ET" Ziirich

Chair of Software Engineering

Software Architecture

Bertrand Meyer, Carlo A. Furia, Martin Nordio

ETH Zurich, February-May 2011

Lecture 3: Requirements Engineering

Requirements and requirements engineering

"A requirement” is a statement of desired behavior for a
system or a constraint on a system

“The requirements” for a system are the collection of all
such individual requirements

"Requirements engineering” is the process of defining the
services that a customer requires from a system and the
constraints under which it operates

. ©
Statements about requirements: Brooks

Source*: Brooks 87

The hardest single part of building a software system is
deciding precisely what to build. No other part of the
conceptual work is as difficult as establishing the
detailed technical requirements, including all the
interfaces to people, to machines, and to other software
systems. No other part of the work so cripples the
resulting system if done wrong. No other part is more
difficult to rectify later.

*For sources cited, see bibliography

. 0]
Statements about requirements: Boehm

Source*: Boehm 81

Relative cost to correct a defect ?
70

60

50

40

30

20

10

0-

Requirements Design Code Development Acceptance Operation
Testing Testing

Some data on requirements

80% of interface fault and 20% of implementation faults
due to requirements (Perry & Stieg, 1993)

48% to 67% of safety-related faults in NASA software
systems due to misunderstood hardware interface
specifications, of which 2/3rds are due to requirements

(Lutz, 1993)

85% of defects due to requirements, of which: incorrect
assumptions 49%, omitted requirements 29%, inconsistent
requirements 13% (Young, 2001).

Numerous software bugs due to poor requirements, e.qg.
Mars Climate Orbiter

A small case study

Source*: Wing 88 ©

Consider a small library database
with the following transactions:

1. Check out a copy of a book.
Return a copy of a book.

2. Add a copy of a book to the
library. Remove a copy of a
book from the library.

3. Get the list of books by a
particular author or ina
particular subject area.

4. Find out the list of books
currently checked out by a
particular borrower.

5. Find out what borrower last

checked out a particular copy
of a book.

There are two types of users: staff

users and ordinary borrowers.

Transactions 1,2, 4, and b are
restricted to staff users, except
that ordinary borrowers can
perform transaction 4 to find
out the list of books currently
borrowed by themselves. The
database must also satisfy the
following constraints:

> All copies in the library must
be available for checkout or
be checked ouft.

»No copy of the book may be
both available and checked
out at the same time.

> A borrower may not have
more than a predefined
number of books checked out
at one time.

©

Overview of
the requirements task

. . ©
Goals of performing requirements

Source: O0SC

= Understand the problem or problems that the eventual
software system, if any, should solve

= Prompt relevant questions about the problem & system

= Provide basis for answering questions about specific
properties of the problem & system

= Decide what the system should do
= Decide what the system should not do

= Ascertain that the system will satisfy the needs of its
stakeholders

= Provide basis for development of the system
= Provide basis for V & V* of the system

*Validation & Verification, especially testing

Products of requirements

= Requirements document
= Development plan

= V&V plan (especially test plan)

Practical advice

Don't forget that the requirements
also determine the test plan

Possible requirements stakeholders

Clients (tailor-made
system)

Customers (product for
general sale)

Clients' and customers’
customers

Users
Domain experts
Market analysts

Unions?

Legal experts
Purchasing agents
Software developers

Software project
managers

Software documenters
Software testers
Trainers

Consultants

Your turn! Who are the stakeholders?

©

Consider a small library database
with the following transactions:

1. Check out a copy of a book.
Return a copy of a book.

2. Add a copy of a book to the
library. Remove a copy of a
book from the library.

3. Get the list of books by a
particular author or ina
particular subject area.

4. Find out the list of books
currently checked out by a
particular borrower.

5. Find out what borrower last

checked out a particular copy
of a book.

There are two types of users: staff
users and ordinary borrowers.

Transactions 1,2, 4, and b are
restricted to staff users, except
that ordinary borrowers can
perform transaction 4 to find
out the list of books currently
borrowed by themselves. The
database must also satisfy the
following constraints:

> All copies in the library must
be available for checkout or
be checked ouft.

»No copy of the book may be
both available and checked
out at the same time.

> A borrower may not have
more than a predefined
number of books checked out
at one time.

Practical advice

Identify all relevant stakeholders
early on

Requirements categories

Functional
Full system

Procedural

Informal

Textual

Executable

Non-functional

Software only

Object-oriented
VS

Formal

Graphical

Non-executable

Components of requirements

= Domain properties
= Functional requirements

= Non-functional requirements (reliability, security,
accuracy of results, fime and space performance,
portability...)

= Requirements on process and evolution

15 quality goals for requirements

= Justified

= Correct

= Complete

= Consistent
= Unambiguous
= Feasible

= Abstract

* Traceable

Delimited
Interfaced
Readable
Modifiable
Verifiable
Prioritized™

Endorsed

Attributes in red are part of IEEE 830, see below
* "Ranked for importance and/or stability”

_ ©
Notes on quality goals

For further information on goals of IEEE-830 (red ones in previous
slide) see the standard

Justified: Every requirement is related to a stakeholder’'s need or has a
connection with an external component

Feasible: The regs. (requirements) capture a system that can be realized
given time, and resource constraints. They should not be merely
wishful thinking.

Abstract: The regs. should not overspecify the system, i.e. they should
not be implementation-oriented.

Delimited: The regs. define the scope of the project.

Interfaced: The regs. describe all interactions between the system and
external components.

Readable: See discussion in 4.3.2.1 and 4.3.2.2 of IEEE-830.
Endorsed: Stakeholders must agree with the regs.

Difficulties of requirements

= Natural language and its imprecision

= Formal techniques and their abstraction
= Users and their vagueness

= Customers and their demands

= The rest of the world and its complexity

Stereotypes

Source: Scharer 81

How developers see users

> Don't know what they want

> Can't articulate what they
want

Have too many needs that are
politically motivated

Want everything right now.
Can't prioritize needs
"Me first”, not company first

Refuse to take responsibility
for the system

Unable to provide a usable
statement of needs

> Not committed to system
development projects

> Unwilling fo compromise
> Can't remain on schedule

YV V V V A\

A\

How users see developers

»Don't understand operational needs.
» Too much emphasis on technicalities.
> Try to tell us how to do our jobs.

