
t root (left (right (t))) =1



ETHZ D-INFK

Prof.

Dr. B. Meyer, Dr. M. Pedroni

Software Architecture — Exam

Complete the ADT description below by filling in the missing parts in
the FUNCTIONS, PRECONDITIONS, and AXIOMS sections. In the FUNC-
TIONS part of the ADT, you should add the appropriate function symbol in the
dotted space. The axioms you propose should be sufficiently complete (but you
do not need to prove sufficient completeness). The number of lines for precon-
ditions and axioms may not correspond to the number of actual preconditions

and axioms you have to provide.

TYPES TREE

FUNCTIONS

make: INTEGER ...... TREE

merge: TREE x TREE x INTEGER .....

root: TREE ...... INTEGER

left: TREE ...... TREE

right: TREE ...... TREE
has_children: TREE ...... BOOLEAN

PRECONDITIONS



3 Design patterns and UML (15 Points)

The visitor pattern is frequently used in compilers to process expression trees.
Study the following classes, which model such a scenario, and complete the UML
sequence diagram for the execution of feature make in class APPLICATION. You
must draw arrows for routine invocations, but not for return values.

indexing
description: ” An integer—valued expression tree.”

deferred class
EXPRESSION

feature

accept ( a-visitor: VISITOR)
—— Process me with ‘a_visitor’.
deferred
end

end

indexing
description: ” An expression tree representing an integer constant.”

class
CONSTANT

inherit
EXPRESSION

create
make

feature

make (a_value: INTEGER)
—— Set the constant value to ‘a_value’.
do
value := a_value
end

value: INTEGER
—— The constant value.

accept ( a_visitor: VISITOR)
—— Process me with ‘a_visitor’.
do
a-visitor . visit_constant (Current)
end

end



ETHZ D-INFK
Prof. Dr. B. Meyer, Dr. M. Pedroni Software Architecture — Exam

indexing
description: ” An expression tree representing the sum of two sub—expressions.
”

class
PLUS_EXPRESSION

inherit
EXPRESSION

create
make

feature

make (a_left_expression, a_right_expression: EXPRESSION)
—— Set the subexpressions to represent ‘ a_left_expression ’ + ‘a_right_expression ’.

do
left_expression := a_left_expression
right_expression := a_right_expression
end

left_expression : EXPRESSION
—— The left operand.

right_expression: EXPRESSION
—— The right operand.

accept ( a-visitor: VISITOR)
—— Process me with ‘a_visitor’.
do
a_visitor . visit_plus_expression (Current)
end

end

indexing
description: ” A visitor for processing expressions.”

deferred class
VISITOR

feature

visit_constant (a_constant: CONSTANT)
—— Process ‘a_constant’.
deferred
end

visit_plus_expression (a_plus_expression: PLUS_EXPRESSION)
—— Process ‘a_plus_expression’.
deferred
end

end



indexing
description: ” A visitor for evaluating expression trees consisting of plus nodes
and constants.”

class
EVALUATOR

inherit
VISITOR

create
make

feature

make
—— Initialize the computed value to 0.
do
reset_value
end

reset_value
—— Reset the computed value to 0.
do
value := 0
end

visit_constant (a_constant: CONSTANT)
—— Add the value of ‘a_constant’ to the computed value.
do
value := value + a_constant.value
end

visit_plus_expression (a-plus_expression: PLUS_EXPRESSION)
—— Add the value of ‘a_plus_expression’ to the computed value.
do
a_plus_expression. left_expression . accept (Current)
a-plus_expression . right_expression . accept (Current)
end

value: INTEGER
—— The computed value.

end

indexing
description : ” A sample use of the visitor pattern.”

class
APPLICATION

inherit
ARGUMENTS

create
make

feature { NONE} —— Initialization



ETHZ D-INFK
Prof. Dr. B. Meyer, Dr. M. Pedroni Software Architecture — Exam

make

—— Create an expression tree and compute its value.

local
¢80, c40, c50: CONSTANT
pl, p2: PLUS_.EXPRESSION
evaluator: EVALUATOR
value: INTEGER

do
create c80.make (30)
create c40.make (40)
create c50.make (50)

create p2.make (c30, c40)
create pl.make (p2, c50)

create evaluator.make
pl.accept (evaluator)
value := evaluator.value

end

end

10



Legi-Nroiie e

(o]
Ol

lication

aA

11



ETHZ D-INFK
Prof. Dr. B. Meyer, Dr. M. Pedroni Software Architecture — Exam

4 System Architecture (20 Points)

For the following two problems, describe the system architecture in the following
form:

e Name one architectural pattern that you will use (not design pattern).

e Draw a diagram that describes your system architecture.

Quickly explain in words how the system works.

e State the three most important advantages of using this architecture.

State the two most important disadvantages of using this architecture.

4.1 E-mail Filter

An e-mail system filters incoming e-mails with a whitelist (e-mails from senders
on the whitelist are accepted), a blacklist (e-mails from senders on the blacklist
are deleted), and the Spamassassin tool (e-mails that do not pass this check are
marked as spam). The system will run on a single-core server machine, but may
be moved to a multi-core server if the load gets too high.