»Can't translate clearly stated needs
into a successful system.

> Say no all the time.
> Always over budget.
> Always late.

> Ask users for time and effort, even to
the detriment of their primary duties.

> Set unrealistic standards for
requirements definition.

»Unable to respond quickly to
legitimately changing needs.

19

A simple problem “

Source: Naur

Given a text consisting of words separated by BLANKS or
by NL (new line) characters, convert it to a line-by-line
form in accordance with the following rules:

1. Line breaks must be made only where the given
text has BLANK or NL;

2. Each line is filled as far as possible as long as:
3. No line will contain more than MAXPOS characters

See discussion at se.ethz.ch/~meyer/publications/ieee/formalism.pdf

http://se.ethz.ch/~meyer/publications/ieee/formalism.pdf

“Improved”

Source: Goodenough & Gerhart | ©

The program's input is a stream of
characters whose end is signaled
with a special end-of-text
character, ET. There is exactly one
ET character in each input stream.
Characters are classified as:

»Break characters — BL (blank)
and NL (new line);

»>Nonbreak characters — all
others except £T;

> The end-of-text indicator — £T.

A word is a honempty sequence of
nonbreak characters. A break is a
sequence of one or more break
characters. Thus, the input can be
viewed as a sequence of words
separated by breaks, with possibly
leading and trailing breaks, and
ending with £T.

The program's output should be the same
sequence of words as in the input, with
the exception that an oversize word (i.e. a
word containing more than MAXPOS
characters, where MAXPOS is a positive
intfeger) should cause an error exit from
the program (i.e. a variable, A/arm, should
have the value TRUE). Up to the point of
an error, the program's output should
have the following properties:

1. A new line should start only between
words and at the beginning of the output
text, if any.

2. A break in the input is reduced to a
single break character in the output.

3. As many words as possible should be
placed on each line (i.e., between
successive NL characters).

4. No line may contain more than MAXPOS
characters (words and BLs).

21

“Improved”

Source: Meyer 85 | ©

The program's input is a stream of
characters whose end is signaled
with axspecial end-of-text
charac¥er, £T.[There is exactly one
ET chargcter in each input stream.
Characteks are classified as:

»Break aharacters — BL (blank)
and NL (pew line);

»>Nonbreak characters — all
others exdept £T.

> The end-ofAtext indicator — £T.

A word is a nonempty sequence of
nonbreak characfers. A break is a
sequence of one or\more break
characters. Thus, the input can be
viewed as a sequence of words
separated by breaks, with possibly

leading and trailing breaks,yand
ending with ET. «_ \

T

Contradiction Noise = Ambiguity
Overspecification Remorse

The program's output should be the same
sequence of words as in the input, with
the exkeption that an oversize word (i.e. a
word cantaining more than MAXPOS

rs, where MAXPOS is a positive
integer) should cause an error exit from
the program (i.e. a variable, A/arm, should
have the|\value TRUE). Up to the point of
an‘error,\the program's output should
have the following properties:

1. A new line should start only between
words and at the beginning of the output
text [if any.

2. A break in the input is reduced to a
single break character in the output.

3. As many words as possible should be
placed on each line (i.e., between
successive NL characters).

4. No line may contain more than MAXPOS
characters (words and BLs).

Forward reference

The formal specification

where

TRIMMED (b) =
|s € EQUIVALENT (b) |
max_line_length (s) < MAXPOS|

EQUIVALENT (b) =
{s € seq(CHAR] |
length (s) = length (b) and
(v i€l . length (b),
s() # b(i) =
s(i) € BREAK_CHAR and
b(i) € BREAK_CHAR) |

max_line_length (s) =
max ({j—i]
O=i<j<length (s) and
(Vkei+l, j
s(k) # new_line) |)

A few explanations may help in
understanding these definitions. If 5 is
a sequence of characters, max_fline_
length (s) is the maximum length of a
line in s, expressed as the maximum
number of consecutive characters,
none of which is a new line. In other
words, it is the maximum value of j—i
such that s(k) is not a new line for any
kin the interval i+ 1..j. (We will have
more to say about this definition
below.) EQUIVALENT (b) is the set
of sequences that are “equivalent’ to
sequence b in the sense of being iden-
tical to b, except that new_line charac-
ters may be substituted for blank
characters or vice versa. Finally,
TRIMMED (b) is the set of sequences
which are “‘equivalent’’ to & and have
a maximum line length less than or
equal to MAXPOS.

Fewest lines, Let SSC be a set of se-
quences of characters. These se-

quences can be interpreted as con-
sisting of lines separated by new_line
characters. We define the set FEW-
EST _LINES (SSC) as the subset of
SSC consisting of those sequences that
have as few lines as possible:

FEWEST LINES (S5C) =
MIN_SET (SSC,
number_of _new_lines)

where the function number_of new
lines is defined by:

number_of _new_lines (s5) =
card ({f € 1..length (5) |
s(i) = new_line})

and card (X), defined for any finite
set X, is the number of elements (car-
dinal) of X,

The basic relation. The above defi-
nitions allow us to define the basic re-
lation of the problem, relation goal,
precisely. Relation goal (i,0) holds be-
tween input i and output o, both of
which are sequences of characters, if
and only if
0 € FEWEST_LINES (TRANSF (1))
TRANSF (i) is the set of sequences
related to ¢ by the composition of the
wwo relations short_breaks and lim-
ited_length:

TRANSF (i) = {s € seq [CHAR] |
triis))

with
tr = limited_length e shart_breaks

The dot operator denotes the composi-
tion of relations (see box). A look at

dom (goal) =
[s € seq [CHAR] |
vi € 1..length(s) — MAXPOS,
3j €4, 1+MAXPOS,
5(j) € BREAK_CHAR)

The property expressed by this
theorem is that the domain of relation
goal consists of sequences such that, if
a character ¢is followed by MAXPOS
other characters, at least one character
among ¢ and the other characters must
be a break.

An important problem, not ad-
dressed here, is how the specification
deals with erroneous cases—that is,
with inputs not in the domain of the
goal relation—like sequences with
oversize words. Clearly, a robust and
complete specification should include
(along with goal) another relation, say,
exceptional_goal, whose domain is IN-
PUT—dom (goal) (set difference):
this relation would complement goal
by defining alternative results (usually
some kind of error message) for er-
roneous inputs. Formal specification
of erroneous cases falls beyond the
scope of this article, but a discussion of
the problem and precise definitions of
terms such as “‘error,” ““failure,”” and
“‘exception’” can be found in a paper
by Cristian.*

Discussion. What we have obtained
isan abstract specification—this is, a
mathematical description of the prob-
lem. It would be difficult to criticize
this specification as being oriented
toward a particular implementation: if

January 1985

21

23

“My” spec, informal from formal

Given are a non-negative integer MAXPOS and a character set
including two "break characters” blank and new_line.

The program shall accept as input a finite sequence of characters and
produce as output a sequence of characters satisfying the following
conditions:

> It only differs from the input by having a single break character
wherever the input has one or more break characters.

> Any MAXPOS +1 consecutive characters include a new_line.
> The number of new_line characters is minimal.

> Lf (and only if) an input sequence contains a group of MAXPOS+1
consecutive hon-break characters, there exists no such output. In
this case, the program shall produce the output associated with
the initial part of the sequence up to and including the MAXPOS-
th character of the first such group, and report the error.

Practical advice

Do not underestimate the potential
for help from mathematics

_ 0]
Bad requirements

Source: Wiegers

The Background Task Manager shall provide status
messages at reqular intervals not less than 60 seconds.

Better:

ﬁue Background Task Manager (BTM) shall display status \
messages in a designated area of the user interface

1. The messages shall be updated every 60 plus or minus
10 seconds after background task processing begins.

2. The messages shall remain visible continuously.

3. Whenever communication with the background task
process is possible, the BTM shall display the percent

K completed of the backround task. /

_ 0]
Bad requirements

Source: Wiegers

The XML Editor shall switch between displaying and hiding
non-printing characters instantaneously.

Better:

(I'he user shall be able to toggle between displaying and
hiding all XML tags in the document being edited with the
activation of a specific triggering mechanism. The display

\shall change in 0.1 seconds or less.

Bad requirements

©

Source: Wiegers

The XML parser shall produce a markup error report that
allows guick resolution of errors when used by XML novices.

Better:

_

4 1. After the XML Parser has completely parsed a file, i'r\

shall produce an error report that contains the line
number and text of any XML errors found in the
parsed file and a description of each error found.

2. If no parsing errors are found, the parser shall not
produce an error report.

)

. ©
The two constant pitfalls

= Committing too early to an implementation

Overspecificationl

= Missing parts of the problem

Underspecification!

15 quality goals for requirements

= Justified

= Correct

= Complete

= Consistent
= Unambiguous
= Feasible

= Abstract

Traceable
Delimited
Interfaced
Readable
Modifiable
Testable

Prioritized

Endorsed

o . ©
Verifiable requirements

Adapted from: IEEE

Non-verifiable :
> The system shall work satisfactorily
> The interface shall be user-friendly
> The system shall respond in real time

Verifiable:

> The output shall in all cases be produced within 30
seconds of the corresponding input event. It shall be
produced within 10 seconds for at least 80% of input
events.

> Professional train drivers will reach level 1 of
proficiency (defined in requirements) in two days of
Training.

Practical advice

Favor precise, falsifiable language
over pleasant generalities

Complete requirements

Complete with respect to what?
Definition from IEEE standard (see next) :

An SRS (Software Reguirements Specification) is complete if, and
only if, it includes the following elements:

> All significant requirements, whether relating to functionality,
performance, design constraints, attributes, or external
interfaces. In particular any external reguirements imposed by
a system specification should be acknowledged and treated.

> Definition of the responses of the software to all realizable
classes of input data in all realizable classes of situations. Note
that it is important to specify the responses to both valid and
invalid input values.

> Full labels and references to all figures, tables, and diagrams in
the SRS and definition of all terms and units of measure.

33

Completeness

Completeness cannot be "completely” defined

But (taking advantage of the notion of sufficient
completeness for abstract data types) we can cross-check:

» Commands x Queries

to verify that every effect is defined

©

Practical advice

Think
negatively

The two parts of requirements

\Séf”\;varé
Purpose: to capture the user needs for Kequiements
a “machine” to be built

MICHAEL JACKSON

Jackson's view: define success as
machine specification A domain properties = requirement

® Domain properties: outside constraints (e.g. can only
modify account as a result of withdrawal or deposit)

e Requirement: desired system behavior (e.g. withdrawal of n
francs decreases balance by n)

e Machine specification: desired properties of the machine
(e.g. request for withdrawal will, if accepted, lead to update
of the balance)

36

Domain requirements

S e —

p "
g a— (" ol P

Domain assumption: trains & cars
travel at certain max speeds

Requirement: no collision in
railroad crossing

37

http://fr.wikipedia.org/wiki/Image:Passage_a_niveau_garde.jpeg

Your turn!

Separate machine & domain

©

Consider a small library database
with the following transactions:

1.

2.

Check out a copy of a book.
Return a copy of a book.

Add a copy of a book to the
library. Remove a copy of a
book from the library.

. Geft the list of books by a

particular author or ina
particular subject area.

Find out the list of books
currently checked out by a
particular borrower.

Find out what borrower last

checked out a particular copy
of a book.

There are two types of users: staff
users and ordinary borrowers.

Transactions 1,2, 4, and b are

restricted to staff users, except

that ordinary borrowers can
perform transaction 4 to find
out the list of books currently
borrowed by themselves. The
database must also satisfy the
following constraints:

> All copies in the library must

be available for checkout or
be checked out.

»No copy of the book may be
both available and checked
out at the same time.

> A borrower may not have
more than a predefined

number of books checked out

at one time.

38

Practical advice

Distinguish machine specification
from domain properties

©

Standards and Methods

The purpose of standards

Software engineering standards:

= Define common practice.

= Guide new engineers.

Make software engineering processes comparable.
= Enable certification.

IEEE 830-1998

"TEEE Recommended Practice for Software Requirements
Specifications”

Approved 25 June 1998 (revision of earlier standard)

Descriptions of the content and the qualities of a good
software requirements specification (SRS).