Architectural Pattern Name:

12



4.2 Airplane Monitoring

In an airplane, there are many sensors: speed, altitude, cabin pressure, fuel
level, etc. The monitoring system performs different checks on the sensor data.
If a problem is noticed, the system either shows a warning to the pilot (e.g. low
on fuel), or in a dangerous situation may react automatically (e.g. by dropping
oxygen masks). The system will run on a multi-core machine and should do the
checks in near real-time when new sensor data comes in.

Architectural Pattern Name:

13



ETHZ D-INFK
Prof. Dr. B. Meyer, Dr. M. Pedroni Software Architecture — Exam

Diagram:

14



5 Testing (17 Points)

The feature exstend of class LINKED_LIST is shown in the following listing, along
with some of the features used in extend.

class LINKED_LIST [G]
create make

feature
make
—— Create an empty list.
ensure
count = 0
index = 1

first_element : like new-_cell
—— Head of list

last_element: like first_element
—— Tail of list

new_cell (v: like item): LINKABLE [like item]
—— A newly created instance of the same type as ‘first_element ’.

active: like first_element
—— Element at cursor position

count: INTEGER
—— Number of items in the list

index: INTEGER
—— Index of current cursor position (is between 1...(count+1))

after: BOOLEAN
—— Is there no valid cursor position to the right of cursor?
ensure
Result = (index = count + 1)

is_empty: BOOLEAN
—— Is structure empty?
ensure
is_empty = (count = 0)

start
—— Move cursor to first position.
ensure
indexr = 1
forth
—— Move cursor to next position.
require
not after
ensure

inder = old inder + 1

put_right (v: like item)
—— Add v’ to the right of cursor position.
—— Do not move cursor.
ensure
count = old count + 1
index = old index

15



ETHZ D-INFK
Prof. Dr. B. Meyer, Dr. M. Pedroni Software Architecture — Exam

[1] extend (v: like item)
—— Add ‘v’ to end.
—_ D() not move cursor.
local
p: like first_element
[: like last_element
do

2] p := new-cell (v)
[3] if is_empty then
[4] first_element := p
[5] active := p
else
[6] I := last_element
[7] if | /= Void then
8] 1. put_right (p)
9] if after then
[10] active := p
end
end
end
[11] count := count + 1
ensure
count = old count + 1
inder = old index
end

extend adds an element to the end of a LINKED_LIST. first_element and last_element
point to the first and the last element in the list, respectively. If the list is empty,
first_element and last_element are Void. active points to the element at the current
cursor position. If the cursor is off the list, active is Void.

In program analysis:

e A definition of a variable z (a local variable, argument or class attribute)
consists of statements performing creation, initialization, assignment of a
value to z or actual argument substitution if z is an argument of a feature.

e A use of variable z consists of statements using z without changing its
value. There are two kinds of uses:

— P-use: use in the predicate (decision) of an if- or loop-statement
— C-use: all other uses

In the above listing, v is a passed-in argument, so line [1] is a definition of
v, denoted by wv[1], that is, the variable name followed by line number of the
definition.

In the statement p := new_cell (v), v is C-used, so line [2] is a C-use of w,
whose value is defined in line [1]. In other words, line [1] and [2] form a def-use
pair for variable v. This def-use pair is denoted by +[1-2]C, that is, the variable
name, followed by two dash-separated numbers representing the definition and
use location of that variable, followed by the type of use, either C or P.

16



Questions

(1) Please find all definitions of variables in the above listing.

(2) Please find all def-use pairs, if any, for the definitions listed in question (1).
For each def-use pair, use the described notation to indicate if it is a P-use or a
C-use.

(3) In software testing, the “all def-use criterion” is a data-flow coverage crite-
rion. It is satisfied if all def-use pairs are examined by at least one test case.
Please construct a test suite which satisfies the “all def-use criterion” for local
variable p.



ETHZ D-INFK
Prof. Dr. B. Meyer, Dr. M. Pedroni Software Architecture — Exam

18



6 Outsourcing a library system (22 Points)

The company LSN A.G. has signed a new contract with the library BB to
develop a new library system. To reduce the cost of the development, the
LSN A.G. has decided to outsource the implementation to India. LSN A.G.
has written a first version of the requirements document. In the following we
present the requirements document for the library system.

6.1 Introduction

This document describes a system for a library. The main functionalities of the
system allow (1) borrowing and returning books in a library; (2) getting the list
of books by a particular author or in a particular subject area, (3) finding out
the list of books currently checked out by a particular borrower, (4) finding out
what borrower last checked out a particular copy of a book.

6.2 Definitions, Acronyms and Abbreviations
The following table explains the terms and abbreviations used in the document:
Term/abbreviation Explanation

LS Library System
BB Borrow Book

6.3 Glossary

Word Explanation
User Any person who uses the system and is registered within
the system. It means that he or she has a user login.