Goal: "The SRS should be correct, unambiguous, complete,
consistent, ranked for importance and/or stability,
verifiable, modifiable, traceable.”

15 quality goals for requirements

= Justified

= Correct

= Complete

= Consistent
= Unambiguous
= Feasible

= Abstract

Traceable
Delimited
Interfaced
Readable
Modifiable
Testable

Prioritized

Endorsed

IEEE Standard: definitions

Contract:

A legally binding document agreed upon by the customer and supplier. This
includes the technical and organizational requirements, cost, and schedule for a
product. A contract may also contain informal but useful information such as the
commitments or expectations of the parties involved.

Customer:

The person, or persons, who pay for the product and usually (but not necessarily)
decide the requirements. In the context of this recommended practice the
customer and the supplier may be members of the same organization.

Supplier:
The person, or persons, who produce a product for a customer. In the context of

this recommended practice, the customer and the supplier may be members of
the same organization.

User:

The person, or persons, who operate or interact directly with the product. The
user(s) and the customer(s) are often not the same person(s).

44

IEEE Standard

Basic issues to be addressed by an SRS:

> Functionality

» External interfaces
» Performance

» Attributes

> Design constraints imposed on an implementation

IEEE Standard

Recommended document structure:

1. Introduction
1.1 Purpose
1.2 Scope
1.3 Definitions, acronyms, and abbreviations
1.4 References
1.5 Overview
2. Overall description
2.1 Product perspective
2.2 Product functions
2.3 User characteristics
2.4 Constraints
2.5 Assumptions and dependencies
3. Specific requirements
Appendixes
Index

< Glossary!

46

Practical advice

Use the recommended IEEE structure

Practical advice

Write a glossary

Recommended document structure

1. Introduction

1.1 Purpose

1.2 Scope

1.3 Definitions, acronyms, and abbreviations

1.4 References

1.5 Overview
2. Overall description

2.1 Product perspective

2.2 Product functions

2.3 User characteristics

2.4 Constraints

2.5 Assumptions and dependencies
3. Specific requirements
Appendixes

Index

49

Section: purpose

> Delineate the purpose of the SRS

> Specify intended audience

Section: scope

> Identify software product to be produced by name
(e.g., Host DBMS, Report Generator, etc.)

> Explain what the product will and will not do

> Describe application of the software: goals and
benefits

> Establish relation with higher-level system
requirements if any

Example of purpose and scope (1)

1.1 Purpose

This documeant specifies the Software Requirements Specification (SRS) for the Project Management
Systemn (PMS). It describas scope of the system, both functional and non-functional requirements for
the software, design constramts and system interfaces.

1.2 Scope

The Project Managemant System addressas the management of software projects. [t provides the
framawork for organizing and managing resources in such a way thal thesa resources daliver all the
work required 1o complete a software projact within defined scope. time and cost constraints.

The system applies cnly to the managemant of software projects and & a lool that facililates decision
making; the PMS does not make decisions.

This SRS describas only required functionality of PMS, not the functonality of external systems like
data storage, change managament or version control systems.

This documeant does nol divide the PMS into subsystems: it describas only requiremants for the whaole-
syslem functionality which is defined in the use case model.

1.2.1 Use Case Model

To define and organize the funclional reguiramants of tha PMS, this documeant usas as a basis the use
case modeal. The use case model consists of all actors of the system and all the various use casas by
which the aclor interact with the system and describes the total functional bahaviour of the system. The
usa casas are defined in the 13 Use Case diagrams.

52

SRS for Project Management System by I.Yevgeniy, DOSE course 07

Example of purpose and scope (2)

1.1 Purpose

Thiz decument represents the Software Requirements Specification [SHS) for
the LOGIC sub-component of the Teehaw Sepp Gome Component. It B designesd
amd written for the stake holders, such as the teaching assistants, professors and
developers involvesd in the project. Its purpose i to deseribe the scope, botl
the functional and non-functional software requirements, as well as the design
constraints of the whole LOGIC sub-compoment. Furthermoore, this document
shows howy The system's interfaces are designed in detail.

1.2 Scope

The Tsehau Sepp Game Compenent 2 an inplementation of the Swiss cand
game Tachauw Sepp to be wsed by the overall Waltiploger Card Goaoees svsten.
For a better description of the scope of the system, the Taelion Sepp Game
Compenent Seope Dovwmend shonld be consulted.

The scope of the LOGIC sub—component is to simulate a Tachau Sepp game
betwesn multiple players by maintaining the game state amd by enforcing the
ritles of the game, Issues related to how the game = shown on the screen or
how the involved computers communicate in detaill via network e outside of

the scope of this sub-component.
SRS for Tschau Sepp Logic Subcomponent, by A. Dima, O. Clerc, A. Garcia, DOSE course 09

53

Section: definitions, acronyms, abbreviations

Define all ferms, acronyms, and abbreviations required to
properly interpret the SRS.

Example of definitions... (1)

1.3 Definitions, Acronyms and Abbreviations
The fallowing table explains the terms and abbreviations used in the document.

Term/Abbreviation

Explanation

FMS Project Managaemaeant System

CMS Change Management Systemn (Bug tracking lool)

CVS Concurrant Vearsions Syslem

VS5 Microsoll Visual SourcaeSale

PERT Program Evaluation and Review Technique

U Graphical User Interface

LAMP A sarver thal is running Linux, Apache, My-SQL and PHP
DEMS Database Managament System

DSS Data Storage Systam

RBAC FRole Basad Accass Confrol

1.4 Glossary

The glossary definas the key larms and concapls mantionad and used in this SRS.

‘Wonrd

Explanation

Project Managament
syslam

The subject of this document. Represents the whola solution as aggregala
of all subsyslems and interfaces.

Host Systerm

The main part of the system that resides on the server and wherea the
business logic runs. Maintains physical conneclions to all external syslams
(dala storage syslem, version confrol and change managament systams)

SRS for Project Management System by I.Yevgeniy, DOSE course 07

55

Example of definitions... (2)

The following table explains the kev terms and ablreviations used in the doecu-

mett:

Term Definition

Player A person who ean interact with the game application that has
been started and 2 not terminated.

User A potential plaver of the game

Server Refers to the MWeltiplager Carnd (fames server.

Client Refers to the whole Tschaw Sepp Grame Component that = con-
mected to the Malttploger Card Games server.

LOGIC A sub-component of the Tichan Sepp Gome Componend that =
respongible for maintaining the game’s logic.

GUL A sub-component of the Tichen Sepp Game Component that =
responsible for displayving all the relevant information to the player
amd pecelving his/er actions. For this, graphical icons, text boxes
aml buttons are used. Furthermore, this sub-component may con-
tain pluging. such as a chat system.

HET A sub-component of the Techen Sepp Game Component that =

respongible for sonding amd receiving messages between the HET
gub-eomponents that are situated on the other player’s conyputers.

SRS for Tschau Sepp Logic Subcomponent, by A. Dima, O. Clerc, A. Garcia, DOSE course 09

Section: product perspective

Describe relation with other products if any.
Examples:

> System interfaces

> User interfaces

> Hardware interfaces

> Software interfaces

» Communications interfaces

> Memory

> Operations

> Site adaptation requirements

Example of product perspective (1)

2.2 Product perspective

PMS it a standalone system that pravides functionality described in the Product functions saction. It
includes all subsystems needead Lo lulfil these software reguiremants. In addition, the PMS has
interfaces to the external systems. such Version Confrol System, Change Management and Bug
Tracking System and Payrall System. These interfaces shall be implemented according to available

industry standards and shall be independent from a specific axternal systam.
Any detailed definiton of an external system is out of scope of this documant.

The figura 1 shows the decomposition of PMS on the functionality areas and the supported external
syslems.

We have to distinguish a Data Storage System (DSS) from all other external systems in that way, that
Data Storage System enables normal functioning of PMS and is therefore essantial. PMS stores all its
data in the DSS and hence has lo maintain the connaction 1o il PMS shall access the dala slorage
system through standard interface (JOBC, ODBS, ADO elc). Sea Dala storage system section for
mora infarmation.

58

SRS for Project Management System by I.Yevgeniy, DOSE course 07

Example of product perspective (2)

2.1 Product perspective

The LOGIC sub-component cannot work on its own but regquives both the GUT and
NET sub—components. However, the LOGIC sub-component represents the central
part of the all the three sub-components that make up the entive Tsefiou Sepp
fratie Component.

The LOGIC sub—compoment does not directly have an interface that connects
two running LOGIC instances. Instead each LOGIC sub-component is connected
to a HET sub-—component that 18 responsible to exchange messages between com-
puters. The LOGIC sub-component. on its own, has teo interfaces: one to the
GUI sub-component amd anotler one to the HET sub-component.

Any detailed definition of the other sub-components s out of scope of this
document.

Figure 1 presents an overall view of the application architecture. With this
we want to present the eght different interfaces provided for the four different
components that form the Tselow Sepp Game Component. This are named
starting with the letter I (standing for interface).

59

SRS for Tschau Sepp Logic Subcomponent, by A. Dima, O. Clerc, A. Garcia, DOSE course 09

Section: constraints

Describe any properties that will limit the developers' options
Examples:
> Regulatory policies
Hardware limitations (e.g., signal timing requirements)
Interfaces to other applications
Parallel operation
Audit functions
Control functions
Higher-order language requirements
Reliability requirements
Criticality of the application
Safety and security considerations

YV V V V V V VYV VY VY

Recommended document structure

1. Introduction

1.1 Purpose

1.2 Scope

1.3 Definitions, acronyms, and abbreviations

1.4 References

1.5 Overview
2. Overall description

2.1 Product perspective

2.2 Product functions

2.3 User characteristics

2.4 Constraints

2.5 Assumptions and dependencies
3. Specific requirements
Appendixes

Index

61

Specific requirements (section 3)

This section brings requirements to a level of detail
making them usable by designers and testers.

Examples:
> Details on external interfaces
> Precise specification of each function
> Responses to abnormal situations
> Detailed performance requirements
» Database requirements
> Design constraints

> Specific attributes such as reliability, availability,
security, portability

Possible section 3 structure

3. Specific requirements
3.1 External interfaces
3.1.1 User interfaces
3.1.2 Hardware interfaces
3.1.3 Software interfaces
3.1.4 Communication interfaces
3.2 Functional requirements

3.3 Performance requirements
3.4 Design constraints
3.5 Quality requirements

3.6 Other requirements

63

Example of functional requirements (1)

Requirement ID
Title
Description

Pricrity
Source
Risk
References

Requirement ID
Group
Description

Priority
Source
Risk
References

R1.01.01

Main Funclionality'\Users

Tha system shall support the concept of user. Every user of the systam has a
narme and a password. The name must be unigue within the installed instance of
the systemn. In additon, every user has a sel of properties: Full Name, Full
Businass Title (Company Name, Position), E-Mail Address, Phone, Woarking
Address, Allernalive Phone, and Alternalive Working Address. Each user is
uniquely identified by ils namea within the system.

]

Cc

R1.01.04

Main Functionality\User Roles\Pradefined Roles

Thea default installation of the system shall provide at least the following
preconfigured user roles: “Manager, “Team Leader, " Team Mamber",
“Adrministrator”. The Table 3 lists the default rights of each role. The system
administrator (usar with the right o edit user roles) can configure permissions of
the roles.

2

M

64

SRS for Project Management System by I.Yevgeniy, DOSE course 07

Example of functional requirements (2)

Reg. ID R 3.1.2.004
Title | Valkdate players actions
Description | I in Master mode, the system shall validate anv plaver action thait
hias been received. in onder to enforee the rules of the game.
Priority 2
Risk H
References | R 3.1.5.001 -R 3.1.5.012
Reg. ID | R 3.1.2.006
Title | Upadate game state
Description | If in Master mode, the svatem shall change the game state if a
received playver action bas been succeasfully validated, as to meflect
what the action entalls.
Priority |1
Risk
Heferences | R 3.1.1.002. R 3.1.2.004
Reg. ID | R 3.1.2.006
Title Distribute game state
Description | Ifin Master mode, when the game state has been changed. the sys-
tern shall inform all connected aystems, which are in Slave mode,
abowt the new game state, and thereby confirm that the action
wias wvalul.
Priority |1
Risk
Heferences | R 3.1.1.004. R 3.1.3.005

Priority:

1: first version
2: final version
>3: optional

Risk:

C: critical

H: high impact
M: medium imp.
L: low impact

65

SRS for Tschau Sepp Logic Subcomponent, by A. Dima, O. Clerc, A. Garcia, DOSE course 09

Example of non-functional requirements (1)

©

Requirement ID
Group
Description

Pricrity
Source
References

Requirement ID
Group
Description

Priority
Source
References

Requirement ID
Group
Description

Priority
Source
References

R5.01.03

Performance\Start-up ime

Under the condition that the host system fulfils the hardware requiremeant
F13.01.01, the time batwean initiation of the system starflup and availability of full
system funclionality must be nol longer 10 minutes.