6.4 Functional Requirements
6.4.1 Basics
The functional requirements are described using the following template:

19



ETHZ D-INFK

Prof. Dr. B. Meyer, Dr. M. Pedroni Software Architecture — Exam

ID

Title
Description

Priority

Risk

Defines a unique identifier of the requirement. The require-
ments are ordered by topic.

Title of the requirement
A description of the requirement.

Defines the order in which requirements should be imple-
mented. Priorities are 1, 2, 3, and 4 (highest to lowest).
Requirements of priority 1 are mandatory for the first im-
plementation; requirements of priority 2 are mandatory for
the final implementation; priority 3 is used for features that
are optional but the client would like to have it; priority 4
is used for optional features.

Specifies (1) the risk of not implementing the requirement,
and (2) a probability that this feature is not implemented.
The first one shows how critical the requirement is to the
system as a whole; the second one, the probability, is a
percentage 0...100.

The following risk levels are defined over the impact of not
being implemented correctly.

e Critical: it will break the main functionality of the
system. The system cannot be used if this require-
ment is not implemented.

e High: it will impact the main functionality of the
system. Some functions of the system could be inac-
cessible, but the system can generally be used.

o Medium: it will impact some system features, but not
the main functionality. The system can still be used
with some limitations.

e Low: the system can be used without limitations, but
with some workarounds.

6.4.2 Books

ID | R1.01
Title | Books
Description | The system stores books. The status of a book is either
available or borrowed.
Priority | 3
Risk | Low / 50%

20




ID | R1.02
Title | Books \ book copies
Description | The system also stores book copies. A book can have sev-
eral copies. The status of a book copy is either available or
borrowed.
Priority | 3
Risk | Low / 35%
ID | R1.03
Title | Books \ book copies \ copies of a book
Description | The system must be able to show the amount of copies of
a particular book. This functionality is only available to
Staff users.
Priority | 3
Risk | Low / 30%
ID | R1.04
Title | Books \ repair
Description | The system shall provide functionality to repair book
copies. The status of a book copy is either awvailable or
borrowed or broken. If the book is in status broken, this
functionality repairs the book by setting a string attribute
to “available”. This functionality is available to any user.
Priority | 3
Risk | High / 10%
ID | R1.05
Title | Books \ borrow
Description | The system shall provide functionality to borrow book
copies. The user selects an awailable book and borrows
it. This functionality is only available to Borrower users.
Priority | 3
Risk | Critical / 10%
ID | R1.06
Title | Books \ return
Description | The system shall provide functionality to return book
copies. The user returns a book if the book status is bor-
rowed. This functionality is available to any user.
Priority | 3
Risk | Low / 30%
6.4.3 Users
ID | R2.01
Title | Users \ User Roles
Description | There are two kind of users: Administrator and Borrower.
The Administrator user can access any functionality, and
the Borrower user only the functionalities defined in R1.01,
R1.02, and R1.03.
Priority | 2
Risk | High / 10%

21




ETHZ D-INFK

Prof. Dr. B. Meyer, Dr. M. Pedroni

ID | R2.02
Title | Library
Description | Any Administrator user can check how many books are
available and how many books are borrowed. Furthermore,
the Administrator user can check how many books are bro-
ken. To borrow, or return a book, the user has to log in
first.
Priority | 3
Risk | Low / 40%
6.4.4 Display
ID | R3.01
Title | List of books \ By user
Description | The system shall be able to display a list of books authored
or co-authored by a given author. The list shall be ordered
in chronological order. If the author published more than
one book in the same year, the list should be also order by
the title.
Priority | 1
Risk | Low / 70%
ID | R3.02
Title | List of books \ By topic
Description | The system shall be able to display a list of books in given
subject area. The list shall be ordered by topic in chrono-
logical order. If there is an author who published more than
one book in the same year, and area, the list should be also
order by the title.
Priority | 1
Risk | Low / 70%
ID | R3.03
Title | List of books \ Checked out by user
Description | The system shall be able to display a list of books that a
given user has checked out. The list should be ordered by
date.
Priority | 1
Risk | Low / 70%
ID | R3.04
Title | List of books \ Checked out by book
Description | The system shall be able to finding out what borrower last
checked out a particular copy of a book.
Priority | 1
Risk | Low / 70%

6.5 Non-Function Requirements

Non-functional requirements are omitted here to keep the document short.

(This document has been signed by the client.)

15. May 2010

22

Software Architecture — Exam




Task 1 (2 Points):

List the stakeholders of the system.

Task 2 (20 Points):

Given the above requirements document, find five quality goals that are not
satisfied and give examples (extracted from this document). First, explain the
quality goal, and then provide the example.

23



ETHZ D-INFK
Prof. Dr. B. Meyer, Dr. M. Pedroni Software Architecture — Exam

24



	Multiple choice questions (13 points)
	Abstract Data Types (11 Points)
	Design patterns and UML (15 Points)
	System Architecture (20 Points)
	E-mail Filter
	Airplane Monitoring

	Testing (17 Points)
	Outsourcing a library system (22 Points)
	Introduction
	Definitions, Acronyms and Abbreviations
	Glossary
	Functional Requirements
	Basics
	Books
	Users
	Display

	Non-Function Requirements