]

R13.01.1

RE.02.01

DeploymantiUpgrade

Tha upgrade of thae system must ba a particular case of the installation and fulfil
the same requirements.

Tha upgrade shall preserve all user data: projects, lasks, resourcas, projact
partfolios.

]

RE.01.01

R13.01.02

Hardware\Cliant system

The client part of the PMS shall be able to run and Tulfill the performance
requiremants on:

Single Pentium 1.8 GHz, 1 GB RAM, 1 GB disk space. LAN bandwidth: 1 Gbps;
WAN bandwidth: 2 Mbps; minumum screen resclution 1024x768

’

3.6 Parformance
SRS for Project Management System by I.Yevgeniy, DOSE course 07

66

Example of non-functional requirements (2)

©

Req. ID | R 3.2.003
Title Integrity
Deseription | The system will maintain information integrity: the Slaves may
g an obder version of the Game State, but a2 soon as they peceive
an wpdate, they shall act apon it, 20 that the state 18 updatel at
mecst 2 mmimutes after the Master's Game State was updated.
Priority 1
Risk H
References | KONE
Req. ID | R 3.2.004
Title | Robustness
Deseription | The system shall not recover from ervor states produced by exter-
nal factors.
Priority 1
Risk L
RHeferences | KONE
Req. ID | & 3.2.005
Title | Performance
Description | The svatem shall process a notification from the NET o GUT sub-
components in at most 0 milliseconds.
Priority 2
Risk L
References | KONE

SRS for Tschau Sepp Logic Subcomponent, by A. Dima, O. Clerc, A. Garcia, DOSE course 09

67

Requirements under agile methods

Under XP: requirements are taken into account as defined
at the particular time considered

Requirements are largely embedded in test cases

Benefits:
> Test plan will be directly available
> Customer involvement

Risks:
> Change may be difficult (refactoring)
> Structure may not be right
> Test only cover the foreseen cases

Practical advice

Retain the best agile practices, in particular
frequent iterations, customer involvement,
centrality of code and testing.

Disregard those that contradict proven
software engineering principles.

Some recipes for good requirements

Managerial aspects:
> Involve all stakeholders
> Establish procedures for controlled change
> Establish mechanisms for traceability

> Treat requirements document as one of the major
assets of the project; focus on clarity, precision,
completeness

Technical aspects: how to be precise?
> Formal methods?
> Design by Contract

Checklist

After: Kotonya &

Sommerville 98

Premature design?

Combined requirements?
Unnecessary requirements?
Conformance with business goals
Ambiguity

Realism

Testability

Using natural language for requirements

Keys are:
» Structure
> Precision (including precise definition of all ferms)
> Consistency
> Minimizing forward and outward references
> Clarity
> Conciseness

Advice on natural language

Apply the general rules of "good writing" (e.g. Strunk & White)

Use active form
(Counter-example: " the message will be transmitted..")
This forces you to state who does what

Use prescriptive language ("shall..")
Separate domain properties and machine requirements
Take advantage of text processing capabilities, within reason

Identify every element of the requirement, down fto paragraph or
sentence

For delicate or complex issues, use complementary formalisms:
> Illustrations (with precise semantics)
> Formal descriptions, with explanations in English
Even for natural language specs, a mathematical detour may be useful

. ©
Advice on natural language

After Mannion & Keepence, 95

= When using numbers, identify the units

= When introducing a list, describe all the elements
= Use illustrations to clarify

= Define all project terms in a glossary

= Consider placing individual requirements in a separate
paragraph, individually numbered

= Define generic verbs ("transmitted”, "sent”,
"downloaded”, "processed”...) precisely

©

Requirements elicitation

Case study questions

> Define stakeholders

> Discuss quality of statements -- too specific, not
specific enough, properly scoped

> Discuss completeness of information: what is missing?

> Any contradictions that need to be resolved between
stakeholders?

> Identify domain and machine requirements
» Identify functional and non-functional requirements
> Plan for future elicitation tasks

The need for an iterative approach ©
Source: Southwell 87

The requirements definition activity cannot be defined by
a simple progression through, or relationship between,
acquisition, expression, analysis, and specification.

Reguirements evolve at an uneven pace and tend to
generate further requirements from the definition
processes.

The construction of the requirements specification is
inevitably an iterative process which is not, in general,
self-terminating. Thus, at each iteration it is necessary to
consider whether the current version of the reguirements
specification adeguately defines the purchasers
reguirement, and, if not, how it must be changed or
expanded further.

Before elicitation

AT a minimum:
> Overall project description

> Draft glossary

Requirements elicitation: overall scheme

> Identify stakeholders

» Gather wish list of each category

> Document and refine wish lists

> Integrate, reconcile and verify wish lists
> Define priorities

> Add any missing elements and nonfunctional
requirements

©

The four for W
e four forces at work After: Kotonya &

Sommerville 98

Problem to be Business context

solved \

Requirements

Domain Stakeholder
constraints constraints

The customer perspective

©

Source: Dubois 88

“ The primary interest of customers is not in a computer
system, but rather in some overall positive effects
resulting from the introduction of a computer system in

their environment”

Requirements elicitation: who?

Users/customers
Software developers
Other stakeholders

Requirements engineers (analysts)

Requirements elicitation: what?

Example questions:

What will the system do?

What must happen if...?

What resources are available for...?

What kind of documentation is required?

What is the maximum response time for...?

What kind of training will be needed?

What precision is requested for..?

What are the security/privacy implications of ..?
Is .. anerror?

What should the consequence be for a ... error?
What is a criterion for success of a ... operation?

Requirements elicitation: how?

= Contract

= Study of existing non-computer processes
= Study of existing computer systems

= Study of comparable systems elsewhere

= Stakeholder interviews

= Stakeholder workshops

Oy ©
Building stakeholders’ trust

Future users may be jaded by previous attempts where the
deliveries did not match the promises

Need to build trust progressively:
> Provide feedback, don't just listen
> Justify restrictions

> Reinforce trust through evidence, e.q. earlier
systems, partial prototypes

> Emphasize the feasible over the ideal

Study of existing systems

Non-computerized processes
> Not necessarily to be replicated by software system
> Understand why things are done the way they are

Existing IT systems
» Commercial products (buy vs build)
» Previous systems

> Systems developed by other companies, including
competitors

Stakeholder interviews

After: Winant 02 |—

Good questions:
> Are egoless
> Seek useful answers
> Make no assumptions
"Context-free" questions:
> "Where do you expect this to be used?”
> "What is it worth to you to solve this problem?”
> "When do you do this?”

> "Whom should I talk t0?" "Who doesn't need to be
involved?”

> "How does this work?" "How might it be different?”

Also: meta-questions: "Are my questions relevant?”

Probe further

After: Derby 04

What else?

Can you show me?

Can you give me an example?
How did that happen?

What happens next?

What's behind that?

Are there any other reasons?

"How" rather than "why":
What was the thinking behind that decision?

: : .. ©
Uncovering the implicit

One analyst didn't include in his requirements document
the database that fed his system. I asked him why. He
said, "Everyone knows its there. It’s obvious.” Words
to be wary of! It turned out that the database was
scheduled for redesign. [Winant]

Implicit assumptions are one of the biggest obstacles to a
successful requirements process.

Requirements workshops

After: Young 01 |——
Often less costly than multiple interviews

Help structure requirements capture and analysis process
Dynamic, interactive, cooperative

Involve users, cut across organizational boundaries

Help identify and prioritize needs, resolve contentious
issues; help promote cooperation between stakeholders

Help manage users’ expectations and attitude toward
change

Knowing when to stop elicitation

Keep the focus on scope
Keep a list of open issues
Define criteria for completeness

After elicitation

Examine resulting requirements from the viewpoint of
requirements quality factors, especially consistency and
completeness

Make decisions on contentious issues
Finalize scope of project
Go back to stakeholders and negotiate

15 quality goals for requirements

= Justified

= Correct

= Complete

= Consistent
= Unambiguous
= Feasible

= Abstract

Traceable
Delimited
Interfaced
Readable
Modifiable
Testable

Prioritized

Endorsed

Practical advice

Treat requirement elicitation as a mini-
project of its own

©

Use cases
and

Object-oriented analysis

Use Cases and scenarios

One of the UML diagram types

A use case describes how to achieve a single business goal
or task through the interactions between external actors
and the system = can be used to capture functional
requirements

Actors: interacting parties outside of the system, e.g.
class of users, role of users, other system

Scenario: instance of a use case representing a single path
through the use case

Use cases

A good use case must:
> Have one single business task as goal

> Describe a sequence of interactions delivering the
service

> Describe alternatives, failures, exceptional behavior
> Treat the system as a black box

> Not be implementation-specific

> Provide appropriate level of detail

> Be short enough to implement by one developer in one
release

It captures who (actor) does what (interaction) why (goal)

Example of a use case - Define actors

Fraud
Agent
CS Agent

o o

Buvyer Seller

Example taken from http://www.gatherspace.com/static/use_case_example.html

98

. ©
Example of a use case - Define actor goals

Creates Account
Searches listings
for item

Searches listings
for item
Creatas an
Auction
Ships [tem

Seller

Example of a use case - Identify reuse

Generic

ser
<Zextends=>

< zgxtends=>=

Auction
@
/N
Seller

100

Use case example

Place an order:
*Browse catalog & select items -

u CGI I SGI@S r‘ep PZSCHTGTIVC Browse Catalog and Select ltems
=Supply shipping information %O
=Supply payment information %\a" s Persen

=Receive conformation number Customer Q
from salesperson Qe By

A

Give Payment Info

D

Get Confirmation #

May have precondition,
postcondition, invariant

Your turn!

Devise use cases

Consider a small library database
with the following transactions:

1. Check out a copy of a book.
Return a copy of a book.

2. Add a copy of a book to the
library. Remove a copy of a
book from the library.

3. Get the list of books by a
particular author or ina
particular subject area.

4. Find out the list of books
currently checked out by a
particular borrower.

5. Find out what borrower last

checked out a particular copy
of a book.

There are two types of users: staff

users and ordinary borrowers.

Transactions 1,2, 4, and b are
restricted to staff users, except
that ordinary borrowers can
perform transaction 4 to find
out the list of books currently
borrowed by themselves. The
database must also satisfy the
following constraints:

> All copies in the library must
be available for checkout or
be checked ouft.

»No copy of the book may be
both available and checked
out at the same time.

> A borrower may not have
more than a predefined
number of books checked out
at one time.

Discussion of use cases for requirements

Use cases are a tool for requirement elicitation but
insufficient to define requirements:

> Not abstract enough

> Too specific

> Describe current processes
> Do not support evolution

Use cases are to requirements what tests are to software
specification and design

Major application: for testing

Object-oriented analysis

Classes around object types (not just physical objects
but also important concepts of the application domain)

Abstract Data Types approach

Deferred classes and features

Inter-component relations: “client” and inheritance
Distinction between reference and expanded clients

Inheritance — single, multiple and repeated for
classification.

Contracts to capture the semantics of systems:
properties other than structural.

Libraries of reusable classes

What is O-O analysis?

Same benefits as O-O programming, in particular
extendibility and reusability

Direct modeling of the problem domain

Seamlessness and reversibility with the continuation of
the project (design, implementation, maintenance)

To be continued: we need abstract data types before
continuing the discussion of O-O analysis. See lecture 3.

©

Conclusion

Key lessons

©

Requirements are software
> Subject to software engineering tools
> Subject to standards
> Subject to measurement
> Part of quality enforcement
Requirements is both a lifecycle phase and a lifecycle-long
activity
Since requirements will change, seamless approach is
desirable
Distinguish domain properties from machine properties

» Domain requirements should never refer to machine
requirements!

0,
Key lessons

Identify & involve all stakeholders

Requirements determine not just development but tests
Use cases are good for test planning

Requirements should be abstract

Requirements should be traceable

Requirements should be verifiable (otherwise they are
wishful thinking)

Object technology helps
> Modularization
> Classifications
> Contracts
> Seamless transition to rest of lifecycle

Key lessons

Formal methods have an important contribution o make:
> Culture to be mastered by requirements engineers
> Necessary for critical parts of application
> Lead to ask the right questions
> Proofs & model checking uncover errors
> Lead to better informal requirements
» Study abstract data types
> Nothing to be scared of

Bibliography (1/4)

Barry W. Boehm: Software Engineering Economics, Prentice Hall, 1981.

Fred Brooks: No Silver Bullet - Essence and Accident in Software Engineering, in
Computer (LEEE), vol. 20, no. 4, pages 10-19, April 1987,

John B. Goodenough and Susan Gerhart: Towards a Theory of Test: Data
Selection Criteria, in Current Trends in Programming Methodology, ed. Raymond
T. Yeh, pages 44-79, Prentice Hall, 1977.

Esther Derby: Building a Requirements Foundation through Customer Interviews,
www.estherderby.com/articles/buildingarequirementsfoundation.htm.

Eric Dubois, J. Hagelstein and A. Rifaut: Formal Requirements Engineering with
ERAE, in Philips Journal of Research, vol. 43, no. 7, pages 393-414,1988.

Ellen Gottesdiener: Requirements Workshops: Collaborating to Explore User
Requirements, in Software Management 2002, available at
www.ebgconsulting.com/pubs/Articles/RegtsWorkshopsCollabToExplore-
Gottesdiener.pdf

http://www.estherderby.com/articles/buildingarequirementsfoundation.htm
http://www.ebgconsulting.com/pubs/Articles/ReqtsWorkshopsCollabToExplore-Gottesdiener.pdf
http://www.ebgconsulting.com/pubs/Articles/ReqtsWorkshopsCollabToExplore-Gottesdiener.pdf
http://www.ebgconsulting.com/pubs/Articles/ReqtsWorkshopsCollabToExplore-Gottesdiener.pdf

Bibliography (2/4)

Gerald Kotonya & Tan Sommerville: Reguirements Engineering: Processes and
Technigues, Wiley, 1998,

LEEE: ITEEE Recommended Practice for Software Requirements Specifiations,
IEEE Std 830-1998 (revision of IEEE Std 830-1988), available at
iceexplore.ieee.orq/iel4/5841/15571/00720574.pdf2arnumber=720574.

Michael Jackson: Software Reguirements and Specifications, Addison-Wesley,
1996.

Mike Mannion and Barry Keepence: SMART Reguirements, in ACM SIGSOFT
Software Engineering Notes, vol. 20, no. 2, pages 42-47, April 1995.

Bertrand Meyer: On Formalism in Specifications, in Software (IEEE), pages 6-
26, January 1985, also at se.ethz.ch/~meyer/publications/ieee/formalism.pdf.

[OOSC] Bertrand Meyer: Object-Oriented Software Construction, 2" edition,
Prentice Hall, 1997.

Peter Naur: Programming with Action Clusters, in BIT, vol. 3, no. 9, pages 250-
258, 1969.

http://ieeexplore.ieee.org/iel4/5841/15571/00720574.pdf?arnumber=720574

Bibliography (3/4)

Shari Lawrence Pfleeger and Joanne M Atlee: Software Engineering, 3
edition, Prentice Hall, 2005.

Laura Scharer: Pinpointing Requirements, in Datamation, April 1981. Also
available at media.wiley.com/product data/excerpt/84/08186773/
0818677384-2.pdf.

SEI (Software Engineering Institute): CMMISM for Software Engineering,
Version 1.1, Staged Representation (CMMI-SW, V1.1, Staged), 2005, available
at www.sei.cmu.edu/publications/documents/02.reports/02tr029.html.

Southwell et al., cited in Michael 6. Christel and Kyo C. Kang, Issues in
Reguirements Elicitation, Software Engineering Institute, CMU/SEI-92-TR-
012 and ESC-TR-92-012, September 1992, available at www.sei.cmu.edu/pub/
documents/92.reports/pdf/tr12.92 pdf.

Standish group: The Chaos Report, 1994,

Becky Winant: Reguirement #1: Ask Honest Questions, www.stickyminds.com/
sitewide.asp?Function=edetail&Object Type=COL&Ob jectId=3264.

http://media.wiley.com/product_data/excerpt/84/08186773/0818677384-2.pdf
http://media.wiley.com/product_data/excerpt/84/08186773/0818677384-2.pdf
http://media.wiley.com/product_data/excerpt/84/08186773/0818677384-2.pdf
http://media.wiley.com/product_data/excerpt/84/08186773/0818677384-2.pdf
http://media.wiley.com/product_data/excerpt/84/08186773/0818677384-2.pdf
http://www.sei.cmu.edu/publications/documents/02.reports/02tr029.html
http://www.sei.cmu.edu/pub/documents/92.reports/pdf/tr12.92.pdf
http://www.sei.cmu.edu/pub/documents/92.reports/pdf/tr12.92.pdf
http://www.sei.cmu.edu/pub/documents/92.reports/pdf/tr12.92.pdf
http://www.stickyminds.com/sitewide.asp?Function=edetail&ObjectType=COL&ObjectId=3264
http://www.stickyminds.com/sitewide.asp?Function=edetail&ObjectType=COL&ObjectId=3264
http://www.stickyminds.com/sitewide.asp?Function=edetail&ObjectType=COL&ObjectId=3264

Bibliography (4/4)

Jeannette M. Wing: A Study of 12 Specifications of the Library Problem, in
Software (LIEEE), vol. B, no. 4, pages 66-76, July 1988.

Ralph Young: Recommended Reguirements Gathering Practices, in CrossTalk,
the Journal of Defense Software Engineering, April 2002, available at
www.stsc.hill.af .mil/crosstalk/2002/04/young.html.

http://www.stsc.hill.af.mil/crosstalk/2002/04/young.html

